alimotahharynia
commited on
Commit
•
f92ab61
1
Parent(s):
c7b2596
Update app.py
Browse files
app.py
CHANGED
@@ -49,6 +49,12 @@ def load_uniprot_dataset(dataset_name, dataset_key):
|
|
49 |
logging.error(f"Error loading dataset: {e}")
|
50 |
raise RuntimeError(f"Failed to load dataset: {e}")
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
# SMILES Generator
|
53 |
class SMILESGenerator:
|
54 |
def __init__(self, model, tokenizer, uniprot_to_sequence):
|
@@ -102,61 +108,40 @@ class SMILESGenerator:
|
|
102 |
def generate_smiles_gradio(sequence_input=None, uniprot_id=None, num_generated=10):
|
103 |
results = {}
|
104 |
|
105 |
-
# Process
|
106 |
if sequence_input:
|
107 |
sequences = [seq.strip() for seq in sequence_input.split(",") if seq.strip()]
|
108 |
for seq in sequences:
|
109 |
try:
|
110 |
-
#
|
111 |
-
uniprot_id_for_seq = [uid for uid, s in uniprot_to_sequence.items() if s == seq]
|
112 |
-
uniprot_id_for_seq = uniprot_id_for_seq[0] if uniprot_id_for_seq else "N/A"
|
113 |
-
|
114 |
-
# Generate SMILES for the sequence
|
115 |
smiles = generator.generate_smiles(seq, num_generated)
|
116 |
-
results[
|
117 |
-
"sequence": seq,
|
118 |
-
"smiles": smiles
|
119 |
-
}
|
120 |
except Exception as e:
|
121 |
-
results[
|
122 |
|
123 |
-
# Process UniProt
|
124 |
if uniprot_id:
|
125 |
uniprot_ids = [uid.strip() for uid in uniprot_id.split(",") if uid.strip()]
|
126 |
for uid in uniprot_ids:
|
127 |
-
sequence = uniprot_to_sequence.get(uid,
|
128 |
try:
|
129 |
-
|
130 |
-
if sequence != "N/A":
|
131 |
smiles = generator.generate_smiles(sequence, num_generated)
|
132 |
-
results[uid] = {
|
133 |
-
"sequence": sequence,
|
134 |
-
"smiles": smiles
|
135 |
-
}
|
136 |
else:
|
137 |
-
|
138 |
-
|
139 |
-
"error": f"UniProt ID {uid} not found in the dataset."
|
140 |
-
}
|
141 |
except Exception as e:
|
142 |
results[uid] = {"sequence": "N/A", "error": f"Error generating SMILES: {str(e)}"}
|
143 |
|
144 |
-
# Check if no results were generated
|
145 |
if not results:
|
146 |
-
return {"error": "No
|
147 |
|
148 |
-
# Save
|
149 |
file_path = save_smiles_to_file(results)
|
150 |
return results, file_path
|
151 |
|
152 |
|
153 |
-
def save_smiles_to_file(results):
|
154 |
-
file_path = os.path.join(tempfile.gettempdir(), "generated_smiles.json")
|
155 |
-
with open(file_path, "w") as f:
|
156 |
-
json.dump(results, f, indent=4)
|
157 |
-
return file_path
|
158 |
-
|
159 |
-
|
160 |
# Main initialization and Gradio setup
|
161 |
if __name__ == "__main__":
|
162 |
setup_logging()
|
@@ -164,34 +149,142 @@ if __name__ == "__main__":
|
|
164 |
dataset_name = "alimotahharynia/approved_drug_target"
|
165 |
dataset_key = "uniprot_sequence"
|
166 |
|
167 |
-
# Load model, tokenizer, and dataset
|
168 |
model, tokenizer = load_model_and_tokenizer(model_name)
|
169 |
uniprot_to_sequence = load_uniprot_dataset(dataset_name, dataset_key)
|
170 |
|
171 |
-
# SMILESGenerator
|
172 |
generator = SMILESGenerator(model, tokenizer, uniprot_to_sequence)
|
173 |
|
174 |
-
|
175 |
-
|
176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
with gr.Row():
|
178 |
sequence_input = gr.Textbox(
|
179 |
-
label="
|
180 |
-
placeholder="Enter
|
|
|
181 |
)
|
182 |
uniprot_id_input = gr.Textbox(
|
183 |
label="UniProt IDs",
|
184 |
-
placeholder="Enter UniProt IDs separated by commas..."
|
|
|
185 |
)
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
output = gr.JSON(label="Generated SMILES")
|
188 |
-
file_output = gr.File(label="Download
|
|
|
|
|
189 |
|
190 |
-
generate_button = gr.Button("Generate SMILES")
|
191 |
generate_button.click(
|
192 |
generate_smiles_gradio,
|
193 |
inputs=[sequence_input, uniprot_id_input, num_generated_slider],
|
194 |
outputs=[output, file_output]
|
195 |
)
|
196 |
|
197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
logging.error(f"Error loading dataset: {e}")
|
50 |
raise RuntimeError(f"Failed to load dataset: {e}")
|
51 |
|
52 |
+
def save_smiles_to_file(results):
|
53 |
+
file_path = os.path.join(tempfile.gettempdir(), "generated_smiles.json")
|
54 |
+
with open(file_path, "w") as f:
|
55 |
+
json.dump(results, f, indent=4)
|
56 |
+
return file_path
|
57 |
+
|
58 |
# SMILES Generator
|
59 |
class SMILESGenerator:
|
60 |
def __init__(self, model, tokenizer, uniprot_to_sequence):
|
|
|
108 |
def generate_smiles_gradio(sequence_input=None, uniprot_id=None, num_generated=10):
|
109 |
results = {}
|
110 |
|
111 |
+
# Process protein sequences
|
112 |
if sequence_input:
|
113 |
sequences = [seq.strip() for seq in sequence_input.split(",") if seq.strip()]
|
114 |
for seq in sequences:
|
115 |
try:
|
116 |
+
# Always attempt to generate SMILES from the sequence (regardless of validity)
|
|
|
|
|
|
|
|
|
117 |
smiles = generator.generate_smiles(seq, num_generated)
|
118 |
+
results[seq] = {"sequence": seq, "smiles": smiles}
|
|
|
|
|
|
|
119 |
except Exception as e:
|
120 |
+
results[seq] = {"sequence": seq, "error": f"Error generating SMILES: {str(e)}"}
|
121 |
|
122 |
+
# Process UniProt IDs
|
123 |
if uniprot_id:
|
124 |
uniprot_ids = [uid.strip() for uid in uniprot_id.split(",") if uid.strip()]
|
125 |
for uid in uniprot_ids:
|
126 |
+
sequence = uniprot_to_sequence.get(uid, None) # None if not found
|
127 |
try:
|
128 |
+
if sequence:
|
|
|
129 |
smiles = generator.generate_smiles(sequence, num_generated)
|
130 |
+
results[uid] = {"sequence": sequence, "smiles": smiles}
|
|
|
|
|
|
|
131 |
else:
|
132 |
+
# UniProt ID not found
|
133 |
+
results[uid] = {"sequence": "N/A", "error": f"UniProt ID {uid} not found in dataset."}
|
|
|
|
|
134 |
except Exception as e:
|
135 |
results[uid] = {"sequence": "N/A", "error": f"Error generating SMILES: {str(e)}"}
|
136 |
|
|
|
137 |
if not results:
|
138 |
+
return {"error": "No valid input provided. Please try again with different sequences or UniProt IDs."}
|
139 |
|
140 |
+
# Save
|
141 |
file_path = save_smiles_to_file(results)
|
142 |
return results, file_path
|
143 |
|
144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
# Main initialization and Gradio setup
|
146 |
if __name__ == "__main__":
|
147 |
setup_logging()
|
|
|
149 |
dataset_name = "alimotahharynia/approved_drug_target"
|
150 |
dataset_key = "uniprot_sequence"
|
151 |
|
|
|
152 |
model, tokenizer = load_model_and_tokenizer(model_name)
|
153 |
uniprot_to_sequence = load_uniprot_dataset(dataset_name, dataset_key)
|
154 |
|
|
|
155 |
generator = SMILESGenerator(model, tokenizer, uniprot_to_sequence)
|
156 |
|
157 |
+
with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo", secondary_hue="teal")) as iface:
|
158 |
+
custom_css = """
|
159 |
+
body {
|
160 |
+
font-family: 'Roboto', sans-serif;
|
161 |
+
background-color: #fafafa;
|
162 |
+
color: #333;
|
163 |
+
font-size: 16px;
|
164 |
+
}
|
165 |
+
|
166 |
+
#app-title {
|
167 |
+
text-align: center;
|
168 |
+
font-size: 36px;
|
169 |
+
font-weight: 700;
|
170 |
+
color: #2c3e50;
|
171 |
+
margin-bottom: 20px;
|
172 |
+
}
|
173 |
+
|
174 |
+
#description {
|
175 |
+
font-size: 18px;
|
176 |
+
margin-bottom: 40px;
|
177 |
+
text-align: center;
|
178 |
+
color: #555;
|
179 |
+
}
|
180 |
+
|
181 |
+
.gr-button {
|
182 |
+
padding: 12px 24px;
|
183 |
+
font-weight: bold;
|
184 |
+
background-color: #007bff;
|
185 |
+
color: white;
|
186 |
+
border-radius: 8px;
|
187 |
+
border: none;
|
188 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
189 |
+
transition: all 0.3s ease;
|
190 |
+
}
|
191 |
+
|
192 |
+
.gr-button:hover {
|
193 |
+
background-color: #0056b3;
|
194 |
+
transform: translateY(-2px);
|
195 |
+
box-shadow: 0 6px 10px rgba(0, 0, 0, 0.2);
|
196 |
+
}
|
197 |
+
|
198 |
+
.gr-input:focus {
|
199 |
+
border-color: #007bff;
|
200 |
+
box-shadow: 0 0 8px rgba(0, 123, 255, 0.3);
|
201 |
+
}
|
202 |
+
|
203 |
+
.gr-output {
|
204 |
+
background-color: #ffffff;
|
205 |
+
border-radius: 10px;
|
206 |
+
padding: 20px;
|
207 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
|
208 |
+
margin-bottom: 20px;
|
209 |
+
}
|
210 |
+
|
211 |
+
.error-message {
|
212 |
+
background-color: #f8d7da;
|
213 |
+
border-color: #f5c6cb;
|
214 |
+
color: #721c24;
|
215 |
+
padding: 15px;
|
216 |
+
border-radius: 8px;
|
217 |
+
}
|
218 |
+
|
219 |
+
.success-message {
|
220 |
+
background-color: #d4edda;
|
221 |
+
border-color: #c3e6cb;
|
222 |
+
color: #155724;
|
223 |
+
padding: 15px;
|
224 |
+
border-radius: 8px;
|
225 |
+
}
|
226 |
+
|
227 |
+
.gr-row {
|
228 |
+
margin-bottom: 20px;
|
229 |
+
}
|
230 |
+
"""
|
231 |
+
|
232 |
+
iface.css = custom_css
|
233 |
+
gr.Markdown("## GPT-2 Drug Generator", elem_id="app-title")
|
234 |
+
gr.Markdown(
|
235 |
+
"Generate **drug-like SMILES structures** from protein sequences or UniProt IDs. "
|
236 |
+
"Input data, specify parameters, and download the results.",
|
237 |
+
elem_id="description"
|
238 |
+
)
|
239 |
+
|
240 |
with gr.Row():
|
241 |
sequence_input = gr.Textbox(
|
242 |
+
label="Protein Sequences",
|
243 |
+
placeholder="Enter sequences separated by commas (e.g., MGAASGRRGP, MGETLGDSPI, ...)",
|
244 |
+
lines=3,
|
245 |
)
|
246 |
uniprot_id_input = gr.Textbox(
|
247 |
label="UniProt IDs",
|
248 |
+
placeholder="Enter UniProt IDs separated by commas (e.g., P12821, P37231, ...)",
|
249 |
+
lines=1,
|
250 |
)
|
251 |
+
|
252 |
+
num_generated_slider = gr.Slider(
|
253 |
+
minimum=1,
|
254 |
+
maximum=100,
|
255 |
+
step=1,
|
256 |
+
value=10,
|
257 |
+
label="Number of Unique SMILES to Generate",
|
258 |
+
)
|
259 |
+
|
260 |
output = gr.JSON(label="Generated SMILES")
|
261 |
+
file_output = gr.File(label="Download Results as JSON")
|
262 |
+
|
263 |
+
generate_button = gr.Button("Generate SMILES", elem_id="generate-button")
|
264 |
|
|
|
265 |
generate_button.click(
|
266 |
generate_smiles_gradio,
|
267 |
inputs=[sequence_input, uniprot_id_input, num_generated_slider],
|
268 |
outputs=[output, file_output]
|
269 |
)
|
270 |
|
271 |
+
gr.Markdown("""
|
272 |
+
### How to Cite:
|
273 |
+
If you use this tool in your research, please cite the following work:
|
274 |
+
|
275 |
+
```bibtex
|
276 |
+
@misc{sheikholeslami2024druggenadvancingdrugdiscovery,
|
277 |
+
title={DrugGen: Advancing Drug Discovery with Large Language Models and Reinforcement Learning Feedback},
|
278 |
+
author={Mahsa Sheikholeslami and Navid Mazrouei and Yousof Gheisari and Afshin Fasihi and Matin Irajpour and Ali Motahharynia},
|
279 |
+
year={2024},
|
280 |
+
eprint={2411.14157},
|
281 |
+
archivePrefix={arXiv},
|
282 |
+
primaryClass={q-bio.QM},
|
283 |
+
url={https://arxiv.org/abs/2411.14157},
|
284 |
+
}
|
285 |
+
```
|
286 |
+
|
287 |
+
This will help us maintain the tool and support future development!
|
288 |
+
""")
|
289 |
+
|
290 |
+
iface.launch(allowed_paths=["/tmp"])
|