add car evaluation analysis dashboard with data overview, exploratory analysis, model training, and comparison features
Browse files
app.py
CHANGED
@@ -1,4 +1,295 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import seaborn as sns
|
6 |
+
from sklearn.model_selection import train_test_split
|
7 |
+
from sklearn.preprocessing import OneHotEncoder
|
8 |
+
from sklearn.svm import SVC
|
9 |
+
from sklearn.ensemble import RandomForestClassifier
|
10 |
+
from sklearn.linear_model import LogisticRegression
|
11 |
+
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
|
12 |
+
from ucimlrepo import fetch_ucirepo
|
13 |
|
14 |
+
# Page configuration
|
15 |
+
st.set_page_config(
|
16 |
+
page_title="Car Evaluation Analysis",
|
17 |
+
page_icon="🚗",
|
18 |
+
layout="wide"
|
19 |
+
)
|
20 |
+
|
21 |
+
# Title and introduction
|
22 |
+
st.title("🚗 Car Evaluation Analysis Dashboard")
|
23 |
+
st.markdown("""
|
24 |
+
This dashboard analyzes car evaluation data using different machine learning models.
|
25 |
+
The dataset includes various car attributes and their evaluation classifications.
|
26 |
+
""")
|
27 |
+
|
28 |
+
|
29 |
+
# Load and prepare data
|
30 |
+
@st.cache_data
|
31 |
+
def load_data():
|
32 |
+
car_evaluation = fetch_ucirepo(id=19)
|
33 |
+
X, y = car_evaluation.data.features, car_evaluation.data.targets
|
34 |
+
df = pd.concat([X, y], axis=1)
|
35 |
+
return df, X, y
|
36 |
+
|
37 |
+
|
38 |
+
df, X, y = load_data()
|
39 |
+
|
40 |
+
# Sidebar
|
41 |
+
st.sidebar.header("Navigation")
|
42 |
+
page = st.sidebar.radio("Go to", ["Data Overview", "Exploratory Analysis", "Model Training", "Model Comparison"])
|
43 |
+
|
44 |
+
# Data Overview Page
|
45 |
+
if page == "Data Overview":
|
46 |
+
st.header("Dataset Overview")
|
47 |
+
|
48 |
+
# Display metrics in cards
|
49 |
+
col1, col2, col3, col4 = st.columns(4)
|
50 |
+
|
51 |
+
with col1:
|
52 |
+
st.metric(
|
53 |
+
label="Total Records",
|
54 |
+
value=f"{len(df):,}"
|
55 |
+
)
|
56 |
+
|
57 |
+
with col2:
|
58 |
+
st.metric(
|
59 |
+
label="Features",
|
60 |
+
value=len(df.columns) - 1
|
61 |
+
)
|
62 |
+
|
63 |
+
with col3:
|
64 |
+
st.metric(
|
65 |
+
label="Target Classes",
|
66 |
+
value=len(df['class'].unique())
|
67 |
+
)
|
68 |
+
|
69 |
+
with col4:
|
70 |
+
st.metric(
|
71 |
+
label="Missing Values",
|
72 |
+
value=df.isnull().sum().sum()
|
73 |
+
)
|
74 |
+
|
75 |
+
st.write("")
|
76 |
+
|
77 |
+
# Sample Data
|
78 |
+
st.subheader("Sample Data")
|
79 |
+
st.dataframe(
|
80 |
+
df.head(),
|
81 |
+
use_container_width=True,
|
82 |
+
height=230
|
83 |
+
)
|
84 |
+
|
85 |
+
# Target Class Distribution
|
86 |
+
st.subheader("Target Class Distribution")
|
87 |
+
|
88 |
+
col1, col2 = st.columns([2, 1])
|
89 |
+
|
90 |
+
with col1:
|
91 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
92 |
+
sns.countplot(data=df, x='class', palette='viridis')
|
93 |
+
plt.title('Distribution of Car Evaluations')
|
94 |
+
st.pyplot(fig)
|
95 |
+
|
96 |
+
with col2:
|
97 |
+
st.write("")
|
98 |
+
st.write("")
|
99 |
+
class_distribution = df['class'].value_counts()
|
100 |
+
for class_name, count in class_distribution.items():
|
101 |
+
st.metric(
|
102 |
+
label=class_name,
|
103 |
+
value=count
|
104 |
+
)
|
105 |
+
|
106 |
+
# Exploratory Analysis Page
|
107 |
+
elif page == "Exploratory Analysis":
|
108 |
+
st.header("Exploratory Data Analysis")
|
109 |
+
|
110 |
+
# Feature Distribution
|
111 |
+
st.subheader("Feature Distributions")
|
112 |
+
feature_to_plot = st.selectbox("Select Feature", df.columns[:-1])
|
113 |
+
|
114 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
115 |
+
sns.countplot(data=df, x=feature_to_plot, palette='coolwarm')
|
116 |
+
plt.title(f'Distribution of {feature_to_plot}')
|
117 |
+
plt.xticks(rotation=45)
|
118 |
+
st.pyplot(fig)
|
119 |
+
|
120 |
+
# Feature vs Target
|
121 |
+
st.subheader("Feature vs Target Class")
|
122 |
+
fig, ax = plt.subplots(figsize=(12, 6))
|
123 |
+
sns.countplot(data=df, x=feature_to_plot, hue='class', palette='Set2')
|
124 |
+
plt.title(f'{feature_to_plot} Distribution by Class')
|
125 |
+
plt.xticks(rotation=45)
|
126 |
+
st.pyplot(fig)
|
127 |
+
|
128 |
+
# Correlation Heatmap
|
129 |
+
st.subheader("Correlation Heatmap")
|
130 |
+
encoded_df = pd.get_dummies(df, drop_first=True)
|
131 |
+
fig, ax = plt.subplots(figsize=(12, 8))
|
132 |
+
sns.heatmap(encoded_df.corr(), annot=True, fmt='.2f', cmap='coolwarm')
|
133 |
+
plt.title('Correlation Heatmap of Encoded Features')
|
134 |
+
st.pyplot(fig)
|
135 |
+
|
136 |
+
# Model Training Page
|
137 |
+
elif page == "Model Training":
|
138 |
+
st.header("Model Training and Evaluation")
|
139 |
+
|
140 |
+
# Data preprocessing
|
141 |
+
encoder = OneHotEncoder(sparse_output=False)
|
142 |
+
X_encoded = encoder.fit_transform(X)
|
143 |
+
y_encoded = y.values.ravel()
|
144 |
+
|
145 |
+
# Train-test split
|
146 |
+
test_size = st.slider("Select Test Size", 0.1, 0.4, 0.2, 0.05)
|
147 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
148 |
+
X_encoded, y_encoded, test_size=test_size, random_state=42
|
149 |
+
)
|
150 |
+
|
151 |
+
# Model selection
|
152 |
+
model_choice = st.selectbox(
|
153 |
+
"Select Model",
|
154 |
+
["Support Vector Machine", "Random Forest", "Logistic Regression"]
|
155 |
+
)
|
156 |
+
|
157 |
+
if st.button("Train Model"):
|
158 |
+
with st.spinner("Training model..."):
|
159 |
+
if model_choice == "Support Vector Machine":
|
160 |
+
model = SVC(kernel='linear', random_state=42)
|
161 |
+
elif model_choice == "Random Forest":
|
162 |
+
model = RandomForestClassifier(n_estimators=100, random_state=42)
|
163 |
+
else:
|
164 |
+
model = LogisticRegression(max_iter=500, random_state=42)
|
165 |
+
|
166 |
+
model.fit(X_train, y_train)
|
167 |
+
y_pred = model.predict(X_test)
|
168 |
+
|
169 |
+
# Display results
|
170 |
+
col1, col2 = st.columns(2)
|
171 |
+
|
172 |
+
with col1:
|
173 |
+
st.subheader("Model Performance")
|
174 |
+
accuracy = accuracy_score(y_test, y_pred)
|
175 |
+
st.metric(label="Accuracy", value=f"{accuracy:.4f}")
|
176 |
+
st.text("Classification Report:")
|
177 |
+
st.text(classification_report(y_test, y_pred))
|
178 |
+
|
179 |
+
with col2:
|
180 |
+
st.subheader("Confusion Matrix")
|
181 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
182 |
+
sns.heatmap(
|
183 |
+
confusion_matrix(y_test, y_pred),
|
184 |
+
annot=True,
|
185 |
+
fmt='d',
|
186 |
+
cmap='Blues',
|
187 |
+
xticklabels=np.unique(y_test),
|
188 |
+
yticklabels=np.unique(y_test)
|
189 |
+
)
|
190 |
+
plt.title(f'{model_choice} Confusion Matrix')
|
191 |
+
plt.xlabel('Predicted')
|
192 |
+
plt.ylabel('Actual')
|
193 |
+
st.pyplot(fig)
|
194 |
+
|
195 |
+
# Feature importance for Random Forest
|
196 |
+
if model_choice == "Random Forest":
|
197 |
+
st.subheader("Feature Importance")
|
198 |
+
feature_importance = pd.DataFrame({
|
199 |
+
'feature': encoder.get_feature_names_out(),
|
200 |
+
'importance': model.feature_importances_
|
201 |
+
})
|
202 |
+
feature_importance = feature_importance.sort_values(
|
203 |
+
'importance', ascending=False
|
204 |
+
).head(10)
|
205 |
+
|
206 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
207 |
+
sns.barplot(
|
208 |
+
data=feature_importance,
|
209 |
+
x='importance',
|
210 |
+
y='feature'
|
211 |
+
)
|
212 |
+
plt.title('Top 10 Most Important Features')
|
213 |
+
st.pyplot(fig)
|
214 |
+
|
215 |
+
# Model Comparison Page
|
216 |
+
else:
|
217 |
+
st.header("Model Comparison")
|
218 |
+
|
219 |
+
if st.button("Compare All Models"):
|
220 |
+
with st.spinner("Training all models..."):
|
221 |
+
# Data preprocessing
|
222 |
+
encoder = OneHotEncoder(sparse_output=False)
|
223 |
+
X_encoded = encoder.fit_transform(X)
|
224 |
+
y_encoded = y.values.ravel()
|
225 |
+
|
226 |
+
# Train-test split
|
227 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
228 |
+
X_encoded, y_encoded, test_size=0.2, random_state=42
|
229 |
+
)
|
230 |
+
|
231 |
+
# Train all models
|
232 |
+
models = {
|
233 |
+
"SVM": SVC(kernel='linear', random_state=42),
|
234 |
+
"Random Forest": RandomForestClassifier(n_estimators=100, random_state=42),
|
235 |
+
"Logistic Regression": LogisticRegression(max_iter=500, random_state=42)
|
236 |
+
}
|
237 |
+
|
238 |
+
results = {}
|
239 |
+
for name, model in models.items():
|
240 |
+
model.fit(X_train, y_train)
|
241 |
+
y_pred = model.predict(X_test)
|
242 |
+
results[name] = {
|
243 |
+
'accuracy': accuracy_score(y_test, y_pred),
|
244 |
+
'predictions': y_pred
|
245 |
+
}
|
246 |
+
|
247 |
+
# Display comparison results
|
248 |
+
st.subheader("Accuracy Comparison")
|
249 |
+
accuracy_df = pd.DataFrame({
|
250 |
+
'Model': list(results.keys()),
|
251 |
+
'Accuracy': [results[model]['accuracy'] for model in results.keys()]
|
252 |
+
})
|
253 |
+
|
254 |
+
col1, col2 = st.columns(2)
|
255 |
+
|
256 |
+
with col1:
|
257 |
+
st.dataframe(accuracy_df)
|
258 |
+
|
259 |
+
with col2:
|
260 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
261 |
+
sns.barplot(
|
262 |
+
data=accuracy_df,
|
263 |
+
x='Model',
|
264 |
+
y='Accuracy',
|
265 |
+
palette='viridis'
|
266 |
+
)
|
267 |
+
plt.title('Model Accuracy Comparison')
|
268 |
+
plt.ylim(0, 1)
|
269 |
+
st.pyplot(fig)
|
270 |
+
|
271 |
+
# Detailed model comparison
|
272 |
+
st.subheader("Detailed Model Performance")
|
273 |
+
for name in results.keys():
|
274 |
+
st.write(f"\n{name}:")
|
275 |
+
st.text(classification_report(y_test, results[name]['predictions']))
|
276 |
+
|
277 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
278 |
+
sns.heatmap(
|
279 |
+
confusion_matrix(y_test, results[name]['predictions']),
|
280 |
+
annot=True,
|
281 |
+
fmt='d',
|
282 |
+
cmap='Blues',
|
283 |
+
xticklabels=np.unique(y_test),
|
284 |
+
yticklabels=np.unique(y_test)
|
285 |
+
)
|
286 |
+
plt.title(f'{name} Confusion Matrix')
|
287 |
+
plt.xlabel('Predicted')
|
288 |
+
plt.ylabel('Actual')
|
289 |
+
st.pyplot(fig)
|
290 |
+
|
291 |
+
# Footer
|
292 |
+
st.markdown("""
|
293 |
+
---
|
294 |
+
Created with ❤️ using Streamlit
|
295 |
+
""")
|