Spaces:
Runtime error
Runtime error
IDM-VTON-demo2
/
preprocess
/humanparsing
/mhp_extension
/detectron2
/projects
/DensePose
/train_net.py
#!/usr/bin/env python3 | |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
""" | |
DensePose Training Script. | |
This script is similar to the training script in detectron2/tools. | |
It is an example of how a user might use detectron2 for a new project. | |
""" | |
import logging | |
import os | |
from collections import OrderedDict | |
from fvcore.common.file_io import PathManager | |
import detectron2.utils.comm as comm | |
from detectron2.checkpoint import DetectionCheckpointer | |
from detectron2.config import CfgNode, get_cfg | |
from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, hooks, launch | |
from detectron2.evaluation import COCOEvaluator, DatasetEvaluators, verify_results | |
from detectron2.modeling import DatasetMapperTTA | |
from detectron2.utils.logger import setup_logger | |
from densepose import ( | |
DensePoseCOCOEvaluator, | |
DensePoseGeneralizedRCNNWithTTA, | |
add_dataset_category_config, | |
add_densepose_config, | |
load_from_cfg, | |
) | |
from densepose.data import DatasetMapper, build_detection_test_loader, build_detection_train_loader | |
class Trainer(DefaultTrainer): | |
def build_evaluator(cls, cfg: CfgNode, dataset_name, output_folder=None): | |
if output_folder is None: | |
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") | |
evaluators = [COCOEvaluator(dataset_name, cfg, True, output_folder)] | |
if cfg.MODEL.DENSEPOSE_ON: | |
evaluators.append(DensePoseCOCOEvaluator(dataset_name, True, output_folder)) | |
return DatasetEvaluators(evaluators) | |
def build_test_loader(cls, cfg: CfgNode, dataset_name): | |
return build_detection_test_loader(cfg, dataset_name, mapper=DatasetMapper(cfg, False)) | |
def build_train_loader(cls, cfg: CfgNode): | |
return build_detection_train_loader(cfg, mapper=DatasetMapper(cfg, True)) | |
def test_with_TTA(cls, cfg: CfgNode, model): | |
logger = logging.getLogger("detectron2.trainer") | |
# In the end of training, run an evaluation with TTA | |
# Only support some R-CNN models. | |
logger.info("Running inference with test-time augmentation ...") | |
transform_data = load_from_cfg(cfg) | |
model = DensePoseGeneralizedRCNNWithTTA(cfg, model, transform_data, DatasetMapperTTA(cfg)) | |
evaluators = [ | |
cls.build_evaluator( | |
cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference_TTA") | |
) | |
for name in cfg.DATASETS.TEST | |
] | |
res = cls.test(cfg, model, evaluators) | |
res = OrderedDict({k + "_TTA": v for k, v in res.items()}) | |
return res | |
def setup(args): | |
cfg = get_cfg() | |
add_dataset_category_config(cfg) | |
add_densepose_config(cfg) | |
cfg.merge_from_file(args.config_file) | |
cfg.merge_from_list(args.opts) | |
cfg.freeze() | |
default_setup(cfg, args) | |
# Setup logger for "densepose" module | |
setup_logger(output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="densepose") | |
return cfg | |
def main(args): | |
cfg = setup(args) | |
# disable strict kwargs checking: allow one to specify path handle | |
# hints through kwargs, like timeout in DP evaluation | |
PathManager.set_strict_kwargs_checking(False) | |
if args.eval_only: | |
model = Trainer.build_model(cfg) | |
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( | |
cfg.MODEL.WEIGHTS, resume=args.resume | |
) | |
res = Trainer.test(cfg, model) | |
if cfg.TEST.AUG.ENABLED: | |
res.update(Trainer.test_with_TTA(cfg, model)) | |
if comm.is_main_process(): | |
verify_results(cfg, res) | |
return res | |
trainer = Trainer(cfg) | |
trainer.resume_or_load(resume=args.resume) | |
if cfg.TEST.AUG.ENABLED: | |
trainer.register_hooks( | |
[hooks.EvalHook(0, lambda: trainer.test_with_TTA(cfg, trainer.model))] | |
) | |
return trainer.train() | |
if __name__ == "__main__": | |
args = default_argument_parser().parse_args() | |
print("Command Line Args:", args) | |
launch( | |
main, | |
args.num_gpus, | |
num_machines=args.num_machines, | |
machine_rank=args.machine_rank, | |
dist_url=args.dist_url, | |
args=(args,), | |
) | |