Spaces:
Running
Running
"""Modified from https://github.com/THUDM/CogVideo/blob/3710a612d8760f5cdb1741befeebb65b9e0f2fe0/sat/sgm/modules/diffusionmodules/sigma_sampling.py | |
""" | |
import torch | |
class DiscreteSampling: | |
def __init__(self, num_idx, uniform_sampling=False): | |
self.num_idx = num_idx | |
self.uniform_sampling = uniform_sampling | |
self.is_distributed = torch.distributed.is_available() and torch.distributed.is_initialized() | |
if self.is_distributed and self.uniform_sampling: | |
world_size = torch.distributed.get_world_size() | |
self.rank = torch.distributed.get_rank() | |
i = 1 | |
while True: | |
if world_size % i != 0 or num_idx % (world_size // i) != 0: | |
i += 1 | |
else: | |
self.group_num = world_size // i | |
break | |
assert self.group_num > 0 | |
assert world_size % self.group_num == 0 | |
# the number of rank in one group | |
self.group_width = world_size // self.group_num | |
self.sigma_interval = self.num_idx // self.group_num | |
print('rank=%d world_size=%d group_num=%d group_width=%d sigma_interval=%s' % ( | |
self.rank, world_size, self.group_num, | |
self.group_width, self.sigma_interval)) | |
def __call__(self, n_samples, generator=None, device=None): | |
if self.is_distributed and self.uniform_sampling: | |
group_index = self.rank // self.group_width | |
idx = torch.randint( | |
group_index * self.sigma_interval, | |
(group_index + 1) * self.sigma_interval, | |
(n_samples,), | |
generator=generator, device=device, | |
) | |
print('proc[%d] idx=%s' % (self.rank, idx)) | |
else: | |
idx = torch.randint( | |
0, self.num_idx, (n_samples,), | |
generator=generator, device=device, | |
) | |
return idx |