Spaces:
Running
on
Zero
Running
on
Zero
""" | |
modified from https://github.com/speechbrain/speechbrain/blob/develop/speechbrain/lobes/models/dual_path.py | |
Author: Shengkui Zhao | |
""" | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import copy | |
from models.mossformer2_se.mossformer2_block import ScaledSinuEmbedding, MossformerBlock_GFSMN, MossformerBlock | |
EPS = 1e-8 | |
class GlobalLayerNorm(nn.Module): | |
"""Calculate Global Layer Normalization. | |
Arguments | |
--------- | |
dim : (int or list or torch.Size) | |
Input shape from an expected input of size. | |
eps : float | |
A value added to the denominator for numerical stability. | |
elementwise_affine : bool | |
A boolean value that when set to True, | |
this module has learnable per-element affine parameters | |
initialized to ones (for weights) and zeros (for biases). | |
Example | |
------- | |
>>> x = torch.randn(5, 10, 20) | |
>>> GLN = GlobalLayerNorm(10, 3) | |
>>> x_norm = GLN(x) | |
""" | |
def __init__(self, dim, shape, eps=1e-8, elementwise_affine=True): | |
super(GlobalLayerNorm, self).__init__() | |
self.dim = dim | |
self.eps = eps | |
self.elementwise_affine = elementwise_affine | |
if self.elementwise_affine: | |
if shape == 3: | |
self.weight = nn.Parameter(torch.ones(self.dim, 1)) | |
self.bias = nn.Parameter(torch.zeros(self.dim, 1)) | |
if shape == 4: | |
self.weight = nn.Parameter(torch.ones(self.dim, 1, 1)) | |
self.bias = nn.Parameter(torch.zeros(self.dim, 1, 1)) | |
else: | |
self.register_parameter("weight", None) | |
self.register_parameter("bias", None) | |
def forward(self, x): | |
"""Returns the normalized tensor. | |
Arguments | |
--------- | |
x : torch.Tensor | |
Tensor of size [N, C, K, S] or [N, C, L]. | |
""" | |
# x = N x C x K x S or N x C x L | |
# N x 1 x 1 | |
# cln: mean,var N x 1 x K x S | |
# gln: mean,var N x 1 x 1 | |
if x.dim() == 3: | |
mean = torch.mean(x, (1, 2), keepdim=True) | |
var = torch.mean((x - mean) ** 2, (1, 2), keepdim=True) | |
if self.elementwise_affine: | |
x = ( | |
self.weight * (x - mean) / torch.sqrt(var + self.eps) | |
+ self.bias | |
) | |
else: | |
x = (x - mean) / torch.sqrt(var + self.eps) | |
if x.dim() == 4: | |
mean = torch.mean(x, (1, 2, 3), keepdim=True) | |
var = torch.mean((x - mean) ** 2, (1, 2, 3), keepdim=True) | |
if self.elementwise_affine: | |
x = ( | |
self.weight * (x - mean) / torch.sqrt(var + self.eps) | |
+ self.bias | |
) | |
else: | |
x = (x - mean) / torch.sqrt(var + self.eps) | |
return x | |
class CumulativeLayerNorm(nn.LayerNorm): | |
"""Calculate Cumulative Layer Normalization. | |
Arguments | |
--------- | |
dim : int | |
Dimension that you want to normalize. | |
elementwise_affine : True | |
Learnable per-element affine parameters. | |
Example | |
------- | |
>>> x = torch.randn(5, 10, 20) | |
>>> CLN = CumulativeLayerNorm(10) | |
>>> x_norm = CLN(x) | |
""" | |
def __init__(self, dim, elementwise_affine=True): | |
super(CumulativeLayerNorm, self).__init__( | |
dim, elementwise_affine=elementwise_affine, eps=1e-8 | |
) | |
def forward(self, x): | |
"""Returns the normalized tensor. | |
Arguments | |
--------- | |
x : torch.Tensor | |
Tensor size [N, C, K, S] or [N, C, L] | |
""" | |
# x: N x C x K x S or N x C x L | |
# N x K x S x C | |
if x.dim() == 4: | |
x = x.permute(0, 2, 3, 1).contiguous() | |
# N x K x S x C == only channel norm | |
x = super().forward(x) | |
# N x C x K x S | |
x = x.permute(0, 3, 1, 2).contiguous() | |
if x.dim() == 3: | |
x = torch.transpose(x, 1, 2) | |
# N x L x C == only channel norm | |
x = super().forward(x) | |
# N x C x L | |
x = torch.transpose(x, 1, 2) | |
return x | |
def select_norm(norm, dim, shape): | |
"""Just a wrapper to select the normalization type. | |
""" | |
if norm == "gln": | |
return GlobalLayerNorm(dim, shape, elementwise_affine=True) | |
if norm == "cln": | |
return CumulativeLayerNorm(dim, elementwise_affine=True) | |
if norm == "ln": | |
return nn.GroupNorm(1, dim, eps=1e-8) | |
else: | |
return nn.BatchNorm1d(dim) | |
class Encoder(nn.Module): | |
"""Convolutional Encoder Layer. | |
Arguments | |
--------- | |
kernel_size : int | |
Length of filters. | |
in_channels : int | |
Number of input channels. | |
out_channels : int | |
Number of output channels. | |
Example | |
------- | |
>>> x = torch.randn(2, 1000) | |
>>> encoder = Encoder(kernel_size=4, out_channels=64) | |
>>> h = encoder(x) | |
>>> h.shape | |
torch.Size([2, 64, 499]) | |
""" | |
def __init__(self, kernel_size=2, out_channels=64, in_channels=1): | |
super(Encoder, self).__init__() | |
self.conv1d = nn.Conv1d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=kernel_size // 2, | |
groups=1, | |
bias=False, | |
) | |
self.in_channels = in_channels | |
def forward(self, x): | |
"""Return the encoded output. | |
Arguments | |
--------- | |
x : torch.Tensor | |
Input tensor with dimensionality [B, L]. | |
Return | |
------ | |
x : torch.Tensor | |
Encoded tensor with dimensionality [B, N, T_out]. | |
where B = Batchsize | |
L = Number of timepoints | |
N = Number of filters | |
T_out = Number of timepoints at the output of the encoder | |
""" | |
# B x L -> B x 1 x L | |
if self.in_channels == 1: | |
x = torch.unsqueeze(x, dim=1) | |
# B x 1 x L -> B x N x T_out | |
x = self.conv1d(x) | |
x = F.relu(x) | |
return x | |
class Decoder(nn.ConvTranspose1d): | |
"""A decoder layer that consists of ConvTranspose1d. | |
Arguments | |
--------- | |
kernel_size : int | |
Length of filters. | |
in_channels : int | |
Number of input channels. | |
out_channels : int | |
Number of output channels. | |
Example | |
--------- | |
>>> x = torch.randn(2, 100, 1000) | |
>>> decoder = Decoder(kernel_size=4, in_channels=100, out_channels=1) | |
>>> h = decoder(x) | |
>>> h.shape | |
torch.Size([2, 1003]) | |
""" | |
def __init__(self, *args, **kwargs): | |
super(Decoder, self).__init__(*args, **kwargs) | |
def forward(self, x): | |
"""Return the decoded output. | |
Arguments | |
--------- | |
x : torch.Tensor | |
Input tensor with dimensionality [B, N, L]. | |
where, B = Batchsize, | |
N = number of filters | |
L = time points | |
""" | |
if x.dim() not in [2, 3]: | |
raise RuntimeError( | |
"{} accept 3/4D tensor as input".format(self.__name__) | |
) | |
x = super().forward(x if x.dim() == 3 else torch.unsqueeze(x, 1)) | |
if torch.squeeze(x).dim() == 1: | |
x = torch.squeeze(x, dim=1) | |
else: | |
x = torch.squeeze(x) | |
return x | |
class IdentityBlock: | |
"""This block is used when we want to have identity transformation within the Dual_path block. | |
Example | |
------- | |
>>> x = torch.randn(10, 100) | |
>>> IB = IdentityBlock() | |
>>> xhat = IB(x) | |
""" | |
def _init__(self, **kwargs): | |
pass | |
def __call__(self, x): | |
return x | |
class MossFormerM(nn.Module): | |
"""This class implements the transformer encoder based on MossFormer2 layers. | |
Arguments | |
--------- | |
num_blocks : int | |
Number of mossformer2 blocks to include. | |
d_model : int | |
The dimension of the input embedding. | |
attn_dropout : float | |
Dropout for the self-attention (Optional). | |
group_size: int | |
the chunk size for segmenting sequence | |
query_key_dim: int | |
the attention vector dimension | |
expansion_factor: int | |
the expansion factor for the linear projection in conv module | |
causal: bool | |
true for causal / false for non causal | |
Example | |
------- | |
>>> import torch | |
>>> x = torch.rand((8, 60, 512)) | |
>>> net = MossFormerM(num_blocks=8, d_model=512) | |
>>> output, _ = net(x) | |
>>> output.shape | |
torch.Size([8, 60, 512]) | |
""" | |
def __init__( | |
self, | |
num_blocks, | |
d_model=None, | |
causal=False, | |
group_size = 256, | |
query_key_dim = 128, | |
expansion_factor = 4., | |
attn_dropout = 0.1 | |
): | |
super().__init__() | |
self.mossformerM = MossformerBlock_GFSMN( | |
dim=d_model, | |
depth=num_blocks, | |
group_size=group_size, | |
query_key_dim=query_key_dim, | |
expansion_factor=expansion_factor, | |
causal=causal, | |
attn_dropout=attn_dropout | |
) | |
self.norm = nn.LayerNorm(d_model, eps=1e-6) | |
def forward( | |
self, | |
src, | |
): | |
""" | |
Arguments | |
---------- | |
src : torch.Tensor | |
Tensor shape [B, L, N], | |
where, B = Batchsize, | |
L = time points | |
N = number of filters | |
The sequence to the encoder layer (required). | |
src_mask : tensor | |
The mask for the src sequence (optional). | |
src_key_padding_mask : tensor | |
The mask for the src keys per batch (optional). | |
""" | |
output = self.mossformerM(src) | |
output = self.norm(output) | |
return output | |
class MossFormerM2(nn.Module): | |
"""This class implements the transformer encoder. | |
Arguments | |
--------- | |
num_blocks : int | |
Number of mossformer blocks to include. | |
d_model : int | |
The dimension of the input embedding. | |
attn_dropout : float | |
Dropout for the self-attention (Optional). | |
group_size: int | |
the chunk size | |
query_key_dim: int | |
the attention vector dimension | |
expansion_factor: int | |
the expansion factor for the linear projection in conv module | |
causal: bool | |
true for causal / false for non causal | |
Example | |
------- | |
>>> import torch | |
>>> x = torch.rand((8, 60, 512)) | |
>>> net = MossFormerM2(num_blocks=8, d_model=512) | |
>>> output, _ = net(x) | |
>>> output.shape | |
torch.Size([8, 60, 512]) | |
""" | |
def __init__( | |
self, | |
num_blocks, | |
d_model=None, | |
causal=False, | |
group_size = 256, | |
query_key_dim = 128, | |
expansion_factor = 4., | |
attn_dropout = 0.1 | |
): | |
super().__init__() | |
self.mossformerM = MossformerBlock( | |
dim=d_model, | |
depth=num_blocks, | |
group_size=group_size, | |
query_key_dim=query_key_dim, | |
expansion_factor=expansion_factor, | |
causal=causal, | |
attn_dropout=attn_dropout | |
) | |
self.norm = nn.LayerNorm(d_model, eps=1e-6) | |
def forward( | |
self, | |
src, | |
): | |
""" | |
Arguments | |
---------- | |
src : torch.Tensor | |
Tensor shape [B, L, N], | |
where, B = Batchsize, | |
L = time points | |
N = number of filters | |
The sequence to the encoder layer (required). | |
src_mask : tensor | |
The mask for the src sequence (optional). | |
src_key_padding_mask : tensor | |
The mask for the src keys per batch (optional). | |
""" | |
output = self.mossformerM(src) | |
output = self.norm(output) | |
return output | |
class Computation_Block(nn.Module): | |
"""Computation block for dual-path processing. | |
Arguments | |
--------- | |
out_channels : int | |
Dimensionality of model output. | |
norm : str | |
Normalization type. | |
skip_around_intra : bool | |
Skip connection around the intra layer. | |
Example | |
--------- | |
>>> comp_block = Computation_Block(64) | |
>>> x = torch.randn(10, 64, 100) | |
>>> x = comp_block(x) | |
>>> x.shape | |
torch.Size([10, 64, 100]) | |
""" | |
def __init__( | |
self, | |
num_blocks, | |
out_channels, | |
norm="ln", | |
skip_around_intra=True, | |
): | |
super(Computation_Block, self).__init__() | |
##Default MossFormer2 model | |
self.intra_mdl = MossFormerM(num_blocks=num_blocks, d_model=out_channels) | |
##The previous MossFormer model | |
#self.intra_mdl = MossFormerM2(num_blocks=num_blocks, d_model=out_channels) | |
self.skip_around_intra = skip_around_intra | |
# Norm | |
self.norm = norm | |
if norm is not None: | |
self.intra_norm = select_norm(norm, out_channels, 3) | |
def forward(self, x): | |
"""Returns the output tensor. | |
Arguments | |
--------- | |
x : torch.Tensor | |
Input tensor of dimension [B, N, S]. | |
Return | |
--------- | |
out: torch.Tensor | |
Output tensor of dimension [B, N, S]. | |
where, B = Batchsize, | |
N = number of filters | |
S = sequence time index | |
""" | |
B, N, S = x.shape | |
# [B, S, N] | |
intra = x.permute(0, 2, 1).contiguous() | |
intra = self.intra_mdl(intra) | |
# [B, N, S] | |
intra = intra.permute(0, 2, 1).contiguous() | |
if self.norm is not None: | |
intra = self.intra_norm(intra) | |
# [B, N, S] | |
if self.skip_around_intra: | |
intra = intra + x | |
out = intra | |
return out | |
class MossFormer_MaskNet(nn.Module): | |
""" | |
The MossFormer MaskNet for mask prediction. | |
This class is designed for predicting masks used in source separation tasks. | |
It processes input tensors through various layers including convolutional layers, | |
normalization, and a computation block to produce the final output. | |
Arguments | |
--------- | |
in_channels : int | |
Number of channels at the output of the encoder. | |
out_channels : int | |
Number of channels that would be inputted to the MossFormer2 blocks. | |
out_channels_final : int | |
Number of channels that are finally outputted. | |
num_blocks : int | |
Number of layers in the Dual Computation Block. | |
norm : str | |
Normalization type ('ln' for LayerNorm, 'bn' for BatchNorm, etc.). | |
num_spks : int | |
Number of sources (speakers). | |
skip_around_intra : bool | |
If True, applies skip connections around intra-block connections. | |
use_global_pos_enc : bool | |
If True, uses global positional encodings. | |
max_length : int | |
Maximum sequence length for input tensors. | |
Example | |
--------- | |
>>> mossformer_masknet = MossFormer_MaskNet(64, 64, out_channels_final=8, num_spks=2) | |
>>> x = torch.randn(10, 64, 2000) # Example input | |
>>> x = mossformer_masknet(x) # Forward pass | |
>>> x.shape # Expected output shape | |
torch.Size([10, 2, 64, 2000]) | |
""" | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
out_channels_final, | |
num_blocks=24, | |
norm="ln", | |
num_spks=2, | |
skip_around_intra=True, | |
use_global_pos_enc=True, | |
max_length=20000, | |
): | |
super(MossFormer_MaskNet, self).__init__() | |
# Initialize instance variables | |
self.num_spks = num_spks # Number of sources | |
self.num_blocks = num_blocks # Number of computation blocks | |
self.norm = select_norm(norm, in_channels, 3) # Select normalization type | |
self.conv1d_encoder = nn.Conv1d(in_channels, out_channels, 1, bias=False) # Encoder convolutional layer | |
self.use_global_pos_enc = use_global_pos_enc # Flag for global positional encoding | |
if self.use_global_pos_enc: | |
self.pos_enc = ScaledSinuEmbedding(out_channels) # Initialize positional embedding | |
# Define the computation block | |
self.mdl = Computation_Block( | |
num_blocks, | |
out_channels, | |
norm, | |
skip_around_intra=skip_around_intra, | |
) | |
# Output layers | |
self.conv1d_out = nn.Conv1d(out_channels, out_channels * num_spks, kernel_size=1) # For multiple speakers | |
self.conv1_decoder = nn.Conv1d(out_channels, out_channels_final, 1, bias=False) # Decoder layer | |
self.prelu = nn.PReLU() # Activation function | |
self.activation = nn.ReLU() # Final activation function | |
# Gated output layers | |
self.output = nn.Sequential( | |
nn.Conv1d(out_channels, out_channels, 1), | |
nn.Tanh() # Non-linear activation | |
) | |
self.output_gate = nn.Sequential( | |
nn.Conv1d(out_channels, out_channels, 1), | |
nn.Sigmoid() # Gating mechanism | |
) | |
def forward(self, x): | |
"""Returns the output tensor. | |
Arguments | |
--------- | |
x : torch.Tensor | |
Input tensor of dimension [B, N, S], where B is the batch size, | |
N is the number of channels, and S is the sequence length. | |
Returns | |
------- | |
out : torch.Tensor | |
Output tensor of dimension [B, spks, N, S], where spks is the number of sources | |
(speakers) and is ordered such that the first index corresponds to the target speech. | |
""" | |
# Normalize the input | |
# [B, N, L] | |
x = self.norm(x) | |
# Apply encoder convolution | |
# [B, N, L] | |
x = self.conv1d_encoder(x) | |
if self.use_global_pos_enc: | |
base = x # Store the base for adding positional embedding | |
x = x.transpose(1, -1) # Change shape to [B, L, N] for positional encoding | |
emb = self.pos_enc(x) # Get positional embeddings | |
emb = emb.transpose(0, -1) # Change back to [B, N, L] | |
x = base + emb # Add positional embeddings to the base | |
# Process through the computation block | |
# [B, N, S] | |
x = self.mdl(x) | |
x = self.prelu(x) # Apply activation | |
# Expand to multiple speakers | |
# [B, N*spks, S] | |
x = self.conv1d_out(x) | |
B, _, S = x.shape # Unpack the batch size and sequence length | |
# Reshape to [B*spks, N, S] | |
# This prepares the output for gating | |
# [B*spks, N, S] | |
x = x.view(B * self.num_spks, -1, S) | |
# Apply gated output layers | |
# [B*spks, N, S] | |
x = self.output(x) * self.output_gate(x) # Element-wise multiplication for gating | |
# Decode to final output | |
# [B*spks, N, S] | |
x = self.conv1_decoder(x) | |
# Reshape to [B, spks, N, S] for output | |
# [B, spks, N, S] | |
_, N, L = x.shape | |
x = x.view(B, self.num_spks, N, L) # Final reshaping for output | |
x = self.activation(x) # Apply final activation | |
# Transpose to [spks, B, N, S] for output | |
# return the 1st spk signal as the target speech | |
x = x.transpose(0, 1) | |
return x[0].transpose(1, 2) # Return only the first speaker's signal | |