Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torchaudio | |
import gradio as gr | |
from clearvoice import ClearVoice | |
myClearVoice = ClearVoice(task='speech_enhancement', model_names=['FRCRN_SE_16K']) | |
def fn_clearvoice(aud): | |
# Load and add fake batch dimension | |
""" | |
noisy = enhance_model.load_audio( | |
aud | |
).unsqueeze(0) | |
enhanced = enhance_model.enhance_batch(noisy, lengths=torch.tensor([1.])) | |
""" | |
output_wav_dict = myClearVoice(input_path='input.wav', online_write=False) | |
key = next(iter(output_wav_dict)) | |
output_wav = output_wav_dict[key] | |
torchaudio.save('enhanced.wav', output_wav.cpu(), 16000) | |
return 'enhanced.wav' | |
inputs = gr.Audio(sources=["upload"], label="Input Audio", type="filepath") | |
outputs = gr.Audio(label="Output Audio", type="filepath") | |
title = "ClearVoice" | |
description = "Gradio demo for Speech enhancement with ClearVoice. To use it, simply upload your audio, or click one of the examples to load them. Read more at the links below." | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2206.07293' target='_blank'>FRCRN: Boosting Feature Representation Using Frequency Recurrence for Monaural Speech Enhancement</a> | <a href='https://github.com/speechbrain/speechbrain' target='_blank'>Github Repo</a></p>" | |
examples = [ | |
['input.wav'] | |
] | |
gr.Interface(fn_clearvoice, inputs, outputs, title=title, description=description, article=article, examples=examples).launch() |