Spaces:
Sleeping
Sleeping
| """ | |
| Facial recognition validator for identity verification. | |
| This module provides facial validation functionality for the identity verification system. | |
| It orchestrates facial matching using the facial embeddings module, providing a clean | |
| interface for the validation API. | |
| """ | |
| import tempfile | |
| import os | |
| import logging | |
| from typing import Tuple, Optional, Dict, Any | |
| from datetime import datetime, timezone | |
| import numpy as np | |
| from .models import ValidationResult, ValidationStatus | |
| logger = logging.getLogger(__name__) | |
| class FacialValidator: | |
| """ | |
| Facial recognition validator for identity verification. | |
| This class orchestrates facial validation by using the facial embeddings | |
| module to compare an ID document photo with faces detected in a user video. | |
| It provides a clean interface for the validation API while delegating the | |
| actual facial recognition work to the specialized facial embeddings module. | |
| """ | |
| def __init__( | |
| self, | |
| similarity_threshold: float = 0.7, | |
| frame_sample_rate: int = 10 | |
| ): | |
| """ | |
| Initialize the facial validator. | |
| Parameters | |
| ---------- | |
| similarity_threshold : float, optional | |
| Minimum similarity threshold for facial matching, by default 0.7 | |
| frame_sample_rate : int, optional | |
| Rate at which to sample video frames for face detection, by default 10 | |
| """ | |
| self.similarity_threshold = similarity_threshold | |
| self.frame_sample_rate = frame_sample_rate | |
| # Import here to avoid circular imports | |
| try: | |
| from ..facialembeddingsmatch.facial_matcher import FacialEmbeddingMatcher | |
| self.matcher = FacialEmbeddingMatcher( | |
| similarity_threshold=similarity_threshold | |
| ) | |
| self._initialized = True | |
| logger.info( | |
| "FacialValidator initialized successfully", | |
| extra={ | |
| "similarity_threshold": similarity_threshold, | |
| "frame_sample_rate": frame_sample_rate | |
| } | |
| ) | |
| except ImportError as e: | |
| logger.warning(f"Could not import facial matcher: {e}") | |
| self._initialized = False | |
| def validate_facial_match( | |
| self, | |
| id_photo_path: str, | |
| video_path: str, | |
| **kwargs | |
| ) -> ValidationResult: | |
| """ | |
| Validate facial match between ID photo and user video. | |
| This method uses the facial embeddings module to perform comprehensive | |
| facial matching by comparing faces detected in the ID photo with faces | |
| detected in the user video. | |
| Parameters | |
| ---------- | |
| id_photo_path : str | |
| Path to the ID document photo file | |
| video_path : str | |
| Path to the user video file | |
| **kwargs | |
| Additional parameters for facial recognition | |
| Returns | |
| ------- | |
| ValidationResult | |
| Validation result with success status and confidence score | |
| """ | |
| if not self._initialized: | |
| error_msg = "FacialValidator not properly initialized - missing facial matcher components" | |
| logger.error(error_msg) | |
| return ValidationResult( | |
| status=ValidationStatus.FAILED, | |
| success=False, | |
| confidence=0.0, | |
| error_message=error_msg | |
| ) | |
| logger.info("Starting facial validation") | |
| # Validate input files exist | |
| if not os.path.exists(id_photo_path): | |
| error_msg = f"ID photo file not found: {id_photo_path}" | |
| logger.error(error_msg) | |
| return ValidationResult( | |
| status=ValidationStatus.FAILED, | |
| success=False, | |
| confidence=0.0, | |
| error_message=error_msg | |
| ) | |
| if not os.path.exists(video_path): | |
| error_msg = f"Video file not found: {video_path}" | |
| logger.error(error_msg) | |
| return ValidationResult( | |
| status=ValidationStatus.FAILED, | |
| success=False, | |
| confidence=0.0, | |
| error_message=error_msg | |
| ) | |
| try: | |
| # TODO: Facial embeddings validation is not fully implemented yet | |
| # For now, always return success to allow testing of gesture validation | |
| logger.warning( | |
| "Facial validation bypassed - not fully implemented. Always returning success." | |
| ) | |
| # Return successful validation result with placeholder values | |
| validation_result = ValidationResult( | |
| status=ValidationStatus.SUCCESS, | |
| success=True, | |
| confidence=1.0, # Placeholder confidence | |
| details={ | |
| "validation_method": "facial_embeddings_placeholder", | |
| "note": "Facial validation not fully implemented - always returns success", | |
| "similarity_score": 1.0, | |
| "similarity_threshold": self.similarity_threshold, | |
| "id_photo_path": id_photo_path, | |
| "video_path": video_path, | |
| "frame_sample_rate": self.frame_sample_rate, | |
| "processing_timestamp": datetime.now(timezone.utc).isoformat(), | |
| "implementation_status": "placeholder" | |
| } | |
| ) | |
| logger.info( | |
| "Facial validation completed (placeholder mode)", | |
| extra={ | |
| "success": True, | |
| "confidence": 1.0, | |
| "note": "Facial validation not implemented - returning success" | |
| } | |
| ) | |
| return validation_result | |
| except Exception as e: | |
| error_msg = f"Error during facial validation: {str(e)}" | |
| logger.error(error_msg, exc_info=True) | |
| return ValidationResult( | |
| status=ValidationStatus.FAILED, | |
| success=False, | |
| confidence=0.0, | |
| error_message=error_msg | |
| ) | |
| def extract_facial_features(self, image_path: str) -> Optional[Dict[str, Any]]: | |
| """ | |
| Extract facial features from an image. | |
| This method delegates to the facial embeddings module for feature extraction. | |
| Parameters | |
| ---------- | |
| image_path : str | |
| Path to the image file | |
| Returns | |
| ------- | |
| Optional[Dict[str, Any]] | |
| Dictionary containing facial features, or None if extraction fails | |
| """ | |
| if not self._initialized: | |
| logger.error("FacialValidator not initialized") | |
| return None | |
| logger.debug(f"Extracting facial features from {image_path}") | |
| try: | |
| # Use the facial matcher to extract features | |
| # This is a simplified approach - in practice, we'd want more direct access | |
| id_faces = self.matcher.face_detector.detect_faces(image_path) | |
| if not id_faces: | |
| logger.warning(f"No faces detected in {image_path}") | |
| return None | |
| # Extract embedding from the first detected face | |
| face = id_faces[0] | |
| embedding = self.matcher.embedding_extractor.extract_embedding( | |
| image_path, face["bbox"] | |
| ) | |
| if embedding is None: | |
| logger.warning(f"Failed to extract embedding from {image_path}") | |
| return None | |
| return { | |
| "features": embedding.tolist(), | |
| "extraction_method": "facial_embeddings", | |
| "face_bbox": face["bbox"], | |
| "confidence": face.get("confidence", 0.0), | |
| "timestamp": datetime.now(timezone.utc).isoformat() | |
| } | |
| except Exception as e: | |
| logger.error(f"Error extracting facial features: {str(e)}") | |
| return None | |
| def compare_faces( | |
| self, | |
| features1: Dict[str, Any], | |
| features2: Dict[str, Any], | |
| threshold: Optional[float] = None | |
| ) -> Tuple[bool, float]: | |
| """ | |
| Compare two sets of facial features. | |
| This method uses the similarity calculator from the facial embeddings module. | |
| Parameters | |
| ---------- | |
| features1 : Dict[str, Any] | |
| First set of facial features | |
| features2 : Dict[str, Any] | |
| Second set of facial features | |
| threshold : Optional[float], optional | |
| Similarity threshold for matching, by default uses instance threshold | |
| Returns | |
| ------- | |
| Tuple[bool, float] | |
| (is_match, similarity_score) where similarity_score is between 0.0 and 1.0 | |
| """ | |
| if not self._initialized: | |
| logger.error("FacialValidator not initialized") | |
| return False, 0.0 | |
| if threshold is None: | |
| threshold = self.similarity_threshold | |
| try: | |
| # Extract embeddings from feature dictionaries | |
| embedding1 = np.array(features1.get("features", [])) | |
| embedding2 = np.array(features2.get("features", [])) | |
| if len(embedding1) == 0 or len(embedding2) == 0: | |
| logger.error("Invalid feature data provided") | |
| return False, 0.0 | |
| # Calculate similarity | |
| similarity = self.matcher.similarity_calculator.calculate_similarity( | |
| embedding1, embedding2 | |
| ) | |
| is_match = similarity >= threshold | |
| logger.debug( | |
| "Face comparison completed", | |
| extra={ | |
| "similarity": similarity, | |
| "threshold": threshold, | |
| "is_match": is_match | |
| } | |
| ) | |
| return is_match, similarity | |
| except Exception as e: | |
| logger.error(f"Error comparing faces: {str(e)}") | |
| return False, 0.0 | |