llm-arch / src /architectures.py
alfraser's picture
Made updates to support automatic reload of the TestGroups after a test run
e35ef72
raw
history blame
24.1 kB
"""
This file contains all the code which defines architectures and
architecture components.
"""
import chromadb
import json
import os
import regex as re
import requests
import shutil
import traceback
from abc import ABC, abstractmethod
from enum import Enum
from huggingface_hub import Repository
from queue import Queue
from threading import Thread, Timer
from time import time
from typing import List, Optional, Dict, Callable
from better_profanity import profanity
from src.common import config_dir, data_dir, hf_api_token, escape_dollars
class ArchitectureRequest:
"""
This class represents a request (chat query) from a user which can then be built up or
modified through the pipeline process. It also holds the response to the request which again
is a stack which can be modified through life.
"""
def __init__(self, query: str):
self._request: List[str] = [query] # Stack for the request text as it evolves down the pipeline
self._response: List[str] = [] # Stack for the response text as it evolves down the pipeline
self.early_exit: bool = False
self.early_exit_message: str = None
@property
def request(self):
return self._request[-1]
@request.setter
def request(self, value: str):
self._request.append(value)
@property
def response(self):
if len(self._response) > 0:
return self._response[-1]
return None
@response.setter
def response(self, value: str):
self._response.append(value)
def as_markdown(self) -> str:
"""
Returns a markdown representation for display / testing
:return: str - the markdown
"""
md = "- **Request evolution**"
for r in self._request:
md += f"\n - {r}"
md += "\n- **Response evolution**"
for r in self._response:
md += f"\n - {r}"
return escape_dollars(md)
def as_dict(self) -> Dict:
return {'request_evolution': self._request, 'response_evolution': self._response}
class ArchitectureTraceOutcome(Enum):
"""
Class representing the outcome of a component step in an architecture
"""
NONE = 0
SUCCESS = 1
EARLY_EXIT = 2
EXCEPTION = 3
class ArchitectureTraceStep:
"""
Class to hold the details of a single trace step
"""
def __init__(self, name: str):
self.name = name
self.start_ms = int(time() * 1000)
self.end_ms = None
self.outcome = ArchitectureTraceOutcome.NONE
self._exception: str = None
self.early_exit_message: str = None
def end(self, outcome: ArchitectureTraceOutcome):
self.end_ms = int(time() * 1000)
self.outcome = outcome
@property
def exception(self) -> str:
return self._exception
@exception.setter
def exception(self, value: Exception):
self._exception = f'{value}' # Hold any exception as a string in the trace
def as_markdown(self) -> str:
"""
Converts the trace to markdown for simple display purposes
:return: a string of markdown
"""
md = f"- **Step**: {self.name} \n"
md += f" - **Start**: {self.start_ms}; **End**: {self.end_ms} \n"
md += f" - **Elapsed time**: {self.end_ms - self.start_ms}ms \n"
outcome = "None"
if self.outcome == ArchitectureTraceOutcome.SUCCESS:
outcome = "Success"
elif self.outcome == ArchitectureTraceOutcome.EARLY_EXIT:
outcome = f"Early Exit ({self.early_exit_message})"
elif self.outcome == ArchitectureTraceOutcome.EXCEPTION:
outcome = f"Exception ({self._exception})"
md += f" - **Outcome**: {outcome}"
return escape_dollars(md)
def as_dict(self) -> Dict:
return {
'name': self.name,
'start_ms': self.start_ms,
'end_ms': self.end_ms,
'outcome': str(self.outcome),
'exception': "" if self._exception is None else f"{self._exception}",
'early_exit_message': "" if self.early_exit_message is None else self.early_exit_message
}
class ArchitectureTrace:
"""
This class represents the system instrumentation / trace for a request. It holds the name
for each component called, the start and end time of the component processing and the outcome
of the step.
"""
def __init__(self):
self.steps: List[ArchitectureTraceStep] = []
def start_trace(self, name: str):
self.steps.append(ArchitectureTraceStep(name=name))
def end_trace(self, outcome: ArchitectureTraceOutcome, early_exit_message: str = None):
assert len(self.steps) > 0
assert self.steps[-1].outcome == ArchitectureTraceOutcome.NONE
self.steps[-1].end(outcome=outcome)
if early_exit_message is not None:
self.steps[-1].early_exit_message = early_exit_message
def as_markdown(self) -> str:
"""
Converts the trace to markdown for simple display purposes
:return: a string of markdown
"""
md = ' \n'.join([s.as_markdown() for s in self.steps])
return md
def as_dict(self) -> Dict:
return {'steps': [s.as_dict() for s in self.steps]}
class ArchitectureComponent(ABC):
description = "Components should override a description"
@abstractmethod
def process_request(self, request: ArchitectureRequest) -> None:
"""
The principal method that concrete implementations of a component must implement.
They should signal anything to the pipeline through direct modification of the provided
request (i.e. amending the request text or response text, or setting the early_exit flag).
:param request: The request which is flowing down the pipeline
:return: None
"""
pass
def config_description(self) -> str:
"""
Optional method to override for providing a string of description in markdown format for
display purposes for the component
:return: a markdwon string (defaulting to empty in the base class)
"""
return ""
class LogWorker(Thread):
instance = None
architectures = None
save_repo = None
save_repo_load_error = False
save_repo_url = "https://huggingface.co/datasets/alfraser/llm-arch-trace"
trace_dir = "trace"
trace_file_name = "trace.json"
trace_file = os.path.join(trace_dir, trace_file_name)
queue = Queue()
commit_time = 5 # Number of seconds after which to commit with no activity
commit_after = 20 # Number of records after which to commit irrespective of time
commit_count = 0 # Current uncommitted records
commit_timer = None # The actual commit timer - we will schedule the commit on this
timeout_functions: List[Callable[[], None]] = [] # Callbacks which will be fired on timeout
def run(self):
while True:
arch_name, request, trace, trace_tags, trace_comment = LogWorker.queue.get()
if request is None:
for func in LogWorker.timeout_functions:
print(f"LogWorker commit running {func.__name__}")
try:
func()
except Exception as e:
print(f"Timeout func {func.__name__} had error {e}")
else:
if LogWorker.commit_timer is not None and LogWorker.commit_timer.is_alive():
LogWorker.commit_timer.cancel()
LogWorker.commit_timer = None
try:
save_dict = {
'architecture': arch_name,
'request': request.as_dict(),
'trace': trace.as_dict(),
'test_tags': trace_tags,
'test_comment': trace_comment
}
LogWorker.append_and_save_data_as_json(save_dict)
LogWorker.commit_count += 1
if LogWorker.commit_count >= LogWorker.commit_after:
LogWorker.commit_repo()
except Exception as err:
print(f"Request / trace save failed {err}")
LogWorker.commit_timer = Timer(LogWorker.commit_time, LogWorker.signal_commit)
LogWorker.commit_timer.start()
@classmethod
def append_and_save_data_as_json(cls, data: Dict):
print(f"LogWorker logging open record {LogWorker.commit_count + 1}")
if cls.save_repo is None and not cls.save_repo_load_error:
try:
hf_write_token = hf_api_token(write=True)
cls.save_repo = Repository(local_dir=cls.trace_dir, clone_from=cls.save_repo_url, token=hf_write_token)
except Exception as err:
cls.save_repo_load_error = True
print(f"Error connecting to the save repo {err} - persistence now disabled")
if cls.save_repo is not None:
with open(cls.trace_file, 'r') as f:
test_json = json.load(f)
test_json['tests'].append(data)
with open(cls.trace_file, 'w') as f:
json.dump(test_json, f, indent=2)
@classmethod
def commit_repo(cls):
if cls.commit_count > 0:
print(f"LogWorker committing {LogWorker.commit_count} open records")
cls.save_repo.push_to_hub()
LogWorker.commit_count = 0
@classmethod
def signal_commit(cls):
# Signalling this back via the queue and not doing the work here as it would
# be executed on the Timer thread and may conflict with resources if the main
# LogWorker starts doing work concurrently.
print("LogWorker signalling commit based on time elapsed")
cls.queue.put((None, None, None, None, None))
@classmethod
def write(cls, arch_name: str, request: ArchitectureRequest, trace: ArchitectureTrace,
trace_tags: List[str] = None, trace_comment: str = None):
trace_tags = [] if trace_tags is None else trace_tags
trace_comment = "" if trace_comment is None else trace_comment
cls.queue.put((arch_name, request, trace, trace_tags, trace_comment))
# Instantiate and run worker on import
if LogWorker.instance is None:
LogWorker.instance = LogWorker()
LogWorker.daemon = True
LogWorker.instance.start()
LogWorker.timeout_functions.append(LogWorker.commit_repo)
class Architecture:
"""
An architecture is built as a callable pipeline of steps. An
ArchitectureRequest object is passed down the pipeline sequentially
to each component. A component can modify the request if needed, update the response
or signal an early exit. The Architecture framework also provides trace timing
and logging, plus exception handling so an individual request cannot
crash the system.
"""
architectures = None
save_repo = None
save_repo_load_error = False
save_repo_url = "https://huggingface.co/datasets/alfraser/llm-arch-trace"
trace_dir = "trace"
trace_file_name = "trace.json"
trace_file = os.path.join(trace_dir, trace_file_name)
@classmethod
def wipe_trace(cls, hf_write_token:str = None):
if os.path.exists(cls.trace_dir):
shutil.rmtree(cls.trace_dir)
try:
if hf_write_token is None:
hf_write_token = hf_api_token(write=True)
cls.save_repo = Repository(local_dir=cls.trace_dir, clone_from=cls.save_repo_url, token=hf_write_token)
test_json = {'tests': []}
with open(cls.trace_file, 'w') as f:
json.dump(test_json, f, indent=2)
cls.save_repo.push_to_hub()
except Exception as err:
cls.save_repo_load_error = True
print(f"Error connecting to the save repo {err} - persistence now disabled")
@classmethod
def get_trace_records(cls) -> List[Dict]:
if not os.path.isfile(cls.trace_file):
hf_write_token = hf_api_token(write=True)
try:
cls.save_repo = Repository(local_dir=cls.trace_dir, clone_from=cls.save_repo_url, token=hf_write_token)
except Exception as err:
cls.save_repo_load_error = True
print(f"Error connecting to the save repo {err} - persistence now disabled")
return []
with open(cls.trace_file, 'r') as f:
test_json = json.load(f)
return test_json['tests']
@classmethod
def load_architectures(cls, force_reload: bool = False) -> None:
"""
Class method to load the configuration file and try and set up architectures for each
config entry (a named sequence of components with optional setup params).
:param force_reload: A bool of whether to force a reload, defaults to False.
"""
if cls.architectures is None or force_reload:
config_file = os.path.join(config_dir, "architectures.json")
with open(config_file, "r") as f:
configs = json.load(f)['architectures']
archs = []
for c in configs:
arch_name = c['name']
arch_description = c['description']
arch_img = None
if 'img' in c:
arch_img = c['img']
arch_comps = []
for s in c['steps']:
component_class_name = s['class']
component_init_params = {}
if 'params' in s:
component_init_params = s['params']
arch_comps.append(globals()[component_class_name](**component_init_params))
arch = Architecture(name=arch_name, description=arch_description, steps=arch_comps, img=arch_img)
archs.append(arch)
cls.architectures = archs
@classmethod
def get_architecture(cls, name: str):
"""
Lookup an architecture by name
:param name: The name of the architecture to look up
:return: The architecture object
"""
if cls.architectures is None:
cls.load_architectures()
for a in cls.architectures:
if a.name == name:
return a
raise ValueError(f"Could not find an architecture named {name}")
def __init__(self,
name: str,
description: str,
steps: List[ArchitectureComponent],
img: Optional[str] = None,
exception_text: str = "Sorry an internal technical error occurred.",
no_response_text: str = "Sorry I can't answer that."):
self.name = name
self.description = description
self.steps = steps
self.img = img
self.exception_text = exception_text
self.no_response_text = no_response_text
def __call__(self, request: ArchitectureRequest, trace_tags: List[str] = None, trace_comment: str = None) -> ArchitectureTrace:
"""
The main entry point to call the pipeline. Passes the request through each pipeline step
in sequence, allowing them to amend the request or early exit the processing. Also captures
exceptions and generates the trace, plus saves the request/response and the trace to a store
for analysis.
:param request:
:return:
"""
print(f'{self.name} processing query "{request.request}"')
trace = ArchitectureTrace()
for component in self.steps:
trace.start_trace(name=component.__class__.__name__)
try:
component.process_request(request)
if request.early_exit:
trace.end_trace(outcome=ArchitectureTraceOutcome.EARLY_EXIT,
early_exit_message=request.early_exit_message)
break
else:
trace.end_trace(outcome=ArchitectureTraceOutcome.SUCCESS)
except Exception as err:
trace.end_trace(outcome=ArchitectureTraceOutcome.EXCEPTION)
trace.steps[-1].exception = err
traceback.print_exc()
break
LogWorker.write(self.name, request, trace, trace_tags, trace_comment)
return trace
class InputRequestScreener(ArchitectureComponent):
description = "Simplistic input screener for demonstration. Screens inputs for profanity."
def process_request(self, request: ArchitectureRequest) -> None:
if profanity.contains_profanity(request.request):
request.response = "Sorry - I cannot answer this question. Please try and rephrase it."
request.early_exit = True
request.early_exit_message = "Profanity detected in request"
class OutputResponseScreener(ArchitectureComponent):
description = "Screens outputs for offensive responses."
def __init__(self):
self.api_token = hf_api_token()
self.endpoint_url = "https://yl89ru8gdr1wkbej.eu-west-1.aws.endpoints.huggingface.cloud"
def process_request(self, request: ArchitectureRequest) -> None:
system_prompt = "You are screening for offensive content. In a single word (yes or no), is the response offensive?"
headers = {
"Accept": "application/json",
"Authorization": f"Bearer {self.api_token}",
"Content-Type": "application/json"
}
query_input = f"[INST] <<SYS>> {system_prompt} <<SYS>> {request.response} [/INST] "
payload = {
"inputs": query_input,
"parameters": {
"temperature": 0.1,
"max_new_tokens": 10
}
}
llm_response = requests.post(self.endpoint_url, headers=headers, json=payload)
generated_text = json.loads(llm_response.text)[0]['generated_text'].strip()
if generated_text[0:2].lower() != 'no': # Lean cautious even if the model fails to return yes/no
request.response = "Sorry - I cannot answer this question. Please try and rephrase it."
request.early_exit = True
class RetrievalAugmentor(ArchitectureComponent):
description = "Retrieves appropriate documents from the store and then augments the request."
def __init__(self, vector_store: str, doc_count: int = 5):
chroma_db = os.path.join(data_dir, 'vector_stores', f'{vector_store}_chroma')
self.vector_store = chroma_db
client = chromadb.PersistentClient(path=chroma_db)
self.collection = client.get_collection(name='products')
self.doc_count = doc_count
def process_request(self, request: ArchitectureRequest) -> None:
# Get the count nearest documents from the doc store
input_query = request.request
results = self.collection.query(query_texts=[input_query], n_results=self.doc_count)
documents = results['documents'][0] # Index 0 as we are always asking one question
# Update the request to include the retrieved documents
new_query = '{"background": ['
new_query += ', '.join([f'"{d}"' for d in documents])
new_query += ']}\n\nQUESTION: '
new_query += input_query
# Put the request back into the architecture request
request.request = new_query
def config_description(self) -> str:
"""
Custom config details as markdown
"""
desc = f"Vector Store: {self.vector_store}; "
desc += f"Max docs: {self.doc_count}"
return desc
class HFInferenceEndpoint(ArchitectureComponent):
"""
A concrete pipeline component which sends the user text to a given llama chat based
inference endpoint on HuggingFace
"""
def __init__(self, endpoint_url: str, model_name: str, system_prompt: str, max_new_tokens: int,
temperature: float = 1.0, prompt_style: str = "multi_line"):
self.endpoint_url: str = endpoint_url
self.prompt_style = prompt_style
self.model_name: str = model_name
self.system_prompt: str = system_prompt
self.max_new_tokens = max_new_tokens
self.api_token = hf_api_token()
self.temperature = temperature
def config_description(self) -> str:
"""
Custom config details as markdown
"""
desc = f"Model: {self.model_name}; "
desc += f"Endpoint: {self.endpoint_url}; "
desc += f"Max tokens: {self.max_new_tokens}; "
desc += f"Temperature: {self.temperature}; "
desc += f"System prompt: {self.system_prompt}"
return desc
def process_request(self, request: ArchitectureRequest) -> None:
"""
Main processing method for this function. Calls the HTTP service for the model
by port if provided or attempting to lookup by name, and then adds this to the
response element of the request.
"""
headers = {
"Accept": "application/json",
"Authorization": f"Bearer {self.api_token}",
"Content-Type": "application/json"
}
if self.prompt_style == "multi_line":
query_input = f"<s>[INST] <<SYS>>\n{self.system_prompt}\n<</SYS>>\n\n{request.request} [/INST] "
elif self.prompt_style == "multi_line_no_sys":
query_input = f"<s>[INST]\n{request.request} [/INST] "
elif self.prompt_style == "single_line_no_sys":
query_input = f"<s>[INST] {request.request} [/INST] "
elif self.prompt_style == "single_line":
query_input = f"<s>[INST] <<SYS>>\n{self.system_prompt}\n<</SYS>> {request.request} [/INST] "
elif self.prompt_style == "multi_line_with_roles":
query_input = f"<<SYS>>\n{self.system_prompt}\n<</SYS>>\n[INST]\nUser:{request.request}\n[/INST]\n\nAssistant:"
elif self.prompt_style == "raw":
# No formatting - used to just send things straight through from the front end
query_input = request.request
else:
raise ValueError(f"Config error - Unknown prompt style: {self.prompt_style}")
payload = {
"inputs": query_input,
"parameters": {
"temperature": self.temperature,
"max_new_tokens": self.max_new_tokens
}
}
llm_response = requests.post(self.endpoint_url, headers=headers, json=payload)
if llm_response.status_code == 200:
generated_text = llm_response.json()[0]['generated_text'].strip()
request.response = generated_text
elif llm_response.status_code == 502:
request.response = "Received 502 error from LLM service - service initialising, try again shortly"
else:
request.response = f"Received {llm_response.status_code} - {llm_response.text}"
class ResponseTrimmer(ArchitectureComponent):
"""
A concrete pipeline component which trims the response based on a regex match,
then uppercases the first character of what is left.
"""
description = "Trims the response based on a regex"
def __init__(self, regexes: List[str]):
quoted_regexes = [f'"{r}"' for r in regexes]
self.regex_display = f"[{', '.join(quoted_regexes)}]"
self.regexes = [re.compile(r, re.IGNORECASE) for r in regexes]
def process_request(self, request: ArchitectureRequest):
new_response = request.response
for regex in self.regexes:
new_response = regex.sub('', new_response)
new_response = new_response[:1].upper() + new_response[1:]
request.response = new_response
def config_description(self) -> str:
return f"Regexes: {self.regex_display}"
if __name__ == "__main__":
req = ArchitectureRequest("Testing")
a = Architecture.get_architecture("1. Baseline LLM")
a(req)
print("Hold")