validation / src /validate /gesture_validator.py
tommulder's picture
Gesture simplification
afecd35
raw
history blame
19.5 kB
"""
Gesture validation service for identity verification.
This module provides gesture validation functionality by leveraging the existing
gesture detection system in src/gesturedetection/. It processes user videos to
detect specific gestures and validates them against a list of required gestures.
"""
import os
import logging
import tempfile
from typing import List, Dict, Any, Optional, Tuple
from datetime import datetime, timezone
from .models import ValidationResult, ValidationStatus, GestureRequirement
logger = logging.getLogger(__name__)
class GestureValidator:
"""
Gesture validation service for identity verification.
This class processes user videos to detect and validate specific gestures
against a list of required gestures. It uses the existing gesture detection
pipeline from src/gesturedetection/ and provides configurable validation
parameters including error margins and minimum requirements.
"""
def __init__(
self,
detector_path: str = "models/hand_detector.onnx",
classifier_path: str = "models/crops_classifier.onnx",
frame_skip: int = 1,
min_gesture_duration: int = 5,
confidence_threshold: float = 0.7
):
"""
Initialize the gesture validator.
Parameters
----------
detector_path : str, optional
Path to the hand detection ONNX model, by default "models/hand_detector.onnx"
classifier_path : str, optional
Path to the gesture classification ONNX model, by default "models/crops_classifier.onnx"
frame_skip : int, optional
Number of frames to skip between processing, by default 1
min_gesture_duration : int, optional
Minimum duration for gesture detection, by default 5
confidence_threshold : float, optional
Minimum confidence threshold for gesture detection, by default 0.7
"""
self.detector_path = detector_path
self.classifier_path = classifier_path
self.frame_skip = frame_skip
self.min_gesture_duration = min_gesture_duration
self.confidence_threshold = confidence_threshold
# Import here to avoid circular imports and handle missing dependencies gracefully
try:
from ..gesturedetection.main_controller import MainController
from ..gesturedetection.models import PRODUCTION_GESTURE_MAPPING
self._main_controller_class = MainController
self._gesture_mapping = PRODUCTION_GESTURE_MAPPING
self._initialized = True
logger.info("GestureValidator initialized successfully with PRODUCTION_GESTURE_MAPPING")
except ImportError as e:
logger.warning(f"Could not import gesture detection components: {e}")
self._initialized = False
def validate_gestures(
self,
video_path: str,
required_gestures: List[str],
error_margin: float = 0.33,
require_all: bool = True
) -> ValidationResult:
"""
Validate that required gestures are present in the video.
Parameters
----------
video_path : str
Path to the video file to analyze
required_gestures : List[str]
List of gesture names that must be detected
error_margin : float, optional
Fraction of gestures that can be missed (0.0-1.0), by default 0.33
require_all : bool, optional
Whether all gestures must be present, by default True
Returns
-------
ValidationResult
Validation result with success status and detailed metrics
"""
if not self._initialized:
error_msg = "GestureValidator not properly initialized - missing gesture detection components"
logger.error(error_msg)
return ValidationResult(
status=ValidationStatus.FAILED,
success=False,
confidence=0.0,
error_message=error_msg
)
logger.info(f"Starting gesture validation for video: {video_path}")
logger.info(f"Required gestures: {required_gestures}, error_margin: {error_margin}")
# Validate input file
if not os.path.exists(video_path):
error_msg = f"Video file not found: {video_path}"
logger.error(error_msg)
return ValidationResult(
status=ValidationStatus.FAILED,
success=False,
confidence=0.0,
error_message=error_msg
)
# Validate required gestures
if not required_gestures:
error_msg = "No gestures specified for validation"
logger.error(error_msg)
return ValidationResult(
status=ValidationStatus.FAILED,
success=False,
confidence=0.0,
error_message=error_msg
)
try:
# Process video using existing gesture detection pipeline
detected_gestures = self._process_video_for_gestures(video_path)
# Analyze detected gestures against requirements
validation_metrics = self._analyze_gesture_requirements(
detected_gestures, required_gestures, error_margin, require_all
)
# Determine overall success
if require_all:
success = validation_metrics["required_gestures_met"] >= len(required_gestures)
else:
# Allow for error margin
min_required = max(1, int(len(required_gestures) * (1.0 - error_margin)))
success = validation_metrics["required_gestures_met"] >= min_required
# Calculate confidence based on detection quality
confidence = self._calculate_confidence(detected_gestures, validation_metrics)
status = ValidationStatus.SUCCESS if success else ValidationStatus.PARTIAL
result = ValidationResult(
status=status,
success=success,
confidence=confidence,
details={
"detected_gestures": [
{
"gesture": g["gesture"],
"duration": g["duration"],
"confidence": g["confidence"]
}
for g in detected_gestures
],
"validation_metrics": validation_metrics,
"required_gestures": required_gestures,
"error_margin": error_margin,
"require_all": require_all,
"processing_timestamp": datetime.now(timezone.utc).isoformat()
}
)
logger.info(f"Gesture validation completed: success={success}, confidence={confidence}")
return result
except Exception as e:
error_msg = f"Error during gesture validation: {str(e)}"
logger.error(error_msg, exc_info=True)
return ValidationResult(
status=ValidationStatus.FAILED,
success=False,
confidence=0.0,
error_message=error_msg
)
def _process_video_for_gestures(self, video_path: str) -> List[Dict[str, Any]]:
"""
Process video file to detect gestures using existing pipeline.
Parameters
----------
video_path : str
Path to the video file
Returns
-------
List[Dict[str, Any]]
List of detected gestures with metadata
"""
logger.debug(f"Processing video for gestures: {video_path}")
# Initialize the main controller
controller = self._main_controller_class(self.detector_path, self.classifier_path)
# Import video processing function from existing API
try:
from ..gesturedetection.api import process_video_for_gestures
gestures = process_video_for_gestures(
video_path,
detector_path=self.detector_path,
classifier_path=self.classifier_path,
frame_skip=self.frame_skip
)
except ImportError:
# Fallback: use controller directly if import fails
logger.warning("Using fallback gesture processing method")
gestures = self._process_video_with_controller(controller, video_path)
# Convert to our internal format
detected_gestures = []
for gesture in gestures:
# Map gesture names to standardized format
gesture_name = self._normalize_gesture_name(gesture.gesture)
detected_gestures.append({
"gesture": gesture_name,
"duration": gesture.duration,
"confidence": gesture.confidence,
"raw_gesture": gesture.gesture
})
logger.debug(f"Detected {len(detected_gestures)} gestures")
return detected_gestures
def _process_video_with_controller(self, controller, video_path: str) -> List[Dict[str, Any]]:
"""
Fallback method to process video using controller directly.
This is used if the import from api.py fails for any reason.
"""
import cv2
from collections import defaultdict
logger.debug("Processing video with controller fallback method")
# Open video file
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError(f"Could not open video file: {video_path}")
gesture_tracks = defaultdict(list)
frame_count = 0
try:
while True:
ret, frame = cap.read()
if not ret:
break
# Skip frames based on frame_skip parameter
if frame_count % self.frame_skip == 0:
# Process frame through the controller
bboxes, ids, labels = controller(frame)
if bboxes is not None and ids is not None and labels is not None:
# Track gestures for each detected hand
for i in range(len(bboxes)):
hand_id = int(ids[i])
gesture_id = labels[i]
if gesture_id is not None:
confidence = 0.8 # Default confidence
gesture_tracks[hand_id].append((gesture_id, confidence))
frame_count += 1
finally:
cap.release()
# Process gesture tracks to find continuous gestures
detected_gestures = []
for hand_id, gesture_sequence in gesture_tracks.items():
if not gesture_sequence:
continue
# Group consecutive identical gestures
current_gesture = None
current_duration = 0
current_confidence = 0.0
for gesture_id, confidence in gesture_sequence:
if current_gesture is None or current_gesture != gesture_id:
# Save previous gesture if it was significant
if current_gesture is not None and current_duration >= self.min_gesture_duration:
gesture_name = self._gesture_mapping.get(current_gesture, f"unknown_{current_gesture}")
avg_confidence = current_confidence / current_duration if current_duration > 0 else 0.0
scaled_duration = current_duration * self.frame_skip
detected_gestures.append({
"gesture": gesture_name,
"duration": scaled_duration,
"confidence": avg_confidence
})
# Start new gesture
current_gesture = gesture_id
current_duration = 1
current_confidence = confidence
else:
# Continue current gesture
current_duration += 1
current_confidence += confidence
# Don't forget the last gesture
if current_gesture is not None and current_duration >= self.min_gesture_duration:
gesture_name = self._gesture_mapping.get(current_gesture, f"unknown_{current_gesture}")
avg_confidence = current_confidence / current_duration if current_duration > 0 else 0.0
scaled_duration = current_duration * self.frame_skip
detected_gestures.append({
"gesture": gesture_name,
"duration": scaled_duration,
"confidence": avg_confidence
})
return detected_gestures
def _analyze_gesture_requirements(
self,
detected_gestures: List[Dict[str, Any]],
required_gestures: List[str],
error_margin: float,
require_all: bool
) -> Dict[str, Any]:
"""
Analyze detected gestures against requirements.
Parameters
----------
detected_gestures : List[Dict[str, Any]]
List of detected gestures
required_gestures : List[str]
List of required gesture names
error_margin : float
Error margin for validation
require_all : bool
Whether all gestures are required
Returns
-------
Dict[str, Any]
Validation metrics and analysis
"""
logger.debug("Analyzing gesture requirements")
# Create lookup for detected gestures
detected_gesture_counts = {}
for gesture in detected_gestures:
gesture_name = gesture["gesture"]
if gesture_name not in detected_gesture_counts:
detected_gesture_counts[gesture_name] = []
detected_gesture_counts[gesture_name].append(gesture)
# Analyze each required gesture
required_gestures_met = 0
gesture_analysis = {}
for required_gesture in required_gestures:
detected_instances = detected_gesture_counts.get(required_gesture, [])
# Filter by minimum duration and confidence if specified
valid_instances = [
g for g in detected_instances
if g["duration"] >= self.min_gesture_duration and
g["confidence"] >= self.confidence_threshold
]
met_requirement = len(valid_instances) > 0
gesture_analysis[required_gesture] = {
"required": True,
"detected": len(detected_instances),
"valid_instances": len(valid_instances),
"met_requirement": met_requirement,
"best_confidence": max([g["confidence"] for g in detected_instances], default=0.0),
"best_duration": max([g["duration"] for g in detected_instances], default=0)
}
if met_requirement:
required_gestures_met += 1
# Calculate success rate
total_required = len(required_gestures)
success_rate = required_gestures_met / total_required if total_required > 0 else 0.0
# Determine if validation passes based on error margin
if require_all:
passes_validation = required_gestures_met >= total_required
else:
min_required = max(1, int(total_required * (1.0 - error_margin)))
passes_validation = required_gestures_met >= min_required
metrics = {
"total_required_gestures": total_required,
"required_gestures_met": required_gestures_met,
"success_rate": success_rate,
"passes_validation": passes_validation,
"error_margin": error_margin,
"require_all": require_all,
"gesture_analysis": gesture_analysis
}
logger.debug(f"Gesture analysis completed: {required_gestures_met}/{total_required} gestures met requirement")
return metrics
def _calculate_confidence(
self,
detected_gestures: List[Dict[str, Any]],
validation_metrics: Dict[str, Any]
) -> float:
"""
Calculate overall confidence score for gesture validation.
Parameters
----------
detected_gestures : List[Dict[str, Any]]
List of detected gestures
validation_metrics : Dict[str, Any]
Validation metrics from analysis
Returns
-------
float
Overall confidence score (0.0-1.0)
"""
if not detected_gestures:
return 0.0
# Base confidence on success rate
success_rate = validation_metrics.get("success_rate", 0.0)
# Boost confidence based on average gesture quality
if detected_gestures:
avg_confidence = sum(g["confidence"] for g in detected_gestures) / len(detected_gestures)
avg_duration = sum(g["duration"] for g in detected_gestures) / len(detected_gestures)
# Normalize duration to confidence boost (longer, more confident gestures = higher score)
duration_boost = min(0.2, avg_duration / 100.0) # Cap at 0.2 boost
confidence_boost = min(0.1, avg_confidence * 0.1) # Cap at 0.1 boost
success_rate = min(1.0, success_rate + duration_boost + confidence_boost)
return success_rate
def _normalize_gesture_name(self, gesture_name: str) -> str:
"""
Normalize gesture names to production-standard format.
Handles legacy naming and variations to ensure consistent gesture names
across different parts of the system. Maps old names like "like" to
"thumbs_up", and handles hand-agnostic counting variations.
Parameters
----------
gesture_name : str
Raw gesture name from detection
Returns
-------
str
Normalized gesture name matching PRODUCTION_GESTURE_MAPPING
"""
# Convert to lowercase and remove common variations
normalized = gesture_name.lower().strip()
# Handle common variations and legacy names
variations = {
"thumbs_up": ["thumbsup", "thumb_up", "like"], # "like" is legacy name
"one": ["one_finger", "one_left", "one_right", "one_down"], # Hand-agnostic
"two": ["peace_sign", "victory", "two_fingers", "two_up", "two_left", "two_right", "two_down"], # Hand-agnostic
"three": ["three_fingers", "three2", "three3"], # Hand-agnostic
"four": ["four_fingers"],
"five": ["palm", "open_palm", "five_fingers"], # "palm" is alias for "five"
"peace_inverted": ["peace_inverted_sign"],
"ok": ["okay", "ok_sign"],
"call": ["call_me", "phone"],
"fist": ["closed_fist"],
"point": ["pointing"],
"stop": ["stop_sign"],
"middle_finger": ["middle"],
}
for standard_name, variant_list in variations.items():
if normalized in variant_list or normalized == standard_name:
return standard_name
return normalized