Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
title = "Ask Rick a Question"
|
5 |
+
description = """
|
6 |
+
<center>
|
7 |
+
The bot was trained to answer questions based on Rick and Morty dialogues. Ask Rick anything!
|
8 |
+
<img src="https://huggingface.co/spaces/course-demos/Rick_and_Morty_QA/resolve/main/rick.png" width=200px>
|
9 |
+
</center>
|
10 |
+
"""
|
11 |
+
|
12 |
+
article = "Check out [the original Rick and Morty Bot](https://huggingface.co/spaces/kingabzpro/Rick_and_Morty_Bot) that this demo is based off of."
|
13 |
+
|
14 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
15 |
+
import torch
|
16 |
+
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained("ericzhou/DialoGPT-Medium-Rick_v2")
|
18 |
+
model = AutoModelForCausalLM.from_pretrained("ericzhou/DialoGPT-Medium-Rick_v2")
|
19 |
+
|
20 |
+
def predict(input):
|
21 |
+
# tokenize the new input sentence
|
22 |
+
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
|
23 |
+
|
24 |
+
# generate a response
|
25 |
+
history = model.generate(new_user_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()
|
26 |
+
|
27 |
+
# convert the tokens to text, and then split the responses into the right format
|
28 |
+
response = tokenizer.decode(history[0]).split("<|endoftext|>")
|
29 |
+
return response[1]
|
30 |
+
|
31 |
+
gr.Interface(fn = predict, inputs = ["textbox"], outputs = ["text"], title = title, description = description, article = article).launch()
|