SummerTime / model /single_doc /pegasus_model.py
aliabd
full demo working with old graido
7e3e85d
from transformers import PegasusForConditionalGeneration, PegasusTokenizer
from .base_single_doc_model import SingleDocSummModel
class PegasusModel(SingleDocSummModel):
# static variables
model_name = "Pegasus"
is_extractive = False
is_neural = True
def __init__(self, device="cpu"):
super(PegasusModel, self).__init__()
self.device = device
model_name = "google/pegasus-xsum"
print("init load pretrained tokenizer")
self.tokenizer = PegasusTokenizer.from_pretrained(model_name)
print("init load pretrained model with tokenizer on " + device)
# self.model = PegasusForConditionalGeneration.from_pretrained(model_name).to(device)
self.model = PegasusForConditionalGeneration.from_pretrained(model_name)
def summarize(self, corpus, queries=None):
self.assert_summ_input_type(corpus, queries)
print("batching")
# batch = self.tokenizer(corpus, truncation=True, padding='longest', return_tensors="pt").to(self.device)
batch = self.tokenizer(corpus, truncation=True, return_tensors="pt")
print("encoding batches")
# encoded_summaries = self.model.generate(**batch, max_length=40, max_time=120)
encoded_summaries = self.model.generate(batch["input_ids"], max_time=1024)
print("decoding batches")
# summaries = self.tokenizer.batch_decode(encoded_summaries, skip_special_tokens=True)
summaries = [self.tokenizer.decode(encoded_summaries[0])]
return summaries
@classmethod
def show_capability(cls):
basic_description = cls.generate_basic_description()
more_details = (
"Introduced in 2019, a large neural abstractive summarization model trained on web crawl and "
"news data.\n "
"Strengths: \n - High accuracy \n - Performs well on almost all kinds of non-literary written "
"text \n "
"Weaknesses: \n - High memory usage \n "
"Initialization arguments: \n "
"- `device = 'cpu'` specifies the device the model is stored on and uses for computation. "
"Use `device='gpu'` to run on an Nvidia GPU."
)
print(f"{basic_description} \n {'#'*20} \n {more_details}")