alidenewade commited on
Commit
ef77b66
Β·
verified Β·
1 Parent(s): b024610

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +140 -0
README.md ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: "Hull-White Simulator"
3
+ emoji: πŸ“Š
4
+ colorFrom: blue
5
+ colorTo: indigo
6
+ sdk: gradio
7
+ sdk_version: 4.0.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: mit
11
+ tags:
12
+ - actuarial
13
+ - finance
14
+ - stochastic-models
15
+ - monte-carlo
16
+ - interest-rates
17
+ - quantitative-finance
18
+ - gradio
19
+ - dashboard
20
+ - hull-white
21
+ - risk-management
22
+ ---
23
+
24
+ # πŸ“Š Hull-White Interest Rate Model Dashboard
25
+
26
+ An interactive web dashboard for exploring the Hull-White short rate model, designed specifically for actuaries and financial professionals.
27
+
28
+ [![Open in Spaces](https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm.svg)](https://huggingface.co/spaces/alidenewade/hull-white-simulator)
29
+
30
+ ## 🎯 Overview
31
+
32
+ The Hull-White model is a widely-used short rate model in quantitative finance, particularly valuable for:
33
+ - **Interest rate derivatives pricing**
34
+ - **Risk management and ALM**
35
+ - **Solvency II capital calculations**
36
+ - **Insurance liability valuation**
37
+
38
+ This dashboard provides an intuitive interface to explore the model's behavior through Monte Carlo simulations.
39
+
40
+ ## πŸ“ˆ Model Description
41
+
42
+ The Hull-White model follows the stochastic differential equation:
43
+
44
+ dr(t) = (ΞΈ(t) - ar(t))dt + ΟƒdW
45
+
46
+
47
+ Where:
48
+ - `r(t)` = instantaneous short rate at time t
49
+ - `a` = mean reversion speed parameter
50
+ - `Οƒ` = volatility parameter
51
+ - `ΞΈ(t)` = time-dependent drift function
52
+ - `dW` = Wiener process increment
53
+
54
+ ## πŸš€ Features
55
+
56
+ ### Interactive Visualizations
57
+ - **πŸ“Š Short Rate Paths**: Visualize multiple simulated interest rate trajectories
58
+ - **πŸ“‰ Mean Convergence**: Compare Monte Carlo means against theoretical expectations
59
+ - **πŸ“ˆ Variance Analysis**: Examine variance convergence properties
60
+ - **πŸ’° Discount Factors**: Analyze zero-coupon bond pricing convergence
61
+ - **πŸ” Parameter Sensitivity**: Study the critical Οƒ/a ratio effects
62
+ - **πŸ“‹ Statistics Table**: Summary statistics at key time points
63
+
64
+ ### Adjustable Parameters
65
+ | Parameter | Range | Description |
66
+ |-----------|-------|-------------|
67
+ | Scenarios | 100 - 10,000 | Number of Monte Carlo paths |
68
+ | Time Horizon | 5 - 50 years | Simulation time length |
69
+ | Time Steps | 100 - 500 | Discretization granularity |
70
+ | Mean Reversion (a) | 0.01 - 0.5 | Speed of mean reversion |
71
+ | Volatility (Οƒ) | 0.01 - 0.3 | Interest rate volatility |
72
+ | Initial Rate (rβ‚€) | 0.01 - 0.15 | Starting interest rate |
73
+
74
+ ## πŸŽ›οΈ How to Use
75
+
76
+ 1. **Adjust Model Parameters**: Use the sliders in the left panel to modify Hull-White parameters
77
+ 2. **Explore Visualizations**: Click through the tabs to see different aspects of the model
78
+ 3. **Analyze Convergence**: Pay special attention to the Οƒ/a ratio - values > 1 show poor convergence
79
+ 4. **Compare Theory vs Practice**: Observe how simulated results converge to theoretical expectations
80
+ 5. **Generate Statistics**: Review the summary table for quantitative analysis
81
+
82
+ ## πŸ“Š Key Insights
83
+
84
+ ### Convergence Properties
85
+ - **Οƒ/a < 1**: Good Monte Carlo convergence
86
+ - **Οƒ/a β‰ˆ 1**: Moderate convergence issues
87
+ - **Οƒ/a > 1**: Poor convergence, especially for discount factors
88
+
89
+ ### Practical Considerations
90
+ - **More scenarios** improve convergence but increase computation time
91
+ - **Higher volatility** requires more scenarios for stable results
92
+ - **Longer time horizons** show more pronounced convergence issues
93
+
94
+ ## πŸ”§ Technical Implementation
95
+
96
+ ### Model Features
97
+ - **Gaussian Process**: Exploits Hull-White's analytical properties
98
+ - **Conditional Moments**: Uses exact conditional mean and variance formulas
99
+ - **Vector Operations**: Efficient numpy-based simulations
100
+ - **Reproducible Results**: Fixed random seed for consistency
101
+
102
+ ### Performance Optimized
103
+ - Real-time parameter updates
104
+ - Efficient matrix operations
105
+ - Responsive visualization updates
106
+ - Memory-efficient data handling
107
+
108
+ ## πŸ“š Educational Value
109
+
110
+ Perfect for:
111
+ - **University Finance Courses**: Teaching stochastic interest rate models
112
+ - **Actuarial Training**: Understanding ALM and risk management
113
+ - **Professional Development**: Exploring quantitative finance concepts
114
+ - **Model Validation**: Testing parameter sensitivity and convergence
115
+
116
+ ## πŸŽ“ Theoretical Background
117
+
118
+ The implementation follows established literature:
119
+ - **Brigo & Mercurio**: Interest Rate Models - Theory and Practice
120
+ - **Glasserman**: Monte Carlo Methods in Financial Engineering
121
+ - **Hull**: Options, Futures, and Other Derivatives
122
+
123
+ ### Key Mathematical Properties
124
+ - **Mean**: E[r(t)|β„±β‚›] = r(s)e^(-a(t-s)) + Ξ±(t) - Ξ±(s)e^(-a(t-s))
125
+ - **Variance**: Var[r(t)|β„±β‚›] = (σ²/2a)(1 - e^(-2a(t-s)))
126
+ - **Alpha Function**: Ξ±(t) = f^M(0,t) + (σ²/2aΒ²)(1-e^(-at))Β²
127
+
128
+ ## πŸ› οΈ Installation & Deployment
129
+
130
+ ### Local Development
131
+ ```bash
132
+ # Clone the repository
133
+ git clone https://github.com/YOUR-USERNAME/hull-white-dashboard.git
134
+ cd hull-white-dashboard
135
+
136
+ # Install dependencies
137
+ pip install -r requirements.txt
138
+
139
+ # Run the application
140
+ python app.py