Spaces:
Build error
Build error
import spacy | |
import pytextrank # noqa: F401 | |
from math import sqrt | |
from operator import itemgetter | |
from .base_single_doc_model import SingleDocSummModel | |
from typing import Union, List | |
class TextRankModel(SingleDocSummModel): | |
# static variables | |
model_name = "TextRank" | |
is_extractive = True | |
is_neural = False | |
def __init__(self, num_sentences=1): | |
super(TextRankModel, self).__init__() | |
self.num_sentences = num_sentences | |
# load a spaCy model, depending on language, scale, etc. | |
self.nlp = spacy.load("en_core_web_sm") | |
self.nlp.add_pipe("textrank", last=True) | |
def summarize( | |
self, corpus: Union[List[str], List[List[str]]], queries: List[str] = None | |
) -> List[str]: | |
self.assert_summ_input_type(corpus, queries) | |
return list(map(lambda x: " ".join(self.summarize_single(x)), corpus)) | |
def summarize_single(self, corpus) -> List[str]: | |
# add PyTextRank to the spaCy pipeline | |
doc = self.nlp(corpus) | |
sent_bounds = [[s.start, s.end, set([])] for s in doc.sents] | |
limit_phrases = self.num_sentences | |
phrase_id = 0 | |
unit_vector = [] | |
for p in doc._.phrases: | |
unit_vector.append(p.rank) | |
for chunk in p.chunks: | |
for sent_start, sent_end, sent_vector in sent_bounds: | |
if chunk.start >= sent_start and chunk.end <= sent_end: | |
sent_vector.add(phrase_id) | |
break | |
phrase_id += 1 | |
if phrase_id == limit_phrases: | |
break | |
sum_ranks = sum(unit_vector) | |
unit_vector = [rank / sum_ranks for rank in unit_vector] | |
sent_rank = {} | |
sent_id = 0 | |
for sent_start, sent_end, sent_vector in sent_bounds: | |
sum_sq = 0.0 | |
for phrase_id in range(len(unit_vector)): | |
if phrase_id not in sent_vector: | |
sum_sq += unit_vector[phrase_id] ** 2.0 | |
sent_rank[sent_id] = sqrt(sum_sq) | |
sent_id += 1 | |
sorted(sent_rank.items(), key=itemgetter(1)) | |
sent_text = {} | |
sent_id = 0 | |
limit_sentences = self.num_sentences | |
summary_sentences = [] | |
for sent in doc.sents: | |
sent_text[sent_id] = sent.text | |
sent_id += 1 | |
num_sent = 0 | |
for sent_id, rank in sorted(sent_rank.items(), key=itemgetter(1)): | |
summary_sentences.append(sent_text[sent_id]) | |
num_sent += 1 | |
if num_sent == limit_sentences: | |
break | |
return summary_sentences | |
def show_capability(cls): | |
basic_description = cls.generate_basic_description() | |
more_details = ( | |
"A graphbased ranking model for text processing. Extractive sentence summarization. \n " | |
"Strengths: \n - Fast with low memory usage \n - Allows for control of summary length \n " | |
"Weaknesses: \n - Not as accurate as neural methods." | |
) | |
print(f"{basic_description} \n {'#'*20} \n {more_details}") | |