| from .BaseLLM import BaseLLM | |
| import os | |
| from openai import OpenAI | |
| import tiktoken | |
| encoding = tiktoken.encoding_for_model("gpt-4o") | |
| class OpenRouter(BaseLLM): | |
| def __init__(self, model="deepseek/deepseek-r1:free"): | |
| super(OpenRouter, self).__init__() | |
| self.client = OpenAI( | |
| api_key=os.getenv("OPENROUTER_API_KEY"), | |
| base_url="https://openrouter.ai/api/v1", | |
| ) | |
| self.model_name = model | |
| self.messages = [] | |
| self.in_token = 0 | |
| self.out_token = 0 | |
| def initialize_message(self): | |
| self.messages = [] | |
| def ai_message(self, payload): | |
| self.messages.append({"role": "ai", "content": payload}) | |
| def system_message(self, payload): | |
| self.messages.append({"role": "system", "content": payload}) | |
| def user_message(self, payload): | |
| self.messages.append({"role": "user", "content": payload}) | |
| def get_response(self,temperature = 0.8): | |
| completion = self.client.chat.completions.create( | |
| model=self.model_name, | |
| messages=self.messages | |
| ) | |
| return completion.choices[0].message.content | |
| def chat(self,text,temperature = 0.8): | |
| self.initialize_message() | |
| self.user_message(text) | |
| response = self.get_response(temperature = temperature) | |
| self.in_token += self.count_token(text) | |
| self.out_token += self.count_token(response) | |
| return response | |
| def print_prompt(self): | |
| for message in self.messages: | |
| print(message) | |
| def count_token(self,text,): | |
| return len(encoding.encode(text)) |