ClearVoice / app.py
alibabasglab's picture
Update app.py
ce131df verified
raw
history blame
7 kB
import torch
import soundfile as sf
import gradio as gr
import spaces
from clearvoice import ClearVoice
import os
@spaces.GPU
def fn_clearvoice_se(input_wav, sr):
if sr == "16000":
myClearVoice = ClearVoice(task='speech_enhancement', model_names=['FRCRN_SE_16K'])
fs = 16000
else:
myClearVoice = ClearVoice(task='speech_enhancement', model_names=['MossFormer2_SE_48K'])
fs = 48000
output_wav_dict = myClearVoice(input_path=input_wav, online_write=False)
if isinstance(output_wav_dict, dict):
key = next(iter(output_wav_dict))
output_wav = output_wav_dict[key]
else:
output_wav = output_wav_dict
sf.write('enhanced.wav', output_wav, fs)
return 'enhanced.wav'
@spaces.GPU
def fn_clearvoice_ss(input_wav):
myClearVoice = ClearVoice(task='speech_separation', model_names=['MossFormer2_SS_16K'])
output_wav_dict = myClearVoice(input_path=input_wav, online_write=False)
if isinstance(output_wav_dict, dict):
key = next(iter(output_wav_dict))
output_wav_list = output_wav_dict[key]
output_wav_s1 = output_wav_list[0]
output_wav_s2 = output_wav_list[1]
else:
output_wav_list = output_wav_dict
output_wav_s1 = output_wav_list[0]
output_wav_s2 = output_wav_list[1]
sf.write('separated_s1.wav', output_wav_s1, 16000)
sf.write('separated_s2.wav', output_wav_s2, 16000)
return "separated_s1.wav", "separated_s2.wav"
def find_mp4_files(directory):
mp4_files = []
# Walk through the directory and its subdirectories
for root, dirs, files in os.walk(directory):
for file in files:
# Check if the file ends with .mp4
if file.endswith(".mp4") and file[:3] == 'est':
mp4_files.append(os.path.join(root, file))
return mp4_files
@spaces.GPU(duration=300)
def fn_clearvoice_tse(input_video):
myClearVoice = ClearVoice(task='target_speaker_extraction', model_names=['AV_MossFormer2_TSE_16K'])
#output_wav_dict =
print(f'input_video: {input_video}')
myClearVoice(input_path=input_video, online_write=True, output_path='path_to_output_videos_tse')
output_list = find_mp4_files('path_to_output_videos_tse/')
print(output_list)
return output_list
demo = gr.Blocks()
se_demo = gr.Interface(
fn=fn_clearvoice_se,
inputs = [
gr.Audio(label="Input Audio", type="filepath"),
gr.Dropdown(
["16000", "48000"], value=["16000"], multiselect=False, label="Sampling Rate", info="Choose the sampling rate for your output."
),
],
outputs = [
gr.Audio(label="Output Audio", type="filepath"),
],
title = "ClearVoice: Speech Enhancement",
description = ("Gradio demo for Speech enhancement with ClearVoice. The models support audios with 16 kHz (FRCRN backbone) and 48 kHz (MossFormer2 backbone) sampling rates. "
"We provide the generalized models trained on large scale of data for handling various of background environments. "
"To test it, simply upload your audio, or click one of the examples to load them. Read more at the links below."),
article = ("<p style='text-align: center'><a href='https://arxiv.org/abs/2206.07293' target='_blank'>FRCRN: Boosting Feature Representation Using Frequency Recurrence for Monaural Speech Enhancement</a> | <a href='https://github.com/alibabasglab/FRCRN' target='_blank'>Github Repo</a></p>"
),
examples = [
["examples/mandarin_speech_16kHz.wav", "16000"],
["examples/english_speech_48kHz.wav", "48000"],
],
cache_examples = True,
)
ss_demo = gr.Interface(
fn=fn_clearvoice_ss,
inputs = [
gr.Audio(label="Input Audio", type="filepath"),
],
outputs = [
gr.Audio(label="Output Audio", type="filepath"),
gr.Audio(label="Output Audio", type="filepath"),
],
title = "ClearVoice: Speech Separation",
description = ("Gradio demo for Speech separation with ClearVoice. The model (MossFormer2 backbone) supports 2 speakers' audio mixtures with 16 kHz sampling rate. "
"We provide the generalized models trained on large scale of data for handling independent speakers and various of background environments. "
"To test it, simply upload your audio, or click one of the examples to load them. Read more at the links below."),
article = ("<p style='text-align: center'><a href='https://arxiv.org/abs/2302.11824' target='_blank'>MossFormer: Pushing the Performance Limit of Monaural Speech Separation using Gated Single-Head Transformer with Convolution-Augmented Joint Self-Attentions</a> | <a href='https://github.com/alibabasglab/MossFormer' target='_blank'>Github Repo</a></p>"
"<p style='text-align: center'><a href='https://arxiv.org/abs/2312.11825' target='_blank'>MossFormer2: Combining Transformer and RNN-Free Recurrent Network for Enhanced Time-Domain Monaural Speech Separation</a> | <a href='https://github.com/alibabasglab/MossFormer2' target='_blank'>Github Repo</a></p>"),
examples = [
['examples/female_female_speech.wav'],
['examples/female_male_speech.wav'],
],
cache_examples = True,
)
tse_demo = gr.Interface(
fn=fn_clearvoice_tse,
inputs = [
gr.Video(label="Input Video"),
],
outputs = [
gr.Gallery(label="Output Video List")
],
title = "ClearVoice: Audio-visual speaker extraction",
description = ("Gradio demo for audio-visual speaker extraction with ClearVoice. The model (AV_MossFormer2_TSE_16K) supports 16 kHz sampling rate. "
"We provide the generalized models trained on mid-scale of data for handling independent speakers and various of background environments. "
"To test it, simply upload your video, or click one of the examples to load them. Read more at the links below."),
article = ("<p style='text-align: center'><a href='https://arxiv.org/abs/2302.11824' target='_blank'>MossFormer: Pushing the Performance Limit of Monaural Speech Separation using Gated Single-Head Transformer with Convolution-Augmented Joint Self-Attentions</a> | <a href='https://github.com/alibabasglab/MossFormer' target='_blank'>Github Repo</a></p>"
"<p style='text-align: center'><a href='https://arxiv.org/abs/2312.11825' target='_blank'>MossFormer2: Combining Transformer and RNN-Free Recurrent Network for Enhanced Time-Domain Monaural Speech Separation</a> | <a href='https://github.com/alibabasglab/MossFormer2' target='_blank'>Github Repo</a></p>"),
examples = [
['examples/female_female_speech.wav'],
['examples/female_male_speech.wav'],
],
cache_examples = True,
)
with demo:
#gr.TabbedInterface([se_demo], ["Speech Enhancement"])
gr.TabbedInterface([se_demo, ss_demo, tse_demo], ["Speech Enhancement", "Speech Separation", "Target Speaker Extraction"])
demo.launch()