validation / src /validate /facial_validator.py
tommulder's picture
Deploy gesture detection & validation API
95db528
raw
history blame
9.99 kB
"""
Facial recognition validator for identity verification.
This module provides facial validation functionality for the identity verification system.
It orchestrates facial matching using the facial embeddings module, providing a clean
interface for the validation API.
"""
import tempfile
import os
import logging
from typing import Tuple, Optional, Dict, Any
from datetime import datetime, timezone
import numpy as np
from .models import ValidationResult, ValidationStatus
logger = logging.getLogger(__name__)
class FacialValidator:
"""
Facial recognition validator for identity verification.
This class orchestrates facial validation by using the facial embeddings
module to compare an ID document photo with faces detected in a user video.
It provides a clean interface for the validation API while delegating the
actual facial recognition work to the specialized facial embeddings module.
"""
def __init__(
self,
similarity_threshold: float = 0.7,
frame_sample_rate: int = 10
):
"""
Initialize the facial validator.
Parameters
----------
similarity_threshold : float, optional
Minimum similarity threshold for facial matching, by default 0.7
frame_sample_rate : int, optional
Rate at which to sample video frames for face detection, by default 10
"""
self.similarity_threshold = similarity_threshold
self.frame_sample_rate = frame_sample_rate
# Import here to avoid circular imports
try:
from ..facialembeddingsmatch.facial_matcher import FacialEmbeddingMatcher
self.matcher = FacialEmbeddingMatcher(
similarity_threshold=similarity_threshold
)
self._initialized = True
logger.info(
"FacialValidator initialized successfully",
extra={
"similarity_threshold": similarity_threshold,
"frame_sample_rate": frame_sample_rate
}
)
except ImportError as e:
logger.warning(f"Could not import facial matcher: {e}")
self._initialized = False
def validate_facial_match(
self,
id_photo_path: str,
video_path: str,
**kwargs
) -> ValidationResult:
"""
Validate facial match between ID photo and user video.
This method uses the facial embeddings module to perform comprehensive
facial matching by comparing faces detected in the ID photo with faces
detected in the user video.
Parameters
----------
id_photo_path : str
Path to the ID document photo file
video_path : str
Path to the user video file
**kwargs
Additional parameters for facial recognition
Returns
-------
ValidationResult
Validation result with success status and confidence score
"""
if not self._initialized:
error_msg = "FacialValidator not properly initialized - missing facial matcher components"
logger.error(error_msg)
return ValidationResult(
status=ValidationStatus.FAILED,
success=False,
confidence=0.0,
error_message=error_msg
)
logger.info("Starting facial validation")
# Validate input files exist
if not os.path.exists(id_photo_path):
error_msg = f"ID photo file not found: {id_photo_path}"
logger.error(error_msg)
return ValidationResult(
status=ValidationStatus.FAILED,
success=False,
confidence=0.0,
error_message=error_msg
)
if not os.path.exists(video_path):
error_msg = f"Video file not found: {video_path}"
logger.error(error_msg)
return ValidationResult(
status=ValidationStatus.FAILED,
success=False,
confidence=0.0,
error_message=error_msg
)
try:
# TODO: Facial embeddings validation is not fully implemented yet
# For now, always return success to allow testing of gesture validation
logger.warning(
"Facial validation bypassed - not fully implemented. Always returning success."
)
# Return successful validation result with placeholder values
validation_result = ValidationResult(
status=ValidationStatus.SUCCESS,
success=True,
confidence=1.0, # Placeholder confidence
details={
"validation_method": "facial_embeddings_placeholder",
"note": "Facial validation not fully implemented - always returns success",
"similarity_score": 1.0,
"similarity_threshold": self.similarity_threshold,
"id_photo_path": id_photo_path,
"video_path": video_path,
"frame_sample_rate": self.frame_sample_rate,
"processing_timestamp": datetime.now(timezone.utc).isoformat(),
"implementation_status": "placeholder"
}
)
logger.info(
"Facial validation completed (placeholder mode)",
extra={
"success": True,
"confidence": 1.0,
"note": "Facial validation not implemented - returning success"
}
)
return validation_result
except Exception as e:
error_msg = f"Error during facial validation: {str(e)}"
logger.error(error_msg, exc_info=True)
return ValidationResult(
status=ValidationStatus.FAILED,
success=False,
confidence=0.0,
error_message=error_msg
)
def extract_facial_features(self, image_path: str) -> Optional[Dict[str, Any]]:
"""
Extract facial features from an image.
This method delegates to the facial embeddings module for feature extraction.
Parameters
----------
image_path : str
Path to the image file
Returns
-------
Optional[Dict[str, Any]]
Dictionary containing facial features, or None if extraction fails
"""
if not self._initialized:
logger.error("FacialValidator not initialized")
return None
logger.debug(f"Extracting facial features from {image_path}")
try:
# Use the facial matcher to extract features
# This is a simplified approach - in practice, we'd want more direct access
id_faces = self.matcher.face_detector.detect_faces(image_path)
if not id_faces:
logger.warning(f"No faces detected in {image_path}")
return None
# Extract embedding from the first detected face
face = id_faces[0]
embedding = self.matcher.embedding_extractor.extract_embedding(
image_path, face["bbox"]
)
if embedding is None:
logger.warning(f"Failed to extract embedding from {image_path}")
return None
return {
"features": embedding.tolist(),
"extraction_method": "facial_embeddings",
"face_bbox": face["bbox"],
"confidence": face.get("confidence", 0.0),
"timestamp": datetime.now(timezone.utc).isoformat()
}
except Exception as e:
logger.error(f"Error extracting facial features: {str(e)}")
return None
def compare_faces(
self,
features1: Dict[str, Any],
features2: Dict[str, Any],
threshold: Optional[float] = None
) -> Tuple[bool, float]:
"""
Compare two sets of facial features.
This method uses the similarity calculator from the facial embeddings module.
Parameters
----------
features1 : Dict[str, Any]
First set of facial features
features2 : Dict[str, Any]
Second set of facial features
threshold : Optional[float], optional
Similarity threshold for matching, by default uses instance threshold
Returns
-------
Tuple[bool, float]
(is_match, similarity_score) where similarity_score is between 0.0 and 1.0
"""
if not self._initialized:
logger.error("FacialValidator not initialized")
return False, 0.0
if threshold is None:
threshold = self.similarity_threshold
try:
# Extract embeddings from feature dictionaries
embedding1 = np.array(features1.get("features", []))
embedding2 = np.array(features2.get("features", []))
if len(embedding1) == 0 or len(embedding2) == 0:
logger.error("Invalid feature data provided")
return False, 0.0
# Calculate similarity
similarity = self.matcher.similarity_calculator.calculate_similarity(
embedding1, embedding2
)
is_match = similarity >= threshold
logger.debug(
"Face comparison completed",
extra={
"similarity": similarity,
"threshold": threshold,
"is_match": is_match
}
)
return is_match, similarity
except Exception as e:
logger.error(f"Error comparing faces: {str(e)}")
return False, 0.0