Spaces:
Sleeping
Sleeping
import os | |
os.environ['PYOPENGL_PLATFORM'] = 'egl' | |
import torch | |
import numpy as np | |
import cv2 | |
import matplotlib.pyplot as plt | |
import glob | |
import pickle | |
import pyrender | |
import trimesh | |
from shapely import geometry | |
from smplx import SMPL as _SMPL | |
from smplx.utils import SMPLOutput as ModelOutput | |
from scipy.spatial.transform.rotation import Rotation as RRR | |
class SMPL(_SMPL): | |
""" Extension of the official SMPL implementation to support more joints """ | |
def __init__(self, *args, **kwargs): | |
super(SMPL, self).__init__(*args, **kwargs) | |
# joints = [constants.JOINT_MAP[i] for i in constants.JOINT_NAMES] | |
# J_regressor_extra = np.load(config.JOINT_REGRESSOR_TRAIN_EXTRA) | |
# self.register_buffer('J_regressor_extra', torch.tensor(J_regressor_extra, dtype=torch.float32)) | |
# self.joint_map = torch.tensor(joints, dtype=torch.long) | |
def forward(self, *args, **kwargs): | |
kwargs['get_skin'] = True | |
smpl_output = super(SMPL, self).forward(*args, **kwargs) | |
# extra_joints = vertices2joints(self.J_regressor_extra, smpl_output.vertices) #Additional 9 joints #Check doc/J_regressor_extra.png | |
# joints = torch.cat([smpl_output.joints, extra_joints], dim=1) #[N, 24 + 21, 3] + [N, 9, 3] | |
# joints = joints[:, self.joint_map, :] | |
joints = smpl_output.joints | |
output = ModelOutput(vertices=smpl_output.vertices, | |
global_orient=smpl_output.global_orient, | |
body_pose=smpl_output.body_pose, | |
joints=joints, | |
betas=smpl_output.betas, | |
full_pose=smpl_output.full_pose) | |
return output | |
class Renderer: | |
""" | |
Renderer used for visualizing the SMPL model | |
Code adapted from https://github.com/vchoutas/smplify-x | |
""" | |
def __init__(self, | |
vertices, | |
focal_length=5000, | |
img_res=(224, 224), | |
faces=None): | |
self.renderer = pyrender.OffscreenRenderer(viewport_width=img_res[0], | |
viewport_height=img_res[1], | |
point_size=1.0) | |
self.focal_length = focal_length | |
self.camera_center = [img_res[0] // 2, img_res[1] // 2] | |
self.faces = faces | |
if torch.cuda.is_available(): | |
self.device = torch.device("cuda") | |
else: | |
self.device = torch.device("cpu") | |
vertices = np.concatenate(vertices) | |
# Center the first root to the first frame | |
vertices -= vertices[[0], [0], :] | |
# Remove the floor | |
vertices[..., 2] -= vertices[..., 2].min() | |
data = vertices[..., [2, 0, 1]] | |
minx, miny, _ = data.min(axis=(0, 1)) | |
maxx, maxy, _ = data.max(axis=(0, 1)) | |
minz, maxz = -0.5, 0.5 | |
minx = minx - 0.5 | |
maxx = maxx + 0.5 | |
miny = miny - 0.5 | |
maxy = maxy + 0.5 | |
polygon = geometry.Polygon([[minx, minz], [minx, maxz], [maxx, maxz], | |
[maxx, minz]]) | |
self.polygon_mesh = trimesh.creation.extrude_polygon(polygon, 1e-5) | |
self.polygon_mesh.visual.face_colors = [0, 0, 0, 0.21] | |
self.rot = trimesh.transformations.rotation_matrix( | |
np.radians(180), [1, 0, 0]) | |
# self.polygon_mesh.apply_transform(self.rot) | |
def __call__(self, vertices, camera_translation): | |
scene = pyrender.Scene(bg_color=(1., 1., 1., 0.8), | |
ambient_light=(0.4, 0.4, 0.4)) | |
material = pyrender.MetallicRoughnessMaterial( | |
metallicFactor=0.4, | |
alphaMode='OPAQUE', | |
baseColorFactor=(0.658, 0.214, 0.0114, 0.2)) | |
mesh = trimesh.Trimesh(vertices, self.faces) | |
mesh.apply_transform(self.rot) | |
mesh = pyrender.Mesh.from_trimesh(mesh, material=material) | |
scene.add(mesh, 'mesh') | |
polygon_render = pyrender.Mesh.from_trimesh(self.polygon_mesh, | |
smooth=False) | |
c = np.pi / 2 | |
scene.add(polygon_render) | |
camera_pose = np.eye(4) | |
camera_translation[0] *= -1. | |
camera_pose[:3, 3] = camera_translation | |
camera = pyrender.IntrinsicsCamera(fx=self.focal_length, | |
fy=self.focal_length, | |
cx=self.camera_center[0], | |
cy=self.camera_center[1]) | |
scene.add(camera, pose=camera_pose) | |
light = pyrender.DirectionalLight(color=[1, 1, 1], intensity=300) | |
light_pose = np.eye(4) | |
light_pose[:3, 3] = np.array([0, -1, 1]) | |
scene.add(light, pose=light_pose) | |
light_pose[:3, 3] = np.array([0, 1, 1]) | |
scene.add(light, pose=light_pose) | |
light_pose[:3, 3] = np.array([1, 1, 2]) | |
scene.add(light, pose=light_pose) | |
color, rend_depth = self.renderer.render( | |
scene, flags=pyrender.RenderFlags.RGBA) | |
return color | |
class SMPLRender(): | |
def __init__(self, SMPL_MODEL_DIR): | |
if torch.cuda.is_available(): | |
self.device = torch.device("cuda") | |
else: | |
self.device = torch.device("cpu") | |
self.smpl = SMPL(SMPL_MODEL_DIR, batch_size=1, | |
create_transl=False).to(self.device) | |
self.vertices = [] | |
self.pred_camera_t = [] | |
self.focal_length = 5000 | |
def fit(self, smpl_param, is_headroot=False): | |
pose = smpl_param['pred_pose'] | |
if pose.size == 72: | |
pose = pose.reshape(-1, 3) | |
pose = RRR.from_rotvec(pose).as_matrix() | |
pose = pose.reshape(1, 24, 3, 3) | |
pred_betas = torch.from_numpy(smpl_param['pred_shape'].reshape( | |
1, 10).astype(np.float32)).to(self.device) | |
pred_rotmat = torch.from_numpy(pose.astype(np.float32)).to(self.device) | |
pred_camera_t = smpl_param['pred_root'].reshape(1, | |
3).astype(np.float32) | |
smpl_output = self.smpl(betas=pred_betas, | |
body_pose=pred_rotmat[:, 1:], | |
global_orient=pred_rotmat[:, 0].unsqueeze(1), | |
pose2rot=False) | |
vertices = smpl_output.vertices[0].detach().cpu().numpy() | |
self.vertices.append(vertices[None]) | |
pred_camera_t = pred_camera_t[0] | |
if is_headroot: | |
pred_camera_t = pred_camera_t - smpl_output.joints[ | |
0, 12].detach().cpu().numpy() | |
self.pred_camera_t.append(pred_camera_t) | |
def init_renderer(self, res): | |
self.renderer = Renderer(vertices=self.vertices, | |
focal_length=self.focal_length, | |
img_res=(res[1], res[0]), | |
faces=self.smpl.faces) | |
def render(self, index): | |
renderImg = self.renderer(self.vertices[index][0], | |
self.pred_camera_t[index].copy()) | |
return renderImg | |