alfredplpl's picture
Update app.py
ada2939 verified
raw
history blame
4.91 kB
import gradio as gr
import numpy as np
import random
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
import spaces
import os
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
device = "cuda"
token=os.environ["TOKEN"]
model_id="aipicasso/emix-0-5"
scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id,subfolder="scheduler",token=token)
pipe = StableDiffusionXLPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.bfloat16,token=token)
negative_ti_file = hf_hub_download(repo_id="Aikimi/unaestheticXL_Negative_TI", filename="unaestheticXLv31.safetensors")
state_dict = load_file(negative_ti_file)
pipe.load_textual_inversion(state_dict["clip_g"], token="unaestheticXLv31", text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
pipe.load_textual_inversion(state_dict["clip_l"], token="unaestheticXLv31", text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
pipe = pipe.to(device)
MODEL_NAME = "p1atdev/dart-v1-sft"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) # trust_remote_code is required for tokenizer
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.bfloat16)
model=model.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
@spaces.GPU
def infer(seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
prompt = "<|bos|><rating>rating:sfw, rating:general</rating><copyright>original</copyright><character></character><general><|long|>1girl<|input_end|>"
inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
with torch.no_grad():
outputs = model.generate(inputs, generation_config=model.generation_config)
prompt=tokenizer.decode(outputs[0], skip_special_tokens=True).split("original, ")[1]
negative_prompt="unaestheticXLv31, 3d, photo, realism"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt = prompt,
negative_prompt = negative_prompt,
guidance_scale = guidance_scale,
num_inference_steps = num_inference_steps,
width = width,
height = height,
generator = generator
).images[0]
return image, prompt
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# 著作権のない画像
## Anime image with No copyright
Runボタンを押し、画像を生成してください。この画像がいくらきれいであろうと著作権は誰にもありません。この画像は時刻を入力とした自然現象によって作られたものです。美しいとは何でしょうか。
""")
with gr.Row():
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
generated_prompt = gr.Textbox(label="Generated prompt", show_label=False, interactive=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=64,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=64,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=1.0,
maximum=10.0,
step=0.1,
value=7.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=30,
step=1,
value=20,
)
run_button.click(
fn = infer,
inputs = [seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs = [result,generated_prompt]
)
demo.queue().launch()