Spaces:
Sleeping
Sleeping
imabackstabber
commited on
Commit
·
0a34307
1
Parent(s):
d48f0a2
test postometro pipeline
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- app.py +4 -34
- assets/02.jpg +0 -0
- assets/04.jpg +0 -0
- assets/05.jpg +0 -0
- assets/06.jpg +0 -0
- assets/07.jpg +0 -0
- common/utils/__pycache__/__init__.cpython-39.pyc +0 -0
- common/utils/__pycache__/inference_utils.cpython-39.pyc +0 -0
- common/utils/__pycache__/preprocessing.cpython-39.pyc +0 -0
- common/utils/__pycache__/transforms.cpython-39.pyc +0 -0
- common/utils/__pycache__/vis.cpython-39.pyc +0 -0
- common/utils/vis.py +35 -17
- main/__pycache__/config.cpython-39.pyc +0 -0
- main/__pycache__/postometro.cpython-39.pyc +0 -0
- main/config/config_postometro.py +3 -100
- main/config/config_smpler_x_b32.py +0 -112
- main/config/config_smpler_x_h32.py +0 -111
- main/config/config_smpler_x_l32.py +0 -112
- main/config/config_smpler_x_s32.py +0 -111
- main/inference.py +83 -59
- main/pct_utils/__pycache__/modules.cpython-39.pyc +0 -0
- main/pct_utils/__pycache__/pct.cpython-39.pyc +0 -0
- main/pct_utils/__pycache__/pct_backbone.cpython-39.pyc +0 -0
- main/pct_utils/__pycache__/pct_head.cpython-39.pyc +0 -0
- main/pct_utils/__pycache__/pct_tokenizer.cpython-39.pyc +0 -0
- main/pct_utils/modules.py +117 -0
- main/pct_utils/pct.py +69 -0
- main/pct_utils/pct_backbone.py +1475 -0
- main/pct_utils/pct_head.py +208 -0
- main/pct_utils/pct_tokenizer.py +315 -0
- main/postometro.py +305 -0
- main/postometro_utils/__pycache__/geometric_layers.cpython-39.pyc +0 -0
- main/postometro_utils/__pycache__/modules.cpython-39.pyc +0 -0
- main/postometro_utils/__pycache__/pose_hrnet.cpython-39.pyc +0 -0
- main/postometro_utils/__pycache__/pose_hrnet_config.cpython-39.pyc +0 -0
- main/postometro_utils/__pycache__/pose_resnet.cpython-39.pyc +0 -0
- main/postometro_utils/__pycache__/pose_resnet_config.cpython-39.pyc +0 -0
- main/postometro_utils/__pycache__/positional_encoding.cpython-39.pyc +0 -0
- main/postometro_utils/__pycache__/renderer_pyrender.cpython-39.pyc +0 -0
- main/postometro_utils/__pycache__/smpl.cpython-39.pyc +0 -0
- main/postometro_utils/__pycache__/transformer.cpython-39.pyc +0 -0
- main/postometro_utils/geometric_layers.py +679 -0
- main/postometro_utils/modules.py +117 -0
- main/postometro_utils/pose_hrnet.py +502 -0
- main/postometro_utils/pose_hrnet_config.py +137 -0
- main/postometro_utils/pose_resnet.py +318 -0
- main/postometro_utils/pose_resnet_config.py +229 -0
- main/postometro_utils/pose_w48_256x192_adam_lr1e-3.yaml +127 -0
- main/postometro_utils/positional_encoding.py +57 -0
- main/postometro_utils/renderer_pyrender.py +225 -0
app.py
CHANGED
@@ -33,40 +33,7 @@ def infer(image_input, in_threshold=0.5, num_people="Single person", render_mesh
|
|
33 |
os.system(f'rm -rf {OUT_FOLDER}/*')
|
34 |
multi_person = False if (num_people == "Single person") else True
|
35 |
vis_img, num_bbox, mmdet_box = inferer.infer(image_input, in_threshold, 0, multi_person, not(render_mesh))
|
36 |
-
|
37 |
-
# cap = cv2.VideoCapture(video_input)
|
38 |
-
# fps = math.ceil(cap.get(5))
|
39 |
-
# width = int(cap.get(3))
|
40 |
-
# height = int(cap.get(4))
|
41 |
-
# fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
42 |
-
# video_path = osp.join(OUT_FOLDER, f'out.m4v')
|
43 |
-
# final_video_path = osp.join(OUT_FOLDER, f'out.mp4')
|
44 |
-
# video_output = cv2.VideoWriter(video_path, fourcc, fps, (width, height))
|
45 |
-
# success = 1
|
46 |
-
# frame = 0
|
47 |
-
# while success:
|
48 |
-
# success, original_img = cap.read()
|
49 |
-
# if not success:
|
50 |
-
# break
|
51 |
-
# frame += 1
|
52 |
-
# img, mesh_paths, smplx_paths = inferer.infer(original_img, in_threshold, frame, multi_person, not(render_mesh))
|
53 |
-
# video_output.write(img)
|
54 |
-
# yield img, None, None, None
|
55 |
-
# cap.release()
|
56 |
-
# video_output.release()
|
57 |
-
# cv2.destroyAllWindows()
|
58 |
-
# os.system(f'ffmpeg -i {video_path} -c copy {final_video_path}')
|
59 |
-
|
60 |
-
# #Compress mesh and smplx files
|
61 |
-
# save_path_mesh = os.path.join(OUT_FOLDER, 'mesh')
|
62 |
-
# save_mesh_file = os.path.join(OUT_FOLDER, 'mesh.zip')
|
63 |
-
# os.makedirs(save_path_mesh, exist_ok= True)
|
64 |
-
# save_path_smplx = os.path.join(OUT_FOLDER, 'smplx')
|
65 |
-
# save_smplx_file = os.path.join(OUT_FOLDER, 'smplx.zip')
|
66 |
-
# os.makedirs(save_path_smplx, exist_ok= True)
|
67 |
-
# os.system(f'zip -r {save_mesh_file} {save_path_mesh}')
|
68 |
-
# os.system(f'zip -r {save_smplx_file} {save_path_smplx}')
|
69 |
-
# yield img, video_path, save_mesh_file, save_smplx_file
|
70 |
return vis_img, "bbox num: {}, bbox meta: {}".format(num_bbox, mmdet_box)
|
71 |
|
72 |
TITLE = '''<h1 align="center">PostoMETRO: Pose Token Enhanced Mesh Transformer for Robust 3D Human Mesh Recovery</h1>'''
|
@@ -113,6 +80,9 @@ with gr.Blocks(title="PostoMETRO", css=".gradio-container") as demo:
|
|
113 |
['/home/user/app/assets/02.jpg'],
|
114 |
['/home/user/app/assets/03.jpg'],
|
115 |
['/home/user/app/assets/04.jpg'],
|
|
|
|
|
|
|
116 |
],
|
117 |
inputs=[image_input, 0.2])
|
118 |
|
|
|
33 |
os.system(f'rm -rf {OUT_FOLDER}/*')
|
34 |
multi_person = False if (num_people == "Single person") else True
|
35 |
vis_img, num_bbox, mmdet_box = inferer.infer(image_input, in_threshold, 0, multi_person, not(render_mesh))
|
36 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
return vis_img, "bbox num: {}, bbox meta: {}".format(num_bbox, mmdet_box)
|
38 |
|
39 |
TITLE = '''<h1 align="center">PostoMETRO: Pose Token Enhanced Mesh Transformer for Robust 3D Human Mesh Recovery</h1>'''
|
|
|
80 |
['/home/user/app/assets/02.jpg'],
|
81 |
['/home/user/app/assets/03.jpg'],
|
82 |
['/home/user/app/assets/04.jpg'],
|
83 |
+
['/home/user/app/assets/05.jpg'],
|
84 |
+
['/home/user/app/assets/06.jpg'],
|
85 |
+
['/home/user/app/assets/07.jpg'],
|
86 |
],
|
87 |
inputs=[image_input, 0.2])
|
88 |
|
assets/02.jpg
CHANGED
assets/04.jpg
CHANGED
assets/05.jpg
ADDED
assets/06.jpg
ADDED
assets/07.jpg
ADDED
common/utils/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (169 Bytes). View file
|
|
common/utils/__pycache__/inference_utils.cpython-39.pyc
ADDED
Binary file (4.33 kB). View file
|
|
common/utils/__pycache__/preprocessing.cpython-39.pyc
ADDED
Binary file (14.3 kB). View file
|
|
common/utils/__pycache__/transforms.cpython-39.pyc
ADDED
Binary file (5.52 kB). View file
|
|
common/utils/__pycache__/vis.cpython-39.pyc
ADDED
Binary file (7.55 kB). View file
|
|
common/utils/vis.py
CHANGED
@@ -5,7 +5,7 @@ from mpl_toolkits.mplot3d import Axes3D
|
|
5 |
import matplotlib.pyplot as plt
|
6 |
import matplotlib as mpl
|
7 |
import os
|
8 |
-
os.environ["PYOPENGL_PLATFORM"] = "
|
9 |
import pyrender
|
10 |
import trimesh
|
11 |
from config import cfg
|
@@ -138,6 +138,20 @@ def perspective_projection(vertices, cam_param):
|
|
138 |
vertices[:, 1] = vertices[:, 1] * fy / vertices[:, 2] + cy
|
139 |
return vertices
|
140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
def render_mesh(img, mesh, face, cam_param, mesh_as_vertices=False):
|
143 |
if mesh_as_vertices:
|
@@ -150,28 +164,32 @@ def render_mesh(img, mesh, face, cam_param, mesh_as_vertices=False):
|
|
150 |
rot = trimesh.transformations.rotation_matrix(
|
151 |
np.radians(180), [1, 0, 0])
|
152 |
mesh.apply_transform(rot)
|
153 |
-
|
154 |
-
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
scene.add(mesh, 'mesh')
|
157 |
|
158 |
-
focal, princpt = cam_param['focal'], cam_param['princpt']
|
159 |
-
camera = pyrender.IntrinsicsCamera(fx=focal[0], fy=focal[1], cx=princpt[0], cy=princpt[1])
|
160 |
-
|
|
|
|
|
|
|
161 |
|
162 |
# renderer
|
163 |
renderer = pyrender.OffscreenRenderer(viewport_width=img.shape[1], viewport_height=img.shape[0], point_size=1.0)
|
164 |
|
165 |
-
# light
|
166 |
-
light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=0.8)
|
167 |
-
light_pose = np.eye(4)
|
168 |
-
light_pose[:3, 3] = np.array([0, -1, 1])
|
169 |
-
scene.add(light, pose=light_pose)
|
170 |
-
light_pose[:3, 3] = np.array([0, 1, 1])
|
171 |
-
scene.add(light, pose=light_pose)
|
172 |
-
light_pose[:3, 3] = np.array([1, 1, 2])
|
173 |
-
scene.add(light, pose=light_pose)
|
174 |
-
|
175 |
# render
|
176 |
rgb, depth = renderer.render(scene, flags=pyrender.RenderFlags.RGBA)
|
177 |
rgb = rgb[:,:,:3].astype(np.float32)
|
|
|
5 |
import matplotlib.pyplot as plt
|
6 |
import matplotlib as mpl
|
7 |
import os
|
8 |
+
os.environ["PYOPENGL_PLATFORM"] = "osmesa"
|
9 |
import pyrender
|
10 |
import trimesh
|
11 |
from config import cfg
|
|
|
138 |
vertices[:, 1] = vertices[:, 1] * fy / vertices[:, 2] + cy
|
139 |
return vertices
|
140 |
|
141 |
+
class WeakPerspectiveCamera(pyrender.Camera):
|
142 |
+
def __init__(self, scale, translation, znear=pyrender.camera.DEFAULT_Z_NEAR, zfar=None, name=None):
|
143 |
+
super(WeakPerspectiveCamera, self).__init__(znear=znear, zfar=zfar, name=name)
|
144 |
+
self.scale = scale
|
145 |
+
self.translation = translation
|
146 |
+
|
147 |
+
def get_projection_matrix(self, width=None, height=None):
|
148 |
+
P = np.eye(4)
|
149 |
+
P[0, 0] = self.scale[0]
|
150 |
+
P[1, 1] = self.scale[1]
|
151 |
+
P[0, 3] = self.translation[0] * self.scale[0]
|
152 |
+
P[1, 3] = -self.translation[1] * self.scale[1]
|
153 |
+
P[2, 2] = -1
|
154 |
+
return P
|
155 |
|
156 |
def render_mesh(img, mesh, face, cam_param, mesh_as_vertices=False):
|
157 |
if mesh_as_vertices:
|
|
|
164 |
rot = trimesh.transformations.rotation_matrix(
|
165 |
np.radians(180), [1, 0, 0])
|
166 |
mesh.apply_transform(rot)
|
167 |
+
color=[0.7, 0.7, 0.6]
|
168 |
+
material = pyrender.MetallicRoughnessMaterial(
|
169 |
+
metallicFactor=0.2,
|
170 |
+
roughnessFactor=1.0,
|
171 |
+
alphaMode='OPAQUE',
|
172 |
+
baseColorFactor=(color[0], color[1], color[2], 1.0)
|
173 |
+
)
|
174 |
+
mesh = pyrender.Mesh.from_trimesh(mesh, material=material)
|
175 |
+
scene = pyrender.Scene(bg_color=[0.0, 0.0, 0.0, 0.0], ambient_light=(0.05, 0.05, 0.05))
|
176 |
+
light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=3.0)
|
177 |
+
light_pose = trimesh.transformations.rotation_matrix(np.radians(-45), [1, 0, 0])
|
178 |
+
scene.add(light, pose=light_pose)
|
179 |
+
light_pose = trimesh.transformations.rotation_matrix(np.radians(45), [0, 1, 0])
|
180 |
+
scene.add(light, pose=light_pose)
|
181 |
scene.add(mesh, 'mesh')
|
182 |
|
183 |
+
# focal, princpt = cam_param['focal'], cam_param['princpt']
|
184 |
+
# camera = pyrender.IntrinsicsCamera(fx=focal[0], fy=focal[1], cx=princpt[0], cy=princpt[1])
|
185 |
+
sx, sy, tx, ty = cam_param
|
186 |
+
camera = WeakPerspectiveCamera(scale=[sx, sy], translation=[tx, ty], zfar=1000.0)
|
187 |
+
camera_pose = np.eye(4)
|
188 |
+
scene.add(camera, pose=camera_pose)
|
189 |
|
190 |
# renderer
|
191 |
renderer = pyrender.OffscreenRenderer(viewport_width=img.shape[1], viewport_height=img.shape[0], point_size=1.0)
|
192 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
# render
|
194 |
rgb, depth = renderer.render(scene, flags=pyrender.RenderFlags.RGBA)
|
195 |
rgb = rgb[:,:,:3].astype(np.float32)
|
main/__pycache__/config.cpython-39.pyc
ADDED
Binary file (2.31 kB). View file
|
|
main/__pycache__/postometro.cpython-39.pyc
ADDED
Binary file (9.31 kB). View file
|
|
main/config/config_postometro.py
CHANGED
@@ -3,109 +3,12 @@ import os.path as osp
|
|
3 |
|
4 |
# will be update in exp
|
5 |
num_gpus = -1
|
6 |
-
exp_name = 'output/exp1/pre_analysis'
|
7 |
-
|
8 |
-
# quick access
|
9 |
-
save_epoch = 1
|
10 |
-
lr = 1e-5
|
11 |
-
end_epoch = 10
|
12 |
-
train_batch_size = 16
|
13 |
-
|
14 |
-
syncbn = True
|
15 |
-
bbox_ratio = 1.2
|
16 |
-
|
17 |
-
# continue
|
18 |
-
continue_train = False
|
19 |
-
start_over = True
|
20 |
-
|
21 |
-
# dataset setting
|
22 |
-
agora_fix_betas = True
|
23 |
-
agora_fix_global_orient_transl = True
|
24 |
-
agora_valid_root_pose = True
|
25 |
-
|
26 |
-
# all
|
27 |
-
dataset_list = ['Human36M', 'MSCOCO', 'MPII', 'AGORA', 'EHF', 'SynBody', 'GTA_Human2', \
|
28 |
-
'EgoBody_Egocentric', 'EgoBody_Kinect', 'UBody', 'PW3D', 'MuCo', 'PROX']
|
29 |
-
trainset_3d = ['MSCOCO','AGORA', 'UBody']
|
30 |
-
trainset_2d = ['PW3D', 'MPII', 'Human36M']
|
31 |
-
trainset_humandata = ['BEDLAM', 'SPEC', 'GTA_Human2','SynBody', 'PoseTrack',
|
32 |
-
'EgoBody_Egocentric', 'PROX', 'CrowdPose',
|
33 |
-
'EgoBody_Kinect', 'MPI_INF_3DHP', 'RICH', 'MuCo', 'InstaVariety',
|
34 |
-
'Behave', 'UP3D', 'ARCTIC',
|
35 |
-
'OCHuman', 'CHI3D', 'RenBody_HiRes', 'MTP', 'HumanSC3D', 'RenBody',
|
36 |
-
'FIT3D', 'Talkshow' , 'SSP3D', 'LSPET']
|
37 |
-
testset = 'EHF'
|
38 |
-
|
39 |
-
use_cache = True
|
40 |
-
# downsample
|
41 |
-
BEDLAM_train_sample_interval = 5
|
42 |
-
EgoBody_Kinect_train_sample_interval = 10
|
43 |
-
train_sample_interval = 10 # UBody
|
44 |
-
MPI_INF_3DHP_train_sample_interval = 5
|
45 |
-
InstaVariety_train_sample_interval = 10
|
46 |
-
RenBody_HiRes_train_sample_interval = 5
|
47 |
-
ARCTIC_train_sample_interval = 10
|
48 |
-
# RenBody_train_sample_interval = 10
|
49 |
-
FIT3D_train_sample_interval = 10
|
50 |
-
Talkshow_train_sample_interval = 10
|
51 |
-
|
52 |
-
# strategy
|
53 |
-
data_strategy = 'balance' # 'balance' need to define total_data_len
|
54 |
-
total_data_len = 4500000
|
55 |
-
|
56 |
-
# model
|
57 |
-
smplx_loss_weight = 1.0 #2 for agora_model for smplx shape
|
58 |
-
smplx_pose_weight = 10.0
|
59 |
-
|
60 |
-
smplx_kps_3d_weight = 100.0
|
61 |
-
smplx_kps_2d_weight = 1.0
|
62 |
-
net_kps_2d_weight = 1.0
|
63 |
-
|
64 |
-
agora_benchmark = 'agora_model' # 'agora_model', 'test_only'
|
65 |
-
|
66 |
-
model_type = 'smpler_x_h'
|
67 |
-
encoder_config_file = 'main/transformer_utils/configs/smpler_x/encoder/body_encoder_huge.py'
|
68 |
-
encoder_pretrained_model_path = 'pretrained_models/vitpose_huge.pth'
|
69 |
-
feat_dim = 1280
|
70 |
-
|
71 |
-
## =====FIXED ARGS============================================================
|
72 |
-
## model setting
|
73 |
-
upscale = 4
|
74 |
-
hand_pos_joint_num = 20
|
75 |
-
face_pos_joint_num = 72
|
76 |
-
num_task_token = 24
|
77 |
-
num_noise_sample = 0
|
78 |
-
|
79 |
-
## UBody setting
|
80 |
-
train_sample_interval = 10
|
81 |
-
test_sample_interval = 100
|
82 |
-
make_same_len = False
|
83 |
|
84 |
## input, output size
|
85 |
input_img_shape = (256, 256)
|
86 |
input_body_shape = (256, 256)
|
87 |
-
output_hm_shape = (16, 16, 12)
|
88 |
-
input_hand_shape = (256, 256)
|
89 |
-
output_hand_hm_shape = (16, 16, 16)
|
90 |
-
output_face_hm_shape = (8, 8, 8)
|
91 |
-
input_face_shape = (192, 192)
|
92 |
-
focal = (5000, 5000) # virtual focal lengths
|
93 |
-
princpt = (input_body_shape[1] / 2, input_body_shape[0] / 2) # virtual principal point position
|
94 |
-
body_3d_size = 2
|
95 |
-
hand_3d_size = 0.3
|
96 |
-
face_3d_size = 0.3
|
97 |
-
camera_3d_size = 2.5
|
98 |
-
|
99 |
-
## training config
|
100 |
-
print_iters = 100
|
101 |
-
lr_mult = 1
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
## others
|
107 |
-
num_thread = 2
|
108 |
-
vis = False
|
109 |
|
110 |
-
## directory
|
111 |
-
output_dir, model_dir, vis_dir, log_dir, result_dir, code_dir = None, None, None, None, None, None
|
|
|
3 |
|
4 |
# will be update in exp
|
5 |
num_gpus = -1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
## input, output size
|
8 |
input_img_shape = (256, 256)
|
9 |
input_body_shape = (256, 256)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
renderer_input_body_shape = (256, 256)
|
12 |
+
focal = (5000, 5000) # virtual focal lengths
|
13 |
+
princpt = (renderer_input_body_shape[1] / 2, renderer_input_body_shape[0] / 2) # virtual principal point position
|
|
|
|
|
|
|
14 |
|
|
|
|
main/config/config_smpler_x_b32.py
DELETED
@@ -1,112 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import os.path as osp
|
3 |
-
|
4 |
-
# will be update in exp
|
5 |
-
num_gpus = -1
|
6 |
-
exp_name = 'output/exp1/pre_analysis'
|
7 |
-
|
8 |
-
# quick access
|
9 |
-
save_epoch = 1
|
10 |
-
lr = 1e-5
|
11 |
-
end_epoch = 10
|
12 |
-
train_batch_size = 32
|
13 |
-
|
14 |
-
syncbn = True
|
15 |
-
bbox_ratio = 1.2
|
16 |
-
|
17 |
-
# continue
|
18 |
-
continue_train = False
|
19 |
-
start_over = True
|
20 |
-
|
21 |
-
# dataset setting
|
22 |
-
agora_fix_betas = True
|
23 |
-
agora_fix_global_orient_transl = True
|
24 |
-
agora_valid_root_pose = True
|
25 |
-
|
26 |
-
# all
|
27 |
-
dataset_list = ['Human36M', 'MSCOCO', 'MPII', 'AGORA', 'EHF', 'SynBody', 'GTA_Human2', \
|
28 |
-
'EgoBody_Egocentric', 'EgoBody_Kinect', 'UBody', 'PW3D', 'MuCo', 'PROX']
|
29 |
-
trainset_3d = ['MSCOCO','AGORA', 'UBody']
|
30 |
-
trainset_2d = ['PW3D', 'MPII', 'Human36M']
|
31 |
-
trainset_humandata = ['BEDLAM', 'SPEC', 'GTA_Human2','SynBody', 'PoseTrack',
|
32 |
-
'EgoBody_Egocentric', 'PROX', 'CrowdPose',
|
33 |
-
'EgoBody_Kinect', 'MPI_INF_3DHP', 'RICH', 'MuCo', 'InstaVariety',
|
34 |
-
'Behave', 'UP3D', 'ARCTIC',
|
35 |
-
'OCHuman', 'CHI3D', 'RenBody_HiRes', 'MTP', 'HumanSC3D', 'RenBody',
|
36 |
-
'FIT3D', 'Talkshow' , 'SSP3D', 'LSPET']
|
37 |
-
testset = 'EHF'
|
38 |
-
|
39 |
-
use_cache = True
|
40 |
-
# downsample
|
41 |
-
BEDLAM_train_sample_interval = 5
|
42 |
-
EgoBody_Kinect_train_sample_interval = 10
|
43 |
-
train_sample_interval = 10 # UBody
|
44 |
-
MPI_INF_3DHP_train_sample_interval = 5
|
45 |
-
InstaVariety_train_sample_interval = 10
|
46 |
-
RenBody_HiRes_train_sample_interval = 5
|
47 |
-
ARCTIC_train_sample_interval = 10
|
48 |
-
# RenBody_train_sample_interval = 10
|
49 |
-
FIT3D_train_sample_interval = 10
|
50 |
-
Talkshow_train_sample_interval = 10
|
51 |
-
|
52 |
-
# strategy
|
53 |
-
data_strategy = 'balance' # 'balance' need to define total_data_len
|
54 |
-
total_data_len = 4500000
|
55 |
-
|
56 |
-
# model
|
57 |
-
smplx_loss_weight = 1.0 #2 for agora_model for smplx shape
|
58 |
-
smplx_pose_weight = 10.0
|
59 |
-
|
60 |
-
smplx_kps_3d_weight = 100.0
|
61 |
-
smplx_kps_2d_weight = 1.0
|
62 |
-
net_kps_2d_weight = 1.0
|
63 |
-
|
64 |
-
agora_benchmark = 'agora_model' # 'agora_model', 'test_only'
|
65 |
-
|
66 |
-
model_type = 'smpler_x_b'
|
67 |
-
encoder_config_file = 'main/transformer_utils/configs/smpler_x/encoder/body_encoder_base.py'
|
68 |
-
encoder_pretrained_model_path = 'pretrained_models/vitpose_base.pth'
|
69 |
-
feat_dim = 768
|
70 |
-
|
71 |
-
|
72 |
-
## =====FIXED ARGS============================================================
|
73 |
-
## model setting
|
74 |
-
upscale = 4
|
75 |
-
hand_pos_joint_num = 20
|
76 |
-
face_pos_joint_num = 72
|
77 |
-
num_task_token = 24
|
78 |
-
num_noise_sample = 0
|
79 |
-
|
80 |
-
## UBody setting
|
81 |
-
train_sample_interval = 10
|
82 |
-
test_sample_interval = 100
|
83 |
-
make_same_len = False
|
84 |
-
|
85 |
-
## input, output size
|
86 |
-
input_img_shape = (512, 384)
|
87 |
-
input_body_shape = (256, 192)
|
88 |
-
output_hm_shape = (16, 16, 12)
|
89 |
-
input_hand_shape = (256, 256)
|
90 |
-
output_hand_hm_shape = (16, 16, 16)
|
91 |
-
output_face_hm_shape = (8, 8, 8)
|
92 |
-
input_face_shape = (192, 192)
|
93 |
-
focal = (5000, 5000) # virtual focal lengths
|
94 |
-
princpt = (input_body_shape[1] / 2, input_body_shape[0] / 2) # virtual principal point position
|
95 |
-
body_3d_size = 2
|
96 |
-
hand_3d_size = 0.3
|
97 |
-
face_3d_size = 0.3
|
98 |
-
camera_3d_size = 2.5
|
99 |
-
|
100 |
-
## training config
|
101 |
-
print_iters = 100
|
102 |
-
lr_mult = 1
|
103 |
-
|
104 |
-
## testing config
|
105 |
-
test_batch_size = 32
|
106 |
-
|
107 |
-
## others
|
108 |
-
num_thread = 2
|
109 |
-
vis = False
|
110 |
-
|
111 |
-
## directory
|
112 |
-
output_dir, model_dir, vis_dir, log_dir, result_dir, code_dir = None, None, None, None, None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
main/config/config_smpler_x_h32.py
DELETED
@@ -1,111 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import os.path as osp
|
3 |
-
|
4 |
-
# will be update in exp
|
5 |
-
num_gpus = -1
|
6 |
-
exp_name = 'output/exp1/pre_analysis'
|
7 |
-
|
8 |
-
# quick access
|
9 |
-
save_epoch = 1
|
10 |
-
lr = 1e-5
|
11 |
-
end_epoch = 10
|
12 |
-
train_batch_size = 16
|
13 |
-
|
14 |
-
syncbn = True
|
15 |
-
bbox_ratio = 1.2
|
16 |
-
|
17 |
-
# continue
|
18 |
-
continue_train = False
|
19 |
-
start_over = True
|
20 |
-
|
21 |
-
# dataset setting
|
22 |
-
agora_fix_betas = True
|
23 |
-
agora_fix_global_orient_transl = True
|
24 |
-
agora_valid_root_pose = True
|
25 |
-
|
26 |
-
# all
|
27 |
-
dataset_list = ['Human36M', 'MSCOCO', 'MPII', 'AGORA', 'EHF', 'SynBody', 'GTA_Human2', \
|
28 |
-
'EgoBody_Egocentric', 'EgoBody_Kinect', 'UBody', 'PW3D', 'MuCo', 'PROX']
|
29 |
-
trainset_3d = ['MSCOCO','AGORA', 'UBody']
|
30 |
-
trainset_2d = ['PW3D', 'MPII', 'Human36M']
|
31 |
-
trainset_humandata = ['BEDLAM', 'SPEC', 'GTA_Human2','SynBody', 'PoseTrack',
|
32 |
-
'EgoBody_Egocentric', 'PROX', 'CrowdPose',
|
33 |
-
'EgoBody_Kinect', 'MPI_INF_3DHP', 'RICH', 'MuCo', 'InstaVariety',
|
34 |
-
'Behave', 'UP3D', 'ARCTIC',
|
35 |
-
'OCHuman', 'CHI3D', 'RenBody_HiRes', 'MTP', 'HumanSC3D', 'RenBody',
|
36 |
-
'FIT3D', 'Talkshow' , 'SSP3D', 'LSPET']
|
37 |
-
testset = 'EHF'
|
38 |
-
|
39 |
-
use_cache = True
|
40 |
-
# downsample
|
41 |
-
BEDLAM_train_sample_interval = 5
|
42 |
-
EgoBody_Kinect_train_sample_interval = 10
|
43 |
-
train_sample_interval = 10 # UBody
|
44 |
-
MPI_INF_3DHP_train_sample_interval = 5
|
45 |
-
InstaVariety_train_sample_interval = 10
|
46 |
-
RenBody_HiRes_train_sample_interval = 5
|
47 |
-
ARCTIC_train_sample_interval = 10
|
48 |
-
# RenBody_train_sample_interval = 10
|
49 |
-
FIT3D_train_sample_interval = 10
|
50 |
-
Talkshow_train_sample_interval = 10
|
51 |
-
|
52 |
-
# strategy
|
53 |
-
data_strategy = 'balance' # 'balance' need to define total_data_len
|
54 |
-
total_data_len = 4500000
|
55 |
-
|
56 |
-
# model
|
57 |
-
smplx_loss_weight = 1.0 #2 for agora_model for smplx shape
|
58 |
-
smplx_pose_weight = 10.0
|
59 |
-
|
60 |
-
smplx_kps_3d_weight = 100.0
|
61 |
-
smplx_kps_2d_weight = 1.0
|
62 |
-
net_kps_2d_weight = 1.0
|
63 |
-
|
64 |
-
agora_benchmark = 'agora_model' # 'agora_model', 'test_only'
|
65 |
-
|
66 |
-
model_type = 'smpler_x_h'
|
67 |
-
encoder_config_file = 'main/transformer_utils/configs/smpler_x/encoder/body_encoder_huge.py'
|
68 |
-
encoder_pretrained_model_path = 'pretrained_models/vitpose_huge.pth'
|
69 |
-
feat_dim = 1280
|
70 |
-
|
71 |
-
## =====FIXED ARGS============================================================
|
72 |
-
## model setting
|
73 |
-
upscale = 4
|
74 |
-
hand_pos_joint_num = 20
|
75 |
-
face_pos_joint_num = 72
|
76 |
-
num_task_token = 24
|
77 |
-
num_noise_sample = 0
|
78 |
-
|
79 |
-
## UBody setting
|
80 |
-
train_sample_interval = 10
|
81 |
-
test_sample_interval = 100
|
82 |
-
make_same_len = False
|
83 |
-
|
84 |
-
## input, output size
|
85 |
-
input_img_shape = (512, 384)
|
86 |
-
input_body_shape = (256, 192)
|
87 |
-
output_hm_shape = (16, 16, 12)
|
88 |
-
input_hand_shape = (256, 256)
|
89 |
-
output_hand_hm_shape = (16, 16, 16)
|
90 |
-
output_face_hm_shape = (8, 8, 8)
|
91 |
-
input_face_shape = (192, 192)
|
92 |
-
focal = (5000, 5000) # virtual focal lengths
|
93 |
-
princpt = (input_body_shape[1] / 2, input_body_shape[0] / 2) # virtual principal point position
|
94 |
-
body_3d_size = 2
|
95 |
-
hand_3d_size = 0.3
|
96 |
-
face_3d_size = 0.3
|
97 |
-
camera_3d_size = 2.5
|
98 |
-
|
99 |
-
## training config
|
100 |
-
print_iters = 100
|
101 |
-
lr_mult = 1
|
102 |
-
|
103 |
-
## testing config
|
104 |
-
test_batch_size = 32
|
105 |
-
|
106 |
-
## others
|
107 |
-
num_thread = 2
|
108 |
-
vis = False
|
109 |
-
|
110 |
-
## directory
|
111 |
-
output_dir, model_dir, vis_dir, log_dir, result_dir, code_dir = None, None, None, None, None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
main/config/config_smpler_x_l32.py
DELETED
@@ -1,112 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import os.path as osp
|
3 |
-
|
4 |
-
# will be update in exp
|
5 |
-
num_gpus = -1
|
6 |
-
exp_name = 'output/exp1/pre_analysis'
|
7 |
-
|
8 |
-
# quick access
|
9 |
-
save_epoch = 1
|
10 |
-
lr = 1e-5
|
11 |
-
end_epoch = 10
|
12 |
-
train_batch_size = 32
|
13 |
-
|
14 |
-
syncbn = True
|
15 |
-
bbox_ratio = 1.2
|
16 |
-
|
17 |
-
# continue
|
18 |
-
continue_train = False
|
19 |
-
start_over = True
|
20 |
-
|
21 |
-
# dataset setting
|
22 |
-
agora_fix_betas = True
|
23 |
-
agora_fix_global_orient_transl = True
|
24 |
-
agora_valid_root_pose = True
|
25 |
-
|
26 |
-
# all
|
27 |
-
dataset_list = ['Human36M', 'MSCOCO', 'MPII', 'AGORA', 'EHF', 'SynBody', 'GTA_Human2', \
|
28 |
-
'EgoBody_Egocentric', 'EgoBody_Kinect', 'UBody', 'PW3D', 'MuCo', 'PROX']
|
29 |
-
trainset_3d = ['MSCOCO','AGORA', 'UBody']
|
30 |
-
trainset_2d = ['PW3D', 'MPII', 'Human36M']
|
31 |
-
trainset_humandata = ['BEDLAM', 'SPEC', 'GTA_Human2','SynBody', 'PoseTrack',
|
32 |
-
'EgoBody_Egocentric', 'PROX', 'CrowdPose',
|
33 |
-
'EgoBody_Kinect', 'MPI_INF_3DHP', 'RICH', 'MuCo', 'InstaVariety',
|
34 |
-
'Behave', 'UP3D', 'ARCTIC',
|
35 |
-
'OCHuman', 'CHI3D', 'RenBody_HiRes', 'MTP', 'HumanSC3D', 'RenBody',
|
36 |
-
'FIT3D', 'Talkshow' , 'SSP3D', 'LSPET']
|
37 |
-
testset = 'EHF'
|
38 |
-
|
39 |
-
use_cache = True
|
40 |
-
# downsample
|
41 |
-
BEDLAM_train_sample_interval = 5
|
42 |
-
EgoBody_Kinect_train_sample_interval = 10
|
43 |
-
train_sample_interval = 10 # UBody
|
44 |
-
MPI_INF_3DHP_train_sample_interval = 5
|
45 |
-
InstaVariety_train_sample_interval = 10
|
46 |
-
RenBody_HiRes_train_sample_interval = 5
|
47 |
-
ARCTIC_train_sample_interval = 10
|
48 |
-
# RenBody_train_sample_interval = 10
|
49 |
-
FIT3D_train_sample_interval = 10
|
50 |
-
Talkshow_train_sample_interval = 10
|
51 |
-
|
52 |
-
# strategy
|
53 |
-
data_strategy = 'balance' # 'balance' need to define total_data_len
|
54 |
-
total_data_len = 4500000
|
55 |
-
|
56 |
-
# model
|
57 |
-
smplx_loss_weight = 1.0 #2 for agora_model for smplx shape
|
58 |
-
smplx_pose_weight = 10.0
|
59 |
-
|
60 |
-
smplx_kps_3d_weight = 100.0
|
61 |
-
smplx_kps_2d_weight = 1.0
|
62 |
-
net_kps_2d_weight = 1.0
|
63 |
-
|
64 |
-
agora_benchmark = 'agora_model' # 'agora_model', 'test_only'
|
65 |
-
|
66 |
-
model_type = 'smpler_x_l'
|
67 |
-
encoder_config_file = 'main/transformer_utils/configs/smpler_x/encoder/body_encoder_large.py'
|
68 |
-
encoder_pretrained_model_path = 'pretrained_models/vitpose_large.pth'
|
69 |
-
feat_dim = 1024
|
70 |
-
|
71 |
-
|
72 |
-
## =====FIXED ARGS============================================================
|
73 |
-
## model setting
|
74 |
-
upscale = 4
|
75 |
-
hand_pos_joint_num = 20
|
76 |
-
face_pos_joint_num = 72
|
77 |
-
num_task_token = 24
|
78 |
-
num_noise_sample = 0
|
79 |
-
|
80 |
-
## UBody setting
|
81 |
-
train_sample_interval = 10
|
82 |
-
test_sample_interval = 100
|
83 |
-
make_same_len = False
|
84 |
-
|
85 |
-
## input, output size
|
86 |
-
input_img_shape = (512, 384)
|
87 |
-
input_body_shape = (256, 192)
|
88 |
-
output_hm_shape = (16, 16, 12)
|
89 |
-
input_hand_shape = (256, 256)
|
90 |
-
output_hand_hm_shape = (16, 16, 16)
|
91 |
-
output_face_hm_shape = (8, 8, 8)
|
92 |
-
input_face_shape = (192, 192)
|
93 |
-
focal = (5000, 5000) # virtual focal lengths
|
94 |
-
princpt = (input_body_shape[1] / 2, input_body_shape[0] / 2) # virtual principal point position
|
95 |
-
body_3d_size = 2
|
96 |
-
hand_3d_size = 0.3
|
97 |
-
face_3d_size = 0.3
|
98 |
-
camera_3d_size = 2.5
|
99 |
-
|
100 |
-
## training config
|
101 |
-
print_iters = 100
|
102 |
-
lr_mult = 1
|
103 |
-
|
104 |
-
## testing config
|
105 |
-
test_batch_size = 32
|
106 |
-
|
107 |
-
## others
|
108 |
-
num_thread = 2
|
109 |
-
vis = False
|
110 |
-
|
111 |
-
## directory
|
112 |
-
output_dir, model_dir, vis_dir, log_dir, result_dir, code_dir = None, None, None, None, None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
main/config/config_smpler_x_s32.py
DELETED
@@ -1,111 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import os.path as osp
|
3 |
-
|
4 |
-
# will be update in exp
|
5 |
-
num_gpus = -1
|
6 |
-
exp_name = 'output/exp1/pre_analysis'
|
7 |
-
|
8 |
-
# quick access
|
9 |
-
save_epoch = 1
|
10 |
-
lr = 1e-5
|
11 |
-
end_epoch = 10
|
12 |
-
train_batch_size = 32
|
13 |
-
|
14 |
-
syncbn = True
|
15 |
-
bbox_ratio = 1.2
|
16 |
-
|
17 |
-
# continue
|
18 |
-
continue_train = False
|
19 |
-
start_over = True
|
20 |
-
|
21 |
-
# dataset setting
|
22 |
-
agora_fix_betas = True
|
23 |
-
agora_fix_global_orient_transl = True
|
24 |
-
agora_valid_root_pose = True
|
25 |
-
|
26 |
-
# all data
|
27 |
-
dataset_list = ['Human36M', 'MSCOCO', 'MPII', 'AGORA', 'EHF', 'SynBody', 'GTA_Human2', \
|
28 |
-
'EgoBody_Egocentric', 'EgoBody_Kinect', 'UBody', 'PW3D', 'MuCo', 'PROX']
|
29 |
-
trainset_3d = ['MSCOCO','AGORA', 'UBody']
|
30 |
-
trainset_2d = ['PW3D', 'MPII', 'Human36M']
|
31 |
-
trainset_humandata = ['BEDLAM', 'SPEC', 'GTA_Human2','SynBody', 'PoseTrack',
|
32 |
-
'EgoBody_Egocentric', 'PROX', 'CrowdPose',
|
33 |
-
'EgoBody_Kinect', 'MPI_INF_3DHP', 'RICH', 'MuCo', 'InstaVariety',
|
34 |
-
'Behave', 'UP3D', 'ARCTIC',
|
35 |
-
'OCHuman', 'CHI3D', 'RenBody_HiRes', 'MTP', 'HumanSC3D', 'RenBody',
|
36 |
-
'FIT3D', 'Talkshow' , 'SSP3D', 'LSPET']
|
37 |
-
testset = 'EHF'
|
38 |
-
|
39 |
-
use_cache = True
|
40 |
-
# downsample
|
41 |
-
BEDLAM_train_sample_interval = 5
|
42 |
-
EgoBody_Kinect_train_sample_interval = 10
|
43 |
-
train_sample_interval = 10 # UBody
|
44 |
-
MPI_INF_3DHP_train_sample_interval = 5
|
45 |
-
InstaVariety_train_sample_interval = 10
|
46 |
-
RenBody_HiRes_train_sample_interval = 5
|
47 |
-
ARCTIC_train_sample_interval = 10
|
48 |
-
# RenBody_train_sample_interval = 10
|
49 |
-
FIT3D_train_sample_interval = 10
|
50 |
-
Talkshow_train_sample_interval = 10
|
51 |
-
|
52 |
-
# strategy
|
53 |
-
data_strategy = 'balance' # 'balance' need to define total_data_len
|
54 |
-
total_data_len = 4500000
|
55 |
-
|
56 |
-
# model
|
57 |
-
smplx_loss_weight = 1.0 #2 for agora_model for smplx shape
|
58 |
-
smplx_pose_weight = 10.0
|
59 |
-
|
60 |
-
smplx_kps_3d_weight = 100.0
|
61 |
-
smplx_kps_2d_weight = 1.0
|
62 |
-
net_kps_2d_weight = 1.0
|
63 |
-
|
64 |
-
agora_benchmark = 'agora_model' # 'agora_model', 'test_only'
|
65 |
-
|
66 |
-
model_type = 'smpler_x_s'
|
67 |
-
encoder_config_file = 'main/transformer_utils/configs/smpler_x/encoder/body_encoder_small.py'
|
68 |
-
encoder_pretrained_model_path = 'pretrained_models/vitpose_small.pth'
|
69 |
-
feat_dim = 384
|
70 |
-
|
71 |
-
## =====FIXED ARGS============================================================
|
72 |
-
## model setting
|
73 |
-
upscale = 4
|
74 |
-
hand_pos_joint_num = 20
|
75 |
-
face_pos_joint_num = 72
|
76 |
-
num_task_token = 24
|
77 |
-
num_noise_sample = 0
|
78 |
-
|
79 |
-
## UBody setting
|
80 |
-
train_sample_interval = 10
|
81 |
-
test_sample_interval = 100
|
82 |
-
make_same_len = False
|
83 |
-
|
84 |
-
## input, output size
|
85 |
-
input_img_shape = (512, 384)
|
86 |
-
input_body_shape = (256, 192)
|
87 |
-
output_hm_shape = (16, 16, 12)
|
88 |
-
input_hand_shape = (256, 256)
|
89 |
-
output_hand_hm_shape = (16, 16, 16)
|
90 |
-
output_face_hm_shape = (8, 8, 8)
|
91 |
-
input_face_shape = (192, 192)
|
92 |
-
focal = (5000, 5000) # virtual focal lengths
|
93 |
-
princpt = (input_body_shape[1] / 2, input_body_shape[0] / 2) # virtual principal point position
|
94 |
-
body_3d_size = 2
|
95 |
-
hand_3d_size = 0.3
|
96 |
-
face_3d_size = 0.3
|
97 |
-
camera_3d_size = 2.5
|
98 |
-
|
99 |
-
## training config
|
100 |
-
print_iters = 100
|
101 |
-
lr_mult = 1
|
102 |
-
|
103 |
-
## testing config
|
104 |
-
test_batch_size = 32
|
105 |
-
|
106 |
-
## others
|
107 |
-
num_thread = 2
|
108 |
-
vis = False
|
109 |
-
|
110 |
-
## directory
|
111 |
-
output_dir, model_dir, vis_dir, log_dir, result_dir, code_dir = None, None, None, None, None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
main/inference.py
CHANGED
@@ -11,11 +11,12 @@ sys.path.insert(0, osp.join(CUR_DIR, '..', 'main'))
|
|
11 |
sys.path.insert(0, osp.join(CUR_DIR , '..', 'common'))
|
12 |
from config import cfg
|
13 |
import cv2
|
14 |
-
from tqdm import tqdm
|
15 |
-
import json
|
16 |
-
from typing import Literal, Union
|
17 |
from mmdet.apis import init_detector, inference_detector
|
18 |
from utils.inference_utils import process_mmdet_results, non_max_suppression
|
|
|
|
|
|
|
|
|
19 |
|
20 |
class Inferer:
|
21 |
|
@@ -29,16 +30,18 @@ class Inferer:
|
|
29 |
# ckpt_path = osp.join(CUR_DIR, '../pretrained_models', f'{pretrained_model}.pth.tar')
|
30 |
ckpt_path = None # for config
|
31 |
cfg.get_config_fromfile(config_path)
|
|
|
32 |
cfg.update_config(num_gpus, ckpt_path, output_folder, self.device)
|
33 |
self.cfg = cfg
|
34 |
cudnn.benchmark = True
|
35 |
|
36 |
-
#
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
#
|
41 |
-
|
|
|
42 |
|
43 |
# load faster-rcnn as human detector
|
44 |
checkpoint_file = osp.join(CUR_DIR, '../pretrained_models/mmdet/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth')
|
@@ -46,17 +49,20 @@ class Inferer:
|
|
46 |
model = init_detector(config_file, checkpoint_file, device=self.device) # or device='cuda:0'
|
47 |
self.model = model
|
48 |
|
49 |
-
def infer(self, original_img, iou_thr,
|
50 |
from utils.preprocessing import process_bbox, generate_patch_image
|
51 |
-
|
52 |
# from utils.human_models import smpl_x
|
53 |
-
|
54 |
-
smplx_paths = []
|
55 |
# prepare input image
|
56 |
-
transform = transforms.
|
|
|
57 |
vis_img = original_img.copy()
|
58 |
original_img_height, original_img_width = original_img.shape[:2]
|
59 |
|
|
|
|
|
|
|
60 |
## mmdet inference
|
61 |
mmdet_results = inference_detector(self.model, original_img)
|
62 |
mmdet_box = process_mmdet_results(mmdet_results, cat_id=0, multi_person=True)
|
@@ -99,51 +105,69 @@ class Inferer:
|
|
99 |
top_left = (int(bbox[0]), int(bbox[1]))
|
100 |
bottom_right = (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3]))
|
101 |
cv2.rectangle(vis_img, top_left, bottom_right, (0, 0, 255), 2)
|
102 |
-
|
103 |
-
|
104 |
# human model inference
|
105 |
-
|
106 |
-
|
107 |
-
#
|
108 |
-
|
109 |
-
|
110 |
-
#
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
#
|
123 |
-
#
|
124 |
-
#
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
#
|
132 |
-
#
|
133 |
-
#
|
134 |
-
#
|
135 |
-
# save_path_smplx = os.path.join(self.output_folder, 'smplx')
|
136 |
-
# os.makedirs(save_path_smplx, exist_ok= True)
|
137 |
-
|
138 |
-
# npz_path = os.path.join(save_path_smplx, f'{frame:05}_{bbox_id}.npz')
|
139 |
-
# np.savez(npz_path, **smplx_pred)
|
140 |
-
# smplx_paths.append(npz_path)
|
141 |
-
|
142 |
-
# ## render single person mesh
|
143 |
-
# focal = [self.cfg.focal[0] / self.cfg.input_body_shape[1] * bbox[2], self.cfg.focal[1] / self.cfg.input_body_shape[0] * bbox[3]]
|
144 |
-
# princpt = [self.cfg.princpt[0] / self.cfg.input_body_shape[1] * bbox[2] + bbox[0], self.cfg.princpt[1] / self.cfg.input_body_shape[0] * bbox[3] + bbox[1]]
|
145 |
-
# vis_img = render_mesh(vis_img, mesh, smpl_x.face, {'focal': focal, 'princpt': princpt},
|
146 |
# mesh_as_vertices=mesh_as_vertices)
|
147 |
-
# vis_img = vis_img.
|
148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
|
|
|
|
|
|
|
|
|
11 |
sys.path.insert(0, osp.join(CUR_DIR , '..', 'common'))
|
12 |
from config import cfg
|
13 |
import cv2
|
|
|
|
|
|
|
14 |
from mmdet.apis import init_detector, inference_detector
|
15 |
from utils.inference_utils import process_mmdet_results, non_max_suppression
|
16 |
+
from postometro_utils.smpl import SMPL
|
17 |
+
import data.config as smpl_cfg
|
18 |
+
from postometro import get_model
|
19 |
+
from postometro_utils.renderer_pyrender import PyRender_Renderer
|
20 |
|
21 |
class Inferer:
|
22 |
|
|
|
30 |
# ckpt_path = osp.join(CUR_DIR, '../pretrained_models', f'{pretrained_model}.pth.tar')
|
31 |
ckpt_path = None # for config
|
32 |
cfg.get_config_fromfile(config_path)
|
33 |
+
# uodate config
|
34 |
cfg.update_config(num_gpus, ckpt_path, output_folder, self.device)
|
35 |
self.cfg = cfg
|
36 |
cudnn.benchmark = True
|
37 |
|
38 |
+
# load SMPL
|
39 |
+
self.smpl = SMPL().to(self.device)
|
40 |
+
self.faces = self.smpl.faces.cpu().numpy()
|
41 |
+
|
42 |
+
# load model
|
43 |
+
hmr_model_checkpoint_file = osp.join(CUR_DIR, '../pretrained_models/postometro/resnet_state_dict.bin')
|
44 |
+
self.hmr_model = get_model(backbone_str='resnet50',device=self.device, checkpoint_file = hmr_model_checkpoint_file)
|
45 |
|
46 |
# load faster-rcnn as human detector
|
47 |
checkpoint_file = osp.join(CUR_DIR, '../pretrained_models/mmdet/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth')
|
|
|
49 |
model = init_detector(config_file, checkpoint_file, device=self.device) # or device='cuda:0'
|
50 |
self.model = model
|
51 |
|
52 |
+
def infer(self, original_img, iou_thr, multi_person=False, mesh_as_vertices=False):
|
53 |
from utils.preprocessing import process_bbox, generate_patch_image
|
54 |
+
from utils.vis import render_mesh
|
55 |
# from utils.human_models import smpl_x
|
56 |
+
|
|
|
57 |
# prepare input image
|
58 |
+
transform = transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
59 |
+
std=[0.229, 0.224, 0.225])
|
60 |
vis_img = original_img.copy()
|
61 |
original_img_height, original_img_width = original_img.shape[:2]
|
62 |
|
63 |
+
# load renderer
|
64 |
+
# self.renderer = PyRender_Renderer(resolution=(original_img_width, original_img_height), faces=self.faces)
|
65 |
+
|
66 |
## mmdet inference
|
67 |
mmdet_results = inference_detector(self.model, original_img)
|
68 |
mmdet_box = process_mmdet_results(mmdet_results, cat_id=0, multi_person=True)
|
|
|
105 |
top_left = (int(bbox[0]), int(bbox[1]))
|
106 |
bottom_right = (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3]))
|
107 |
cv2.rectangle(vis_img, top_left, bottom_right, (0, 0, 255), 2)
|
108 |
+
|
|
|
109 |
# human model inference
|
110 |
+
img, img2bb_trans, bb2img_trans = generate_patch_image(original_img, bbox, 1.0, 0.0, False, self.cfg.input_img_shape)
|
111 |
+
vis_patched_images = img.copy()
|
112 |
+
# here we pre-process images
|
113 |
+
img = img.transpose((2,0,1)) # h,w,c -> c,h,w
|
114 |
+
img = torch.from_numpy(img).float() / 255.0
|
115 |
+
# Store image before normalization to use it in visualization
|
116 |
+
img = transform(img)
|
117 |
+
img = img.to(cfg.device)[None,:,:,:]
|
118 |
+
|
119 |
+
self.renderer = PyRender_Renderer(resolution=(bbox[2], bbox[3]), faces=self.faces)
|
120 |
+
|
121 |
+
# mesh recovery
|
122 |
+
with torch.no_grad():
|
123 |
+
out = self.hmr_model(img)
|
124 |
+
pred_cam, pred_3d_vertices_fine = out['pred_cam'], out['pred_3d_vertices_fine']
|
125 |
+
pred_3d_joints_from_smpl = self.smpl.get_h36m_joints(pred_3d_vertices_fine) # batch_size X 17 X 3
|
126 |
+
pred_3d_joints_from_smpl_pelvis = pred_3d_joints_from_smpl[:,smpl_cfg.H36M_J17_NAME.index('Pelvis'),:]
|
127 |
+
pred_3d_joints_from_smpl = pred_3d_joints_from_smpl[:,smpl_cfg.H36M_J17_TO_J14,:] # batch_size X 14 X 3
|
128 |
+
# normalize predicted vertices
|
129 |
+
pred_3d_vertices_fine = pred_3d_vertices_fine - pred_3d_joints_from_smpl_pelvis[:, None, :] # batch_size X 6890 X 3
|
130 |
+
pred_3d_vertices_fine = pred_3d_vertices_fine.detach().cpu().numpy()[0] # 6890 X 3
|
131 |
+
pred_cam = pred_cam.detach().cpu().numpy()[0]
|
132 |
+
bbox_cx, bbox_cy = bbox[0] + bbox[2] / 2, bbox[1] + bbox[3] / 2
|
133 |
+
img_cx, img_cy = original_img_width / 2, original_img_height / 2
|
134 |
+
cx_delta, cy_delta = bbox_cx / img_cx - 1, bbox_cy / img_cy - 1
|
135 |
+
|
136 |
+
# render single person mesh
|
137 |
+
# focal = [self.cfg.focal[0] / self.cfg.renderer_input_body_shape[1] * bbox[2], self.cfg.focal[1] / self.cfg.renderer_input_body_shape[0] * bbox[3]]
|
138 |
+
# princpt = [self.cfg.princpt[0] / self.cfg.renderer_input_body_shape[1] * bbox[2] + bbox[0], self.cfg.princpt[1] / self.cfg.renderer_input_body_shape[0] * bbox[3] + bbox[1]]
|
139 |
+
# vis_img = render_mesh(vis_img, pred_3d_vertices_fine, self.faces, {'focal': focal, 'princpt': princpt},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
# mesh_as_vertices=mesh_as_vertices)
|
141 |
+
# vis_img = render_mesh(vis_img, pred_3d_vertices_fine, self.faces, [pred_cam[0] / (original_img_width / bbox[2]), pred_cam[0] / (original_img_height / bbox[3]), pred_cam[1], pred_cam[2]], mesh_as_vertices=mesh_as_vertices)
|
142 |
+
# import ipdb
|
143 |
+
# ipdb.set_trace()
|
144 |
+
vis_img = render_mesh(vis_img, pred_3d_vertices_fine, self.faces, [pred_cam[0] / (original_img_width / bbox[2]), pred_cam[0] / (original_img_height / bbox[3]),
|
145 |
+
pred_cam[1] + cx_delta / (pred_cam[0] / (original_img_width / bbox[2])),
|
146 |
+
pred_cam[2] + cy_delta / (pred_cam[0] / (original_img_height / bbox[3]))],
|
147 |
+
mesh_as_vertices=mesh_as_vertices)
|
148 |
+
# vis_img = render_mesh(vis_img, pred_3d_vertices_fine, self.faces, [pred_cam[0] / (original_img_width / bbox[2]), pred_cam[0] / (original_img_height / bbox[3]), 0, 0], mesh_as_vertices=mesh_as_vertices)
|
149 |
+
|
150 |
+
# bbox_meta = {'bbox': bbox, 'img_hw': [original_img_height, original_img_width]}
|
151 |
+
# vis_img = self.renderer(pred_3d_vertices_fine, bbox_meta, vis_img, pred_cam)
|
152 |
+
vis_img = vis_img.astype('uint8')
|
153 |
+
return vis_img, len(ok_bboxes), ok_bboxes
|
154 |
+
|
155 |
+
|
156 |
+
if __name__ == '__main__':
|
157 |
+
from PIL import Image
|
158 |
+
inferer = Inferer('postometro', 0, './out_folder') # gpu
|
159 |
+
image_path = f'../assets/07.jpg'
|
160 |
+
image = Image.open(image_path)
|
161 |
+
# Convert the PIL image to a NumPy array
|
162 |
+
image_np = np.array(image)
|
163 |
+
vis_img, _ , _ = inferer.infer(image_np, 0.2, multi_person=True, mesh_as_vertices=False)
|
164 |
+
save_path = f'./saved_vis_07.jpg'
|
165 |
+
|
166 |
+
# Ensure the image is in the correct format (PIL expects uint8)
|
167 |
+
if vis_img.dtype != np.uint8:
|
168 |
+
vis_img = vis_img.astype('uint8')
|
169 |
|
170 |
+
# Convert the Numpy array (if RGB) to a PIL image and save
|
171 |
+
image = Image.fromarray(vis_img)
|
172 |
+
image.save(save_path)
|
173 |
+
|
main/pct_utils/__pycache__/modules.cpython-39.pyc
ADDED
Binary file (3.4 kB). View file
|
|
main/pct_utils/__pycache__/pct.cpython-39.pyc
ADDED
Binary file (1.89 kB). View file
|
|
main/pct_utils/__pycache__/pct_backbone.cpython-39.pyc
ADDED
Binary file (40.6 kB). View file
|
|
main/pct_utils/__pycache__/pct_head.cpython-39.pyc
ADDED
Binary file (6.93 kB). View file
|
|
main/pct_utils/__pycache__/pct_tokenizer.cpython-39.pyc
ADDED
Binary file (9.14 kB). View file
|
|
main/pct_utils/modules.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# Borrow from unofficial MLPMixer (https://github.com/920232796/MlpMixer-pytorch)
|
3 |
+
# Borrow from ResNet
|
4 |
+
# Modified by Zigang Geng (zigang@mail.ustc.edu.cn)
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
|
10 |
+
|
11 |
+
class FCBlock(nn.Module):
|
12 |
+
def __init__(self, dim, out_dim):
|
13 |
+
super().__init__()
|
14 |
+
|
15 |
+
self.ff = nn.Sequential(
|
16 |
+
nn.Linear(dim, out_dim),
|
17 |
+
nn.LayerNorm(out_dim),
|
18 |
+
nn.ReLU(inplace=True),
|
19 |
+
)
|
20 |
+
|
21 |
+
def forward(self, x):
|
22 |
+
return self.ff(x)
|
23 |
+
|
24 |
+
|
25 |
+
class MLPBlock(nn.Module):
|
26 |
+
def __init__(self, dim, inter_dim, dropout_ratio):
|
27 |
+
super().__init__()
|
28 |
+
|
29 |
+
self.ff = nn.Sequential(
|
30 |
+
nn.Linear(dim, inter_dim),
|
31 |
+
nn.GELU(),
|
32 |
+
nn.Dropout(dropout_ratio),
|
33 |
+
nn.Linear(inter_dim, dim),
|
34 |
+
nn.Dropout(dropout_ratio)
|
35 |
+
)
|
36 |
+
|
37 |
+
def forward(self, x):
|
38 |
+
return self.ff(x)
|
39 |
+
|
40 |
+
|
41 |
+
class MixerLayer(nn.Module):
|
42 |
+
def __init__(self,
|
43 |
+
hidden_dim,
|
44 |
+
hidden_inter_dim,
|
45 |
+
token_dim,
|
46 |
+
token_inter_dim,
|
47 |
+
dropout_ratio):
|
48 |
+
super().__init__()
|
49 |
+
|
50 |
+
self.layernorm1 = nn.LayerNorm(hidden_dim)
|
51 |
+
self.MLP_token = MLPBlock(token_dim, token_inter_dim, dropout_ratio)
|
52 |
+
self.layernorm2 = nn.LayerNorm(hidden_dim)
|
53 |
+
self.MLP_channel = MLPBlock(hidden_dim, hidden_inter_dim, dropout_ratio)
|
54 |
+
|
55 |
+
def forward(self, x):
|
56 |
+
y = self.layernorm1(x)
|
57 |
+
y = y.transpose(2, 1)
|
58 |
+
y = self.MLP_token(y)
|
59 |
+
y = y.transpose(2, 1)
|
60 |
+
z = self.layernorm2(x + y)
|
61 |
+
z = self.MLP_channel(z)
|
62 |
+
out = x + y + z
|
63 |
+
return out
|
64 |
+
|
65 |
+
|
66 |
+
class BasicBlock(nn.Module):
|
67 |
+
expansion = 1
|
68 |
+
|
69 |
+
def __init__(self, inplanes, planes, stride=1,
|
70 |
+
downsample=None, dilation=1):
|
71 |
+
super(BasicBlock, self).__init__()
|
72 |
+
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride,
|
73 |
+
padding=dilation, bias=False, dilation=dilation)
|
74 |
+
self.bn1 = nn.BatchNorm2d(planes, momentum=0.1)
|
75 |
+
self.relu = nn.ReLU(inplace=True)
|
76 |
+
self.conv2 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride,
|
77 |
+
padding=dilation, bias=False, dilation=dilation)
|
78 |
+
self.bn2 = nn.BatchNorm2d(planes, momentum=0.1)
|
79 |
+
self.downsample = downsample
|
80 |
+
self.stride = stride
|
81 |
+
|
82 |
+
|
83 |
+
def forward(self, x):
|
84 |
+
residual = x
|
85 |
+
|
86 |
+
out = self.conv1(x)
|
87 |
+
out = self.bn1(out)
|
88 |
+
out = self.relu(out)
|
89 |
+
|
90 |
+
out = self.conv2(out)
|
91 |
+
out = self.bn2(out)
|
92 |
+
|
93 |
+
if self.downsample is not None:
|
94 |
+
residual = self.downsample(x)
|
95 |
+
|
96 |
+
out += residual
|
97 |
+
out = self.relu(out)
|
98 |
+
|
99 |
+
return out
|
100 |
+
|
101 |
+
def make_conv_layers(feat_dims, kernel=3, stride=1, padding=1, bnrelu_final=True):
|
102 |
+
layers = []
|
103 |
+
for i in range(len(feat_dims)-1):
|
104 |
+
layers.append(
|
105 |
+
nn.Conv2d(
|
106 |
+
in_channels=feat_dims[i],
|
107 |
+
out_channels=feat_dims[i+1],
|
108 |
+
kernel_size=kernel,
|
109 |
+
stride=stride,
|
110 |
+
padding=padding
|
111 |
+
))
|
112 |
+
# Do not use BN and ReLU for final estimation
|
113 |
+
if i < len(feat_dims)-2 or (i == len(feat_dims)-2 and bnrelu_final):
|
114 |
+
layers.append(nn.BatchNorm2d(feat_dims[i+1]))
|
115 |
+
layers.append(nn.ReLU(inplace=True))
|
116 |
+
|
117 |
+
return nn.Sequential(*layers)
|
main/pct_utils/pct.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from pct_utils.pct_head import PCT_Head
|
4 |
+
|
5 |
+
class PCT(nn.Module):
|
6 |
+
def __init__(self,
|
7 |
+
args,
|
8 |
+
backbone,
|
9 |
+
stage_pct,
|
10 |
+
in_channels,
|
11 |
+
image_size,
|
12 |
+
num_joints,
|
13 |
+
pretrained=None,
|
14 |
+
tokenizer_pretrained=None):
|
15 |
+
super().__init__()
|
16 |
+
self.stage_pct = stage_pct
|
17 |
+
assert self.stage_pct in ["tokenizer", "classifier"]
|
18 |
+
self.guide_ratio = args.tokenizer_guide_ratio
|
19 |
+
self.image_guide = self.guide_ratio > 0.0
|
20 |
+
self.num_joints = num_joints
|
21 |
+
|
22 |
+
self.backbone = backbone
|
23 |
+
if self.image_guide:
|
24 |
+
self.extra_backbone = backbone
|
25 |
+
|
26 |
+
self.keypoint_head = PCT_Head(args,stage_pct,in_channels,image_size,num_joints)
|
27 |
+
|
28 |
+
if (pretrained is not None) or (tokenizer_pretrained is not None):
|
29 |
+
self.init_weights(pretrained, tokenizer_pretrained)
|
30 |
+
|
31 |
+
def init_weights(self, pretrained, tokenizer):
|
32 |
+
"""Weight initialization for model."""
|
33 |
+
if self.stage_pct == "classifier":
|
34 |
+
self.backbone.init_weights(pretrained)
|
35 |
+
if self.image_guide:
|
36 |
+
self.extra_backbone.init_weights(pretrained)
|
37 |
+
self.keypoint_head.init_weights()
|
38 |
+
self.keypoint_head.tokenizer.init_weights(tokenizer)
|
39 |
+
|
40 |
+
def forward(self,img, joints, train = True):
|
41 |
+
if train:
|
42 |
+
output = None if self.stage_pct == "tokenizer" else self.backbone(img)
|
43 |
+
extra_output = self.extra_backbone(img) if self.image_guide else None
|
44 |
+
|
45 |
+
p_logits, p_joints, g_logits, e_latent_loss = \
|
46 |
+
self.keypoint_head(output, extra_output, joints, train=True)
|
47 |
+
return {
|
48 |
+
'cls_logits': p_logits,
|
49 |
+
'pred_pose': p_joints,
|
50 |
+
'encoding_indices': g_logits,
|
51 |
+
'e_latent_loss': e_latent_loss
|
52 |
+
}
|
53 |
+
else:
|
54 |
+
results = {}
|
55 |
+
|
56 |
+
batch_size, _, img_height, img_width = img.shape
|
57 |
+
|
58 |
+
output = None if self.stage_pct == "tokenizer" \
|
59 |
+
else self.backbone(img)
|
60 |
+
extra_output = self.extra_backbone(img) \
|
61 |
+
if self.image_guide and self.stage_pct == "tokenizer" else None
|
62 |
+
|
63 |
+
p_joints, encoding_scores, out_part_token_feat = \
|
64 |
+
self.keypoint_head(output, extra_output, joints, train=False)
|
65 |
+
return {
|
66 |
+
'pred_pose': p_joints,
|
67 |
+
'encoding_scores': encoding_scores,
|
68 |
+
'part_token_feat': out_part_token_feat
|
69 |
+
}
|
main/pct_utils/pct_backbone.py
ADDED
@@ -0,0 +1,1475 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# Swin Transformer
|
3 |
+
# Copyright (c) 2021 Microsoft
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# Written by Ze Liu, Yutong Lin, Yixuan Wei
|
6 |
+
# --------------------------------------------------------
|
7 |
+
|
8 |
+
import math
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from functools import partial
|
13 |
+
import torch.utils.checkpoint as checkpoint
|
14 |
+
from torch.nn.utils import weight_norm
|
15 |
+
from torch import Tensor, Size
|
16 |
+
from typing import Union, List
|
17 |
+
import numpy as np
|
18 |
+
import logging
|
19 |
+
|
20 |
+
# Copyright (c) Open-MMLab. All rights reserved.
|
21 |
+
# Copy from mmcv source code.
|
22 |
+
import io
|
23 |
+
import os
|
24 |
+
import os.path as osp
|
25 |
+
import pkgutil
|
26 |
+
import time
|
27 |
+
import warnings
|
28 |
+
import numpy as np
|
29 |
+
from scipy import interpolate
|
30 |
+
|
31 |
+
import torch
|
32 |
+
import torchvision
|
33 |
+
import torch.distributed as dist
|
34 |
+
from torch.utils import model_zoo
|
35 |
+
from torch.nn import functional as F
|
36 |
+
|
37 |
+
|
38 |
+
def _load_checkpoint(filename, map_location=None):
|
39 |
+
if not osp.isfile(filename):
|
40 |
+
raise IOError(f'{filename} is not a checkpoint file')
|
41 |
+
checkpoint = torch.load(filename, map_location=map_location)
|
42 |
+
return checkpoint
|
43 |
+
|
44 |
+
|
45 |
+
def load_checkpoint_swin(model,
|
46 |
+
filename,
|
47 |
+
map_location='cpu',
|
48 |
+
strict=False,
|
49 |
+
rpe_interpolation='outer_mask',
|
50 |
+
logger=None):
|
51 |
+
"""Load checkpoint from a file or URI.
|
52 |
+
Args:
|
53 |
+
model (Module): Module to load checkpoint.
|
54 |
+
filename (str): Accept local filepath, URL, ``torchvision://xxx``,
|
55 |
+
``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for
|
56 |
+
details.
|
57 |
+
map_location (str): Same as :func:`torch.load`.
|
58 |
+
strict (bool): Whether to allow different params for the model and
|
59 |
+
checkpoint.
|
60 |
+
logger (:mod:`logging.Logger` or None): The logger for error message.
|
61 |
+
Returns:
|
62 |
+
dict or OrderedDict: The loaded checkpoint.
|
63 |
+
"""
|
64 |
+
checkpoint = _load_checkpoint(filename, map_location)
|
65 |
+
# OrderedDict is a subclass of dict
|
66 |
+
if not isinstance(checkpoint, dict):
|
67 |
+
raise RuntimeError(
|
68 |
+
f'No state_dict found in checkpoint file {filename}')
|
69 |
+
# get state_dict from checkpoint
|
70 |
+
if 'state_dict' in checkpoint:
|
71 |
+
state_dict = checkpoint['state_dict']
|
72 |
+
elif 'model' in checkpoint:
|
73 |
+
state_dict = checkpoint['model']
|
74 |
+
elif 'module' in checkpoint:
|
75 |
+
state_dict = checkpoint['module']
|
76 |
+
else:
|
77 |
+
state_dict = checkpoint
|
78 |
+
# strip prefix of state_dict
|
79 |
+
if list(state_dict.keys())[0].startswith('module.'):
|
80 |
+
state_dict = {k[7:]: v for k, v in state_dict.items()}
|
81 |
+
|
82 |
+
if list(state_dict.keys())[0].startswith('backbone.'):
|
83 |
+
state_dict = {k[9:]: v for k, v in state_dict.items()}
|
84 |
+
|
85 |
+
# for MoBY, load model of online branch
|
86 |
+
if sorted(list(state_dict.keys()))[2].startswith('encoder'):
|
87 |
+
state_dict = {k.replace('encoder.', ''): v for k, v in state_dict.items() if k.startswith('encoder.')}
|
88 |
+
|
89 |
+
# directly load here
|
90 |
+
|
91 |
+
model.load_state_dict(state_dict, strict=True)
|
92 |
+
|
93 |
+
return checkpoint
|
94 |
+
|
95 |
+
|
96 |
+
_shape_t = Union[int, List[int], Size]
|
97 |
+
|
98 |
+
from itertools import repeat
|
99 |
+
import collections.abc
|
100 |
+
|
101 |
+
def _ntuple(n):
|
102 |
+
def parse(x):
|
103 |
+
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
|
104 |
+
return tuple(x)
|
105 |
+
return tuple(repeat(x, n))
|
106 |
+
return parse
|
107 |
+
|
108 |
+
to_2tuple = _ntuple(2)
|
109 |
+
|
110 |
+
def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True):
|
111 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
112 |
+
|
113 |
+
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
114 |
+
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
115 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
|
116 |
+
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
|
117 |
+
'survival rate' as the argument.
|
118 |
+
|
119 |
+
"""
|
120 |
+
if drop_prob == 0. or not training:
|
121 |
+
return x
|
122 |
+
keep_prob = 1 - drop_prob
|
123 |
+
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
124 |
+
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
125 |
+
if keep_prob > 0.0 and scale_by_keep:
|
126 |
+
random_tensor.div_(keep_prob)
|
127 |
+
return x * random_tensor
|
128 |
+
|
129 |
+
|
130 |
+
class DropPath(nn.Module):
|
131 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
132 |
+
"""
|
133 |
+
def __init__(self, drop_prob: float = 0., scale_by_keep: bool = True):
|
134 |
+
super(DropPath, self).__init__()
|
135 |
+
self.drop_prob = drop_prob
|
136 |
+
self.scale_by_keep = scale_by_keep
|
137 |
+
|
138 |
+
def forward(self, x):
|
139 |
+
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
|
140 |
+
|
141 |
+
def extra_repr(self):
|
142 |
+
return f'drop_prob={round(self.drop_prob,3):0.3f}'
|
143 |
+
|
144 |
+
def _trunc_normal_(tensor, mean, std, a, b):
|
145 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
146 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
147 |
+
def norm_cdf(x):
|
148 |
+
# Computes standard normal cumulative distribution function
|
149 |
+
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
150 |
+
|
151 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
152 |
+
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
153 |
+
"The distribution of values may be incorrect.",
|
154 |
+
stacklevel=2)
|
155 |
+
|
156 |
+
# Values are generated by using a truncated uniform distribution and
|
157 |
+
# then using the inverse CDF for the normal distribution.
|
158 |
+
# Get upper and lower cdf values
|
159 |
+
l = norm_cdf((a - mean) / std)
|
160 |
+
u = norm_cdf((b - mean) / std)
|
161 |
+
|
162 |
+
# Uniformly fill tensor with values from [l, u], then translate to
|
163 |
+
# [2l-1, 2u-1].
|
164 |
+
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
165 |
+
|
166 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
167 |
+
# standard normal
|
168 |
+
tensor.erfinv_()
|
169 |
+
|
170 |
+
# Transform to proper mean, std
|
171 |
+
tensor.mul_(std * math.sqrt(2.))
|
172 |
+
tensor.add_(mean)
|
173 |
+
|
174 |
+
# Clamp to ensure it's in the proper range
|
175 |
+
tensor.clamp_(min=a, max=b)
|
176 |
+
return tensor
|
177 |
+
|
178 |
+
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
179 |
+
r"""Fills the input Tensor with values drawn from a truncated
|
180 |
+
normal distribution. The values are effectively drawn from the
|
181 |
+
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
|
182 |
+
with values outside :math:`[a, b]` redrawn until they are within
|
183 |
+
the bounds. The method used for generating the random values works
|
184 |
+
best when :math:`a \leq \text{mean} \leq b`.
|
185 |
+
|
186 |
+
NOTE: this impl is similar to the PyTorch trunc_normal_, the bounds [a, b] are
|
187 |
+
applied while sampling the normal with mean/std applied, therefore a, b args
|
188 |
+
should be adjusted to match the range of mean, std args.
|
189 |
+
|
190 |
+
Args:
|
191 |
+
tensor: an n-dimensional `torch.Tensor`
|
192 |
+
mean: the mean of the normal distribution
|
193 |
+
std: the standard deviation of the normal distribution
|
194 |
+
a: the minimum cutoff value
|
195 |
+
b: the maximum cutoff value
|
196 |
+
Examples:
|
197 |
+
>>> w = torch.empty(3, 5)
|
198 |
+
>>> nn.init.trunc_normal_(w)
|
199 |
+
"""
|
200 |
+
with torch.no_grad():
|
201 |
+
return _trunc_normal_(tensor, mean, std, a, b)
|
202 |
+
|
203 |
+
|
204 |
+
class LayerNorm2D(nn.Module):
|
205 |
+
def __init__(self, normalized_shape, norm_layer=None):
|
206 |
+
super().__init__()
|
207 |
+
self.ln = norm_layer(normalized_shape) if norm_layer is not None else nn.Identity()
|
208 |
+
|
209 |
+
def forward(self, x):
|
210 |
+
"""
|
211 |
+
x: N C H W
|
212 |
+
"""
|
213 |
+
x = x.permute(0, 2, 3, 1)
|
214 |
+
x = self.ln(x)
|
215 |
+
x = x.permute(0, 3, 1, 2)
|
216 |
+
return x
|
217 |
+
|
218 |
+
|
219 |
+
class LayerNormFP32(nn.LayerNorm):
|
220 |
+
def __init__(self, normalized_shape: _shape_t, eps: float = 1e-5, elementwise_affine: bool = True) -> None:
|
221 |
+
super(LayerNormFP32, self).__init__(normalized_shape, eps, elementwise_affine)
|
222 |
+
|
223 |
+
def forward(self, input: Tensor) -> Tensor:
|
224 |
+
return F.layer_norm(
|
225 |
+
input.float(), self.normalized_shape, self.weight.float(), self.bias.float(), self.eps).type_as(input)
|
226 |
+
|
227 |
+
|
228 |
+
class LinearFP32(nn.Linear):
|
229 |
+
def __init__(self, in_features, out_features, bias=True):
|
230 |
+
super(LinearFP32, self).__init__(in_features, out_features, bias)
|
231 |
+
|
232 |
+
def forward(self, input: Tensor) -> Tensor:
|
233 |
+
return F.linear(input.float(), self.weight.float(),
|
234 |
+
self.bias.float() if self.bias is not None else None)
|
235 |
+
|
236 |
+
|
237 |
+
class Mlp(nn.Module):
|
238 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.,
|
239 |
+
norm_layer=None, mlpfp32=False):
|
240 |
+
super().__init__()
|
241 |
+
out_features = out_features or in_features
|
242 |
+
hidden_features = hidden_features or in_features
|
243 |
+
self.mlpfp32 = mlpfp32
|
244 |
+
|
245 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
246 |
+
self.act = act_layer()
|
247 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
248 |
+
self.drop = nn.Dropout(drop)
|
249 |
+
if norm_layer is not None:
|
250 |
+
self.norm = norm_layer(hidden_features)
|
251 |
+
else:
|
252 |
+
self.norm = None
|
253 |
+
|
254 |
+
def forward(self, x, H, W):
|
255 |
+
x = self.fc1(x)
|
256 |
+
if self.norm:
|
257 |
+
x = self.norm(x)
|
258 |
+
x = self.act(x)
|
259 |
+
x = self.drop(x)
|
260 |
+
if self.mlpfp32:
|
261 |
+
x = self.fc2.float()(x.type(torch.float32))
|
262 |
+
x = self.drop.float()(x)
|
263 |
+
# print(f"======>[MLP FP32]")
|
264 |
+
else:
|
265 |
+
x = self.fc2(x)
|
266 |
+
x = self.drop(x)
|
267 |
+
return x
|
268 |
+
|
269 |
+
|
270 |
+
class ConvMlp(nn.Module):
|
271 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.,
|
272 |
+
norm_layer=None, mlpfp32=False, proj_ln=False):
|
273 |
+
super().__init__()
|
274 |
+
self.mlp = Mlp(in_features=in_features, hidden_features=hidden_features, out_features=out_features,
|
275 |
+
act_layer=act_layer, drop=drop, norm_layer=norm_layer, mlpfp32=mlpfp32)
|
276 |
+
self.conv_proj = nn.Conv2d(in_features,
|
277 |
+
in_features,
|
278 |
+
kernel_size=3,
|
279 |
+
padding=1,
|
280 |
+
stride=1,
|
281 |
+
bias=False,
|
282 |
+
groups=in_features)
|
283 |
+
self.proj_ln = LayerNorm2D(in_features, LayerNormFP32) if proj_ln else None
|
284 |
+
|
285 |
+
def forward(self, x, H, W):
|
286 |
+
B, L, C = x.shape
|
287 |
+
assert L == H * W
|
288 |
+
x = x.view(B, H, W, C).permute(0, 3, 1, 2) # B C H W
|
289 |
+
x = self.conv_proj(x)
|
290 |
+
if self.proj_ln:
|
291 |
+
x = self.proj_ln(x)
|
292 |
+
x = x.permute(0, 2, 3, 1) # B H W C
|
293 |
+
x = x.reshape(B, L, C)
|
294 |
+
x = self.mlp(x, H, W)
|
295 |
+
return x
|
296 |
+
|
297 |
+
|
298 |
+
def window_partition(x, window_size):
|
299 |
+
"""
|
300 |
+
Args:
|
301 |
+
x: (B, H, W, C)
|
302 |
+
window_size (int): window size
|
303 |
+
|
304 |
+
Returns:
|
305 |
+
windows: (num_windows*B, window_size, window_size, C)
|
306 |
+
"""
|
307 |
+
B, H, W, C = x.shape
|
308 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
309 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
310 |
+
return windows
|
311 |
+
|
312 |
+
|
313 |
+
def window_reverse(windows, window_size, H, W):
|
314 |
+
"""
|
315 |
+
Args:
|
316 |
+
windows: (num_windows*B, window_size, window_size, C)
|
317 |
+
window_size (int): Window size
|
318 |
+
H (int): Height of image
|
319 |
+
W (int): Width of image
|
320 |
+
|
321 |
+
Returns:
|
322 |
+
x: (B, H, W, C)
|
323 |
+
"""
|
324 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
325 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
326 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
327 |
+
return x
|
328 |
+
|
329 |
+
|
330 |
+
class WindowAttention(nn.Module):
|
331 |
+
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
332 |
+
It supports both of shifted and non-shifted window.
|
333 |
+
|
334 |
+
Args:
|
335 |
+
dim (int): Number of input channels.
|
336 |
+
window_size (tuple[int]): The height and width of the window.
|
337 |
+
num_heads (int): Number of attention heads.
|
338 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
339 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
340 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
341 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
342 |
+
"""
|
343 |
+
|
344 |
+
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.,
|
345 |
+
relative_coords_table_type='norm8_log', rpe_hidden_dim=512,
|
346 |
+
rpe_output_type='normal', attn_type='normal', mlpfp32=False, pretrain_window_size=-1):
|
347 |
+
|
348 |
+
super().__init__()
|
349 |
+
self.dim = dim
|
350 |
+
self.window_size = window_size # Wh, Ww
|
351 |
+
self.num_heads = num_heads
|
352 |
+
self.mlpfp32 = mlpfp32
|
353 |
+
self.attn_type = attn_type
|
354 |
+
self.rpe_output_type = rpe_output_type
|
355 |
+
self.relative_coords_table_type = relative_coords_table_type
|
356 |
+
|
357 |
+
if self.attn_type == 'cosine_mh':
|
358 |
+
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True)
|
359 |
+
elif self.attn_type == 'normal':
|
360 |
+
head_dim = dim // num_heads
|
361 |
+
self.scale = qk_scale or head_dim ** -0.5
|
362 |
+
else:
|
363 |
+
raise NotImplementedError()
|
364 |
+
if self.relative_coords_table_type != "none":
|
365 |
+
# mlp to generate table of relative position bias
|
366 |
+
self.rpe_mlp = nn.Sequential(nn.Linear(2, rpe_hidden_dim, bias=True),
|
367 |
+
nn.ReLU(inplace=True),
|
368 |
+
LinearFP32(rpe_hidden_dim, num_heads, bias=False))
|
369 |
+
|
370 |
+
# get relative_coords_table
|
371 |
+
relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32)
|
372 |
+
relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32)
|
373 |
+
relative_coords_table = torch.stack(
|
374 |
+
torch.meshgrid([relative_coords_h,
|
375 |
+
relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2
|
376 |
+
if relative_coords_table_type == 'linear':
|
377 |
+
relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
|
378 |
+
relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
|
379 |
+
elif relative_coords_table_type == 'linear_bylayer':
|
380 |
+
relative_coords_table[:, :, :, 0] /= (pretrain_window_size - 1)
|
381 |
+
relative_coords_table[:, :, :, 1] /= (pretrain_window_size - 1)
|
382 |
+
elif relative_coords_table_type == 'norm8_log':
|
383 |
+
relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
|
384 |
+
relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
|
385 |
+
relative_coords_table *= 8 # normalize to -8, 8
|
386 |
+
relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
|
387 |
+
torch.abs(relative_coords_table) + 1.0) / np.log2(8) # log8
|
388 |
+
elif relative_coords_table_type == 'norm8_log_192to640':
|
389 |
+
if self.window_size[0] == 40:
|
390 |
+
relative_coords_table[:, :, :, 0] /= (11)
|
391 |
+
relative_coords_table[:, :, :, 1] /= (11)
|
392 |
+
elif self.window_size[0] == 20:
|
393 |
+
relative_coords_table[:, :, :, 0] /= (5)
|
394 |
+
relative_coords_table[:, :, :, 1] /= (5)
|
395 |
+
else:
|
396 |
+
raise NotImplementedError
|
397 |
+
relative_coords_table *= 8 # normalize to -8, 8
|
398 |
+
relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
|
399 |
+
torch.abs(relative_coords_table) + 1.0) / np.log2(8) # log8
|
400 |
+
# check
|
401 |
+
elif relative_coords_table_type == 'norm8_log_256to640':
|
402 |
+
if self.window_size[0] == 40:
|
403 |
+
relative_coords_table[:, :, :, 0] /= (15)
|
404 |
+
relative_coords_table[:, :, :, 1] /= (15)
|
405 |
+
elif self.window_size[0] == 20:
|
406 |
+
relative_coords_table[:, :, :, 0] /= (7)
|
407 |
+
relative_coords_table[:, :, :, 1] /= (7)
|
408 |
+
else:
|
409 |
+
raise NotImplementedError
|
410 |
+
relative_coords_table *= 8 # normalize to -8, 8
|
411 |
+
relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
|
412 |
+
torch.abs(relative_coords_table) + 1.0) / np.log2(8) # log8
|
413 |
+
elif relative_coords_table_type == 'norm8_log_bylayer':
|
414 |
+
relative_coords_table[:, :, :, 0] /= (pretrain_window_size - 1)
|
415 |
+
relative_coords_table[:, :, :, 1] /= (pretrain_window_size - 1)
|
416 |
+
relative_coords_table *= 8 # normalize to -8, 8
|
417 |
+
relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
|
418 |
+
torch.abs(relative_coords_table) + 1.0) / np.log2(8) # log8
|
419 |
+
else:
|
420 |
+
raise NotImplementedError
|
421 |
+
self.register_buffer("relative_coords_table", relative_coords_table)
|
422 |
+
else:
|
423 |
+
self.relative_position_bias_table = nn.Parameter(
|
424 |
+
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
425 |
+
trunc_normal_(self.relative_position_bias_table, std=.02)
|
426 |
+
|
427 |
+
# get pair-wise relative position index for each token inside the window
|
428 |
+
coords_h = torch.arange(self.window_size[0])
|
429 |
+
coords_w = torch.arange(self.window_size[1])
|
430 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
431 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
432 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
433 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
434 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
435 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
436 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
437 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
438 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
439 |
+
|
440 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=False)
|
441 |
+
if qkv_bias:
|
442 |
+
self.q_bias = nn.Parameter(torch.zeros(dim))
|
443 |
+
self.v_bias = nn.Parameter(torch.zeros(dim))
|
444 |
+
else:
|
445 |
+
self.q_bias = None
|
446 |
+
self.v_bias = None
|
447 |
+
|
448 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
449 |
+
self.proj = nn.Linear(dim, dim)
|
450 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
451 |
+
|
452 |
+
self.softmax = nn.Softmax(dim=-1)
|
453 |
+
|
454 |
+
def forward(self, x, mask=None):
|
455 |
+
"""
|
456 |
+
Args:
|
457 |
+
x: input features with shape of (num_windows*B, N, C)
|
458 |
+
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
459 |
+
"""
|
460 |
+
B_, N, C = x.shape
|
461 |
+
|
462 |
+
qkv_bias = None
|
463 |
+
if self.q_bias is not None:
|
464 |
+
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
|
465 |
+
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
466 |
+
qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
467 |
+
# qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
468 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
469 |
+
|
470 |
+
if self.attn_type == 'cosine_mh':
|
471 |
+
q = F.normalize(q.float(), dim=-1)
|
472 |
+
k = F.normalize(k.float(), dim=-1)
|
473 |
+
logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01, device=self.logit_scale.device))).exp()
|
474 |
+
attn = (q @ k.transpose(-2, -1)) * logit_scale.float()
|
475 |
+
elif self.attn_type == 'normal':
|
476 |
+
q = q * self.scale
|
477 |
+
attn = (q.float() @ k.float().transpose(-2, -1))
|
478 |
+
else:
|
479 |
+
raise NotImplementedError()
|
480 |
+
|
481 |
+
if self.relative_coords_table_type != "none":
|
482 |
+
# relative_position_bias_table: 2*Wh-1 * 2*Ww-1, nH
|
483 |
+
relative_position_bias_table = self.rpe_mlp(self.relative_coords_table).view(-1, self.num_heads)
|
484 |
+
else:
|
485 |
+
relative_position_bias_table = self.relative_position_bias_table
|
486 |
+
relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
487 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
488 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
489 |
+
if self.rpe_output_type == 'normal':
|
490 |
+
pass
|
491 |
+
elif self.rpe_output_type == 'sigmoid':
|
492 |
+
relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
|
493 |
+
else:
|
494 |
+
raise NotImplementedError
|
495 |
+
|
496 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
497 |
+
|
498 |
+
if mask is not None:
|
499 |
+
nW = mask.shape[0]
|
500 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
501 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
502 |
+
|
503 |
+
attn = self.softmax(attn)
|
504 |
+
attn = attn.type_as(x)
|
505 |
+
attn = self.attn_drop(attn)
|
506 |
+
|
507 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
508 |
+
if self.mlpfp32:
|
509 |
+
x = self.proj.float()(x.type(torch.float32))
|
510 |
+
x = self.proj_drop.float()(x)
|
511 |
+
# print(f"======>[ATTN FP32]")
|
512 |
+
else:
|
513 |
+
x = self.proj(x)
|
514 |
+
x = self.proj_drop(x)
|
515 |
+
return x
|
516 |
+
|
517 |
+
def extra_repr(self) -> str:
|
518 |
+
return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
|
519 |
+
|
520 |
+
def flops(self, N):
|
521 |
+
# calculate flops for 1 window with token length of N
|
522 |
+
flops = 0
|
523 |
+
# qkv = self.qkv(x)
|
524 |
+
flops += N * self.dim * 3 * self.dim
|
525 |
+
# attn = (q @ k.transpose(-2, -1))
|
526 |
+
flops += self.num_heads * N * (self.dim // self.num_heads) * N
|
527 |
+
# x = (attn @ v)
|
528 |
+
flops += self.num_heads * N * N * (self.dim // self.num_heads)
|
529 |
+
# x = self.proj(x)
|
530 |
+
flops += N * self.dim * self.dim
|
531 |
+
return flops
|
532 |
+
|
533 |
+
|
534 |
+
class SwinTransformerBlockPost(nn.Module):
|
535 |
+
""" Swin Transformer Block.
|
536 |
+
|
537 |
+
Args:
|
538 |
+
dim (int): Number of input channels.
|
539 |
+
num_heads (int): Number of attention heads.
|
540 |
+
window_size (int): Window size.
|
541 |
+
shift_size (int): Shift size for SW-MSA.
|
542 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
543 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
544 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
545 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
546 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
547 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
548 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
549 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
550 |
+
"""
|
551 |
+
|
552 |
+
def __init__(self, dim, num_heads, window_size=7, shift_size=0,
|
553 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
|
554 |
+
use_mlp_norm=False, endnorm=False, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
|
555 |
+
relative_coords_table_type='norm8_log', rpe_hidden_dim=512,
|
556 |
+
rpe_output_type='normal', attn_type='normal', mlp_type='normal', mlpfp32=False,
|
557 |
+
pretrain_window_size=-1):
|
558 |
+
super().__init__()
|
559 |
+
self.dim = dim
|
560 |
+
self.num_heads = num_heads
|
561 |
+
self.window_size = window_size
|
562 |
+
self.shift_size = shift_size
|
563 |
+
self.mlp_ratio = mlp_ratio
|
564 |
+
self.use_mlp_norm = use_mlp_norm
|
565 |
+
self.endnorm = endnorm
|
566 |
+
self.mlpfp32 = mlpfp32
|
567 |
+
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
568 |
+
|
569 |
+
self.norm1 = norm_layer(dim)
|
570 |
+
self.attn = WindowAttention(
|
571 |
+
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
|
572 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop,
|
573 |
+
relative_coords_table_type=relative_coords_table_type, rpe_output_type=rpe_output_type,
|
574 |
+
rpe_hidden_dim=rpe_hidden_dim, attn_type=attn_type, mlpfp32=mlpfp32,
|
575 |
+
pretrain_window_size=pretrain_window_size)
|
576 |
+
|
577 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
578 |
+
self.norm2 = norm_layer(dim)
|
579 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
580 |
+
|
581 |
+
if mlp_type == 'normal':
|
582 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop,
|
583 |
+
norm_layer=norm_layer if self.use_mlp_norm else None, mlpfp32=mlpfp32)
|
584 |
+
elif mlp_type == 'conv':
|
585 |
+
self.mlp = ConvMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop,
|
586 |
+
norm_layer=norm_layer if self.use_mlp_norm else None, mlpfp32=mlpfp32)
|
587 |
+
elif mlp_type == 'conv_ln':
|
588 |
+
self.mlp = ConvMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop,
|
589 |
+
norm_layer=norm_layer if self.use_mlp_norm else None, mlpfp32=mlpfp32, proj_ln=True)
|
590 |
+
|
591 |
+
if self.endnorm:
|
592 |
+
self.enorm = norm_layer(dim)
|
593 |
+
else:
|
594 |
+
self.enorm = None
|
595 |
+
|
596 |
+
self.H = None
|
597 |
+
self.W = None
|
598 |
+
|
599 |
+
def forward(self, x, mask_matrix):
|
600 |
+
H, W = self.H, self.W
|
601 |
+
B, L, C = x.shape
|
602 |
+
assert L == H * W, f"input feature has wrong size, with L = {L}, H = {H}, W = {W}"
|
603 |
+
|
604 |
+
shortcut = x
|
605 |
+
|
606 |
+
x = x.view(B, H, W, C)
|
607 |
+
|
608 |
+
# pad feature maps to multiples of window size
|
609 |
+
pad_l = pad_t = 0
|
610 |
+
pad_r = (self.window_size - W % self.window_size) % self.window_size
|
611 |
+
pad_b = (self.window_size - H % self.window_size) % self.window_size
|
612 |
+
if pad_r > 0 or pad_b > 0:
|
613 |
+
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
|
614 |
+
_, Hp, Wp, _ = x.shape
|
615 |
+
|
616 |
+
# cyclic shift
|
617 |
+
if self.shift_size > 0:
|
618 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
619 |
+
attn_mask = mask_matrix
|
620 |
+
else:
|
621 |
+
shifted_x = x
|
622 |
+
attn_mask = None
|
623 |
+
|
624 |
+
# partition windows
|
625 |
+
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
|
626 |
+
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
|
627 |
+
|
628 |
+
# W-MSA/SW-MSA
|
629 |
+
orig_type = x.dtype # attn may force to fp32
|
630 |
+
attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
|
631 |
+
|
632 |
+
# merge windows
|
633 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
634 |
+
shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
|
635 |
+
|
636 |
+
# reverse cyclic shift
|
637 |
+
if self.shift_size > 0:
|
638 |
+
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
639 |
+
else:
|
640 |
+
x = shifted_x
|
641 |
+
|
642 |
+
if pad_r > 0 or pad_b > 0:
|
643 |
+
x = x[:, :H, :W, :].contiguous()
|
644 |
+
|
645 |
+
x = x.view(B, H * W, C)
|
646 |
+
|
647 |
+
# FFN
|
648 |
+
if self.mlpfp32:
|
649 |
+
x = self.norm1.float()(x)
|
650 |
+
x = x.type(orig_type)
|
651 |
+
else:
|
652 |
+
x = self.norm1(x)
|
653 |
+
x = shortcut + self.drop_path(x)
|
654 |
+
shortcut = x
|
655 |
+
|
656 |
+
orig_type = x.dtype
|
657 |
+
x = self.mlp(x, H, W)
|
658 |
+
if self.mlpfp32:
|
659 |
+
x = self.norm2.float()(x)
|
660 |
+
x = x.type(orig_type)
|
661 |
+
else:
|
662 |
+
x = self.norm2(x)
|
663 |
+
x = shortcut + self.drop_path(x)
|
664 |
+
|
665 |
+
if self.endnorm:
|
666 |
+
x = self.enorm(x)
|
667 |
+
|
668 |
+
return x
|
669 |
+
|
670 |
+
|
671 |
+
class SwinTransformerBlockPre(nn.Module):
|
672 |
+
""" Swin Transformer Block.
|
673 |
+
|
674 |
+
Args:
|
675 |
+
dim (int): Number of input channels.
|
676 |
+
num_heads (int): Number of attention heads.
|
677 |
+
window_size (int): Window size.
|
678 |
+
shift_size (int): Shift size for SW-MSA.
|
679 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
680 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
681 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
682 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
683 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
684 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
685 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
686 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
687 |
+
"""
|
688 |
+
|
689 |
+
def __init__(self, dim, num_heads, window_size=7, shift_size=0,
|
690 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
|
691 |
+
use_mlp_norm=False, endnorm=False, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
|
692 |
+
init_values=None, relative_coords_table_type='norm8_log', rpe_hidden_dim=512,
|
693 |
+
rpe_output_type='normal', attn_type='normal', mlp_type='normal', mlpfp32=False,
|
694 |
+
pretrain_window_size=-1):
|
695 |
+
super().__init__()
|
696 |
+
self.dim = dim
|
697 |
+
self.num_heads = num_heads
|
698 |
+
self.window_size = window_size
|
699 |
+
self.shift_size = shift_size
|
700 |
+
self.mlp_ratio = mlp_ratio
|
701 |
+
self.use_mlp_norm = use_mlp_norm
|
702 |
+
self.endnorm = endnorm
|
703 |
+
self.mlpfp32 = mlpfp32
|
704 |
+
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
705 |
+
|
706 |
+
self.norm1 = norm_layer(dim)
|
707 |
+
self.attn = WindowAttention(
|
708 |
+
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
|
709 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop,
|
710 |
+
relative_coords_table_type=relative_coords_table_type, rpe_output_type=rpe_output_type,
|
711 |
+
rpe_hidden_dim=rpe_hidden_dim, attn_type=attn_type, mlpfp32=mlpfp32,
|
712 |
+
pretrain_window_size=pretrain_window_size)
|
713 |
+
|
714 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
715 |
+
self.norm2 = norm_layer(dim)
|
716 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
717 |
+
|
718 |
+
if mlp_type == 'normal':
|
719 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop,
|
720 |
+
norm_layer=norm_layer if self.use_mlp_norm else None, mlpfp32=mlpfp32)
|
721 |
+
elif mlp_type == 'conv':
|
722 |
+
self.mlp = ConvMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop,
|
723 |
+
norm_layer=norm_layer if self.use_mlp_norm else None, mlpfp32=mlpfp32)
|
724 |
+
elif mlp_type == 'conv_ln':
|
725 |
+
self.mlp = ConvMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop,
|
726 |
+
norm_layer=norm_layer if self.use_mlp_norm else None, mlpfp32=mlpfp32, proj_ln=True)
|
727 |
+
|
728 |
+
if init_values is not None and init_values >= 0:
|
729 |
+
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
|
730 |
+
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
|
731 |
+
else:
|
732 |
+
self.gamma_1, self.gamma_2 = 1.0, 1.0
|
733 |
+
|
734 |
+
if self.endnorm:
|
735 |
+
self.enorm = norm_layer(dim)
|
736 |
+
else:
|
737 |
+
self.enorm = None
|
738 |
+
|
739 |
+
self.H = None
|
740 |
+
self.W = None
|
741 |
+
|
742 |
+
def forward(self, x, mask_matrix):
|
743 |
+
H, W = self.H, self.W
|
744 |
+
B, L, C = x.shape
|
745 |
+
assert L == H * W, f"input feature has wrong size, with L = {L}, H = {H}, W = {W}"
|
746 |
+
|
747 |
+
shortcut = x
|
748 |
+
x = self.norm1(x)
|
749 |
+
x = x.view(B, H, W, C)
|
750 |
+
|
751 |
+
# pad feature maps to multiples of window size
|
752 |
+
pad_l = pad_t = 0
|
753 |
+
pad_r = (self.window_size - W % self.window_size) % self.window_size
|
754 |
+
pad_b = (self.window_size - H % self.window_size) % self.window_size
|
755 |
+
if pad_r > 0 or pad_b > 0:
|
756 |
+
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
|
757 |
+
_, Hp, Wp, _ = x.shape
|
758 |
+
|
759 |
+
# cyclic shift
|
760 |
+
if self.shift_size > 0:
|
761 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
762 |
+
attn_mask = mask_matrix
|
763 |
+
else:
|
764 |
+
shifted_x = x
|
765 |
+
attn_mask = None
|
766 |
+
|
767 |
+
# partition windows
|
768 |
+
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
|
769 |
+
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
|
770 |
+
|
771 |
+
# W-MSA/SW-MSA
|
772 |
+
orig_type = x.dtype # attn may force to fp32
|
773 |
+
attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
|
774 |
+
|
775 |
+
# merge windows
|
776 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
777 |
+
shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
|
778 |
+
|
779 |
+
# reverse cyclic shift
|
780 |
+
if self.shift_size > 0:
|
781 |
+
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
782 |
+
else:
|
783 |
+
x = shifted_x
|
784 |
+
|
785 |
+
if pad_r > 0 or pad_b > 0:
|
786 |
+
x = x[:, :H, :W, :].contiguous()
|
787 |
+
|
788 |
+
x = x.view(B, H * W, C)
|
789 |
+
|
790 |
+
# FFN
|
791 |
+
if self.mlpfp32:
|
792 |
+
x = self.gamma_1 * x
|
793 |
+
x = x.type(orig_type)
|
794 |
+
else:
|
795 |
+
x = self.gamma_1 * x
|
796 |
+
x = shortcut + self.drop_path(x)
|
797 |
+
shortcut = x
|
798 |
+
|
799 |
+
orig_type = x.dtype
|
800 |
+
x = self.norm2(x)
|
801 |
+
if self.mlpfp32:
|
802 |
+
x = self.gamma_2 * self.mlp(x, H, W)
|
803 |
+
x = x.type(orig_type)
|
804 |
+
else:
|
805 |
+
x = self.gamma_2 * self.mlp(x, H, W)
|
806 |
+
x = shortcut + self.drop_path(x)
|
807 |
+
|
808 |
+
if self.endnorm:
|
809 |
+
x = self.enorm(x)
|
810 |
+
|
811 |
+
return x
|
812 |
+
|
813 |
+
|
814 |
+
class PatchMerging(nn.Module):
|
815 |
+
""" Patch Merging Layer
|
816 |
+
|
817 |
+
Args:
|
818 |
+
dim (int): Number of input channels.
|
819 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
820 |
+
"""
|
821 |
+
|
822 |
+
def __init__(self, dim, norm_layer=nn.LayerNorm, postnorm=True):
|
823 |
+
super().__init__()
|
824 |
+
self.dim = dim
|
825 |
+
self.postnorm = postnorm
|
826 |
+
|
827 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
828 |
+
self.norm = norm_layer(2 * dim) if postnorm else norm_layer(4 * dim)
|
829 |
+
|
830 |
+
def forward(self, x, H, W):
|
831 |
+
""" Forward function.
|
832 |
+
|
833 |
+
Args:
|
834 |
+
x: Input feature, tensor size (B, H*W, C).
|
835 |
+
H, W: Spatial resolution of the input feature.
|
836 |
+
"""
|
837 |
+
B, L, C = x.shape
|
838 |
+
assert L == H * W, "input feature has wrong size"
|
839 |
+
|
840 |
+
x = x.view(B, H, W, C)
|
841 |
+
|
842 |
+
# padding
|
843 |
+
pad_input = (H % 2 == 1) or (W % 2 == 1)
|
844 |
+
if pad_input:
|
845 |
+
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
|
846 |
+
|
847 |
+
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
848 |
+
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
849 |
+
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
850 |
+
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
851 |
+
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
852 |
+
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
853 |
+
|
854 |
+
if self.postnorm:
|
855 |
+
x = self.reduction(x)
|
856 |
+
x = self.norm(x)
|
857 |
+
else:
|
858 |
+
x = self.norm(x)
|
859 |
+
x = self.reduction(x)
|
860 |
+
|
861 |
+
return x
|
862 |
+
|
863 |
+
|
864 |
+
class PatchReduction1C(nn.Module):
|
865 |
+
r""" Patch Reduction Layer.
|
866 |
+
|
867 |
+
Args:
|
868 |
+
input_resolution (tuple[int]): Resolution of input feature.
|
869 |
+
dim (int): Number of input channels.
|
870 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
871 |
+
"""
|
872 |
+
|
873 |
+
def __init__(self, dim, norm_layer=nn.LayerNorm, postnorm=True):
|
874 |
+
super().__init__()
|
875 |
+
self.dim = dim
|
876 |
+
self.postnorm = postnorm
|
877 |
+
|
878 |
+
self.reduction = nn.Linear(dim, dim, bias=False)
|
879 |
+
self.norm = norm_layer(dim)
|
880 |
+
|
881 |
+
def forward(self, x, H, W):
|
882 |
+
"""
|
883 |
+
x: B, H*W, C
|
884 |
+
"""
|
885 |
+
if self.postnorm:
|
886 |
+
x = self.reduction(x)
|
887 |
+
x = self.norm(x)
|
888 |
+
else:
|
889 |
+
x = self.norm(x)
|
890 |
+
x = self.reduction(x)
|
891 |
+
|
892 |
+
return x
|
893 |
+
|
894 |
+
|
895 |
+
class ConvPatchMerging(nn.Module):
|
896 |
+
r""" Patch Merging Layer.
|
897 |
+
|
898 |
+
Args:
|
899 |
+
input_resolution (tuple[int]): Resolution of input feature.
|
900 |
+
dim (int): Number of input channels.
|
901 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
902 |
+
"""
|
903 |
+
|
904 |
+
def __init__(self, dim, norm_layer=nn.LayerNorm, postnorm=True):
|
905 |
+
super().__init__()
|
906 |
+
self.dim = dim
|
907 |
+
self.postnorm = postnorm
|
908 |
+
|
909 |
+
self.reduction = nn.Conv2d(dim, 2 * dim, kernel_size=3, stride=2, padding=1)
|
910 |
+
self.norm = norm_layer(2 * dim) if postnorm else norm_layer(dim)
|
911 |
+
|
912 |
+
def forward(self, x, H, W):
|
913 |
+
B, L, C = x.shape
|
914 |
+
assert L == H * W, "input feature has wrong size"
|
915 |
+
|
916 |
+
x = x.view(B, H, W, C)
|
917 |
+
|
918 |
+
# padding
|
919 |
+
pad_input = (H % 2 == 1) or (W % 2 == 1)
|
920 |
+
if pad_input:
|
921 |
+
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
|
922 |
+
|
923 |
+
if self.postnorm:
|
924 |
+
x = x.permute(0, 3, 1, 2) # B C H W
|
925 |
+
x = self.reduction(x).flatten(2).transpose(1, 2) # B H//2*W//2 2*C
|
926 |
+
x = self.norm(x)
|
927 |
+
else:
|
928 |
+
x = self.norm(x)
|
929 |
+
x = x.permute(0, 3, 1, 2) # B C H W
|
930 |
+
x = self.reduction(x).flatten(2).transpose(1, 2) # B H//2*W//2 2*C
|
931 |
+
|
932 |
+
return x
|
933 |
+
|
934 |
+
|
935 |
+
class BasicLayer(nn.Module):
|
936 |
+
""" A basic Swin Transformer layer for one stage.
|
937 |
+
|
938 |
+
Args:
|
939 |
+
dim (int): Number of feature channels
|
940 |
+
depth (int): Depths of this stage.
|
941 |
+
num_heads (int): Number of attention head.
|
942 |
+
window_size (int): Local window size. Default: 7.
|
943 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
944 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
945 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
946 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
947 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
948 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
949 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
950 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
951 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
952 |
+
use_shift (bool): Whether to use shifted window. Default: True.
|
953 |
+
"""
|
954 |
+
|
955 |
+
def __init__(self,
|
956 |
+
dim,
|
957 |
+
depth,
|
958 |
+
num_heads,
|
959 |
+
window_size=7,
|
960 |
+
mlp_ratio=4.,
|
961 |
+
qkv_bias=True,
|
962 |
+
qk_scale=None,
|
963 |
+
drop=0.,
|
964 |
+
attn_drop=0.,
|
965 |
+
drop_path=0.,
|
966 |
+
norm_layer=nn.LayerNorm,
|
967 |
+
downsample=None,
|
968 |
+
use_checkpoint=False,
|
969 |
+
checkpoint_blocks=255,
|
970 |
+
init_values=None,
|
971 |
+
endnorm_interval=-1,
|
972 |
+
use_mlp_norm=False,
|
973 |
+
use_shift=True,
|
974 |
+
relative_coords_table_type='norm8_log',
|
975 |
+
rpe_hidden_dim=512,
|
976 |
+
rpe_output_type='normal',
|
977 |
+
attn_type='normal',
|
978 |
+
mlp_type='normal',
|
979 |
+
mlpfp32_blocks=[-1],
|
980 |
+
postnorm=True,
|
981 |
+
pretrain_window_size=-1):
|
982 |
+
super().__init__()
|
983 |
+
self.window_size = window_size
|
984 |
+
self.shift_size = window_size // 2
|
985 |
+
self.depth = depth
|
986 |
+
self.use_checkpoint = use_checkpoint
|
987 |
+
self.checkpoint_blocks = checkpoint_blocks
|
988 |
+
self.init_values = init_values if init_values is not None else 0.0
|
989 |
+
self.endnorm_interval = endnorm_interval
|
990 |
+
self.mlpfp32_blocks = mlpfp32_blocks
|
991 |
+
self.postnorm = postnorm
|
992 |
+
|
993 |
+
# build blocks
|
994 |
+
if self.postnorm:
|
995 |
+
self.blocks = nn.ModuleList([
|
996 |
+
SwinTransformerBlockPost(
|
997 |
+
dim=dim,
|
998 |
+
num_heads=num_heads,
|
999 |
+
window_size=window_size,
|
1000 |
+
shift_size=0 if (i % 2 == 0) or (not use_shift) else window_size // 2,
|
1001 |
+
mlp_ratio=mlp_ratio,
|
1002 |
+
qkv_bias=qkv_bias,
|
1003 |
+
qk_scale=qk_scale,
|
1004 |
+
drop=drop,
|
1005 |
+
attn_drop=attn_drop,
|
1006 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
1007 |
+
norm_layer=norm_layer,
|
1008 |
+
use_mlp_norm=use_mlp_norm,
|
1009 |
+
endnorm=True if ((i + 1) % endnorm_interval == 0) and (
|
1010 |
+
endnorm_interval > 0) else False,
|
1011 |
+
relative_coords_table_type=relative_coords_table_type,
|
1012 |
+
rpe_hidden_dim=rpe_hidden_dim,
|
1013 |
+
rpe_output_type=rpe_output_type,
|
1014 |
+
attn_type=attn_type,
|
1015 |
+
mlp_type=mlp_type,
|
1016 |
+
mlpfp32=True if i in mlpfp32_blocks else False,
|
1017 |
+
pretrain_window_size=pretrain_window_size)
|
1018 |
+
for i in range(depth)])
|
1019 |
+
else:
|
1020 |
+
self.blocks = nn.ModuleList([
|
1021 |
+
SwinTransformerBlockPre(
|
1022 |
+
dim=dim,
|
1023 |
+
num_heads=num_heads,
|
1024 |
+
window_size=window_size,
|
1025 |
+
shift_size=0 if (i % 2 == 0) or (not use_shift) else window_size // 2,
|
1026 |
+
mlp_ratio=mlp_ratio,
|
1027 |
+
qkv_bias=qkv_bias,
|
1028 |
+
qk_scale=qk_scale,
|
1029 |
+
drop=drop,
|
1030 |
+
attn_drop=attn_drop,
|
1031 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
1032 |
+
norm_layer=norm_layer,
|
1033 |
+
init_values=init_values,
|
1034 |
+
use_mlp_norm=use_mlp_norm,
|
1035 |
+
endnorm=True if ((i + 1) % endnorm_interval == 0) and (
|
1036 |
+
endnorm_interval > 0) else False,
|
1037 |
+
relative_coords_table_type=relative_coords_table_type,
|
1038 |
+
rpe_hidden_dim=rpe_hidden_dim,
|
1039 |
+
rpe_output_type=rpe_output_type,
|
1040 |
+
attn_type=attn_type,
|
1041 |
+
mlp_type=mlp_type,
|
1042 |
+
mlpfp32=True if i in mlpfp32_blocks else False,
|
1043 |
+
pretrain_window_size=pretrain_window_size)
|
1044 |
+
for i in range(depth)])
|
1045 |
+
|
1046 |
+
# patch merging layer
|
1047 |
+
if downsample is not None:
|
1048 |
+
self.downsample = downsample(dim=dim, norm_layer=norm_layer, postnorm=postnorm)
|
1049 |
+
else:
|
1050 |
+
self.downsample = None
|
1051 |
+
|
1052 |
+
def forward(self, x, H, W):
|
1053 |
+
""" Forward function.
|
1054 |
+
|
1055 |
+
Args:
|
1056 |
+
x: Input feature, tensor size (B, H*W, C).
|
1057 |
+
H, W: Spatial resolution of the input feature.
|
1058 |
+
"""
|
1059 |
+
|
1060 |
+
# calculate attention mask for SW-MSA
|
1061 |
+
Hp = int(np.ceil(H / self.window_size)) * self.window_size
|
1062 |
+
Wp = int(np.ceil(W / self.window_size)) * self.window_size
|
1063 |
+
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
|
1064 |
+
h_slices = (slice(0, -self.window_size),
|
1065 |
+
slice(-self.window_size, -self.shift_size),
|
1066 |
+
slice(-self.shift_size, None))
|
1067 |
+
w_slices = (slice(0, -self.window_size),
|
1068 |
+
slice(-self.window_size, -self.shift_size),
|
1069 |
+
slice(-self.shift_size, None))
|
1070 |
+
cnt = 0
|
1071 |
+
for h in h_slices:
|
1072 |
+
for w in w_slices:
|
1073 |
+
img_mask[:, h, w, :] = cnt
|
1074 |
+
cnt += 1
|
1075 |
+
|
1076 |
+
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
|
1077 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
1078 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
1079 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
1080 |
+
for idx, blk in enumerate(self.blocks):
|
1081 |
+
blk.H, blk.W = H, W
|
1082 |
+
if self.use_checkpoint:
|
1083 |
+
x = checkpoint.checkpoint(blk, x, attn_mask)
|
1084 |
+
else:
|
1085 |
+
x = blk(x, attn_mask)
|
1086 |
+
|
1087 |
+
if self.downsample is not None:
|
1088 |
+
x_down = self.downsample(x, H, W)
|
1089 |
+
if isinstance(self.downsample, PatchReduction1C):
|
1090 |
+
return x, H, W, x_down, H, W
|
1091 |
+
else:
|
1092 |
+
Wh, Ww = (H + 1) // 2, (W + 1) // 2
|
1093 |
+
return x, H, W, x_down, Wh, Ww
|
1094 |
+
else:
|
1095 |
+
return x, H, W, x, H, W
|
1096 |
+
|
1097 |
+
def _init_block_norm_weights(self):
|
1098 |
+
for blk in self.blocks:
|
1099 |
+
nn.init.constant_(blk.norm1.bias, 0)
|
1100 |
+
nn.init.constant_(blk.norm1.weight, self.init_values)
|
1101 |
+
nn.init.constant_(blk.norm2.bias, 0)
|
1102 |
+
nn.init.constant_(blk.norm2.weight, self.init_values)
|
1103 |
+
|
1104 |
+
|
1105 |
+
class PatchEmbed(nn.Module):
|
1106 |
+
""" Image to Patch Embedding
|
1107 |
+
|
1108 |
+
Args:
|
1109 |
+
patch_size (int): Patch token size. Default: 4.
|
1110 |
+
in_chans (int): Number of input image channels. Default: 3.
|
1111 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
1112 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
1113 |
+
"""
|
1114 |
+
|
1115 |
+
def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
1116 |
+
super().__init__()
|
1117 |
+
patch_size = to_2tuple(patch_size)
|
1118 |
+
self.patch_size = patch_size
|
1119 |
+
|
1120 |
+
self.in_chans = in_chans
|
1121 |
+
self.embed_dim = embed_dim
|
1122 |
+
|
1123 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
1124 |
+
if norm_layer is not None:
|
1125 |
+
self.norm = norm_layer(embed_dim)
|
1126 |
+
else:
|
1127 |
+
self.norm = None
|
1128 |
+
|
1129 |
+
def forward(self, x):
|
1130 |
+
"""Forward function."""
|
1131 |
+
# padding
|
1132 |
+
_, _, H, W = x.size()
|
1133 |
+
if W % self.patch_size[1] != 0:
|
1134 |
+
x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
|
1135 |
+
if H % self.patch_size[0] != 0:
|
1136 |
+
x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
|
1137 |
+
|
1138 |
+
x = self.proj(x) # B C Wh Ww
|
1139 |
+
if self.norm is not None:
|
1140 |
+
Wh, Ww = x.size(2), x.size(3)
|
1141 |
+
x = x.flatten(2).transpose(1, 2)
|
1142 |
+
x = self.norm(x)
|
1143 |
+
x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
|
1144 |
+
|
1145 |
+
return x
|
1146 |
+
|
1147 |
+
|
1148 |
+
class ResNetDLNPatchEmbed(nn.Module):
|
1149 |
+
def __init__(self, in_chans=3, embed_dim=96, norm_layer=None):
|
1150 |
+
super().__init__()
|
1151 |
+
patch_size = to_2tuple(4)
|
1152 |
+
self.patch_size = patch_size
|
1153 |
+
|
1154 |
+
self.in_chans = in_chans
|
1155 |
+
self.embed_dim = embed_dim
|
1156 |
+
|
1157 |
+
self.conv1 = nn.Sequential(nn.Conv2d(in_chans, 64, 3, stride=2, padding=1, bias=False),
|
1158 |
+
LayerNorm2D(64, norm_layer),
|
1159 |
+
nn.GELU(),
|
1160 |
+
nn.Conv2d(64, 64, 3, stride=1, padding=1, bias=False),
|
1161 |
+
LayerNorm2D(64, norm_layer),
|
1162 |
+
nn.GELU(),
|
1163 |
+
nn.Conv2d(64, embed_dim, 3, stride=1, padding=1, bias=False))
|
1164 |
+
self.norm = LayerNorm2D(embed_dim, norm_layer if norm_layer is not None else LayerNormFP32) # use ln always
|
1165 |
+
self.act = nn.GELU()
|
1166 |
+
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
1167 |
+
|
1168 |
+
def forward(self, x):
|
1169 |
+
_, _, H, W = x.size()
|
1170 |
+
if W % self.patch_size[1] != 0:
|
1171 |
+
x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
|
1172 |
+
if H % self.patch_size[0] != 0:
|
1173 |
+
x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
|
1174 |
+
|
1175 |
+
x = self.conv1(x)
|
1176 |
+
x = self.norm(x)
|
1177 |
+
x = self.act(x)
|
1178 |
+
x = self.maxpool(x)
|
1179 |
+
# x = x.flatten(2).transpose(1, 2)
|
1180 |
+
return x
|
1181 |
+
|
1182 |
+
|
1183 |
+
class SwinV2TransformerRPE2FC(nn.Module):
|
1184 |
+
""" Swin Transformer backbone.
|
1185 |
+
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
|
1186 |
+
https://arxiv.org/pdf/2103.14030
|
1187 |
+
|
1188 |
+
Args:
|
1189 |
+
pretrain_img_size (int): Input image size for training the pretrained model,
|
1190 |
+
used in absolute postion embedding. Default 224.
|
1191 |
+
patch_size (int | tuple(int)): Patch size. Default: 4.
|
1192 |
+
in_chans (int): Number of input image channels. Default: 3.
|
1193 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
1194 |
+
depths (tuple[int]): Depths of each Swin Transformer stage.
|
1195 |
+
num_heads (tuple[int]): Number of attention head of each stage.
|
1196 |
+
window_size (int): Window size. Default: 7.
|
1197 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
1198 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
1199 |
+
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
|
1200 |
+
drop_rate (float): Dropout rate.
|
1201 |
+
attn_drop_rate (float): Attention dropout rate. Default: 0.
|
1202 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.2.
|
1203 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
1204 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
|
1205 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True.
|
1206 |
+
out_indices (Sequence[int]): Output from which stages.
|
1207 |
+
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
|
1208 |
+
-1 means not freezing any parameters.
|
1209 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
1210 |
+
use_shift (bool): Whether to use shifted window. Default: True.
|
1211 |
+
"""
|
1212 |
+
|
1213 |
+
def __init__(self,
|
1214 |
+
pretrain_img_size=224,
|
1215 |
+
patch_size=4,
|
1216 |
+
in_chans=3,
|
1217 |
+
embed_dim=96,
|
1218 |
+
depths=[2, 2, 6, 2],
|
1219 |
+
num_heads=[3, 6, 12, 24],
|
1220 |
+
window_size=7,
|
1221 |
+
mlp_ratio=4.,
|
1222 |
+
qkv_bias=True,
|
1223 |
+
qk_scale=None,
|
1224 |
+
drop_rate=0.,
|
1225 |
+
attn_drop_rate=0.,
|
1226 |
+
drop_path_rate=0.1,
|
1227 |
+
norm_layer=partial(LayerNormFP32, eps=1e-6),
|
1228 |
+
ape=False,
|
1229 |
+
patch_norm=True,
|
1230 |
+
use_checkpoint=False,
|
1231 |
+
init_values=1e-5,
|
1232 |
+
endnorm_interval=-1,
|
1233 |
+
use_mlp_norm_layers=[],
|
1234 |
+
relative_coords_table_type='norm8_log',
|
1235 |
+
rpe_hidden_dim=512,
|
1236 |
+
attn_type='cosine_mh',
|
1237 |
+
rpe_output_type='sigmoid',
|
1238 |
+
rpe_wd=False,
|
1239 |
+
postnorm=True,
|
1240 |
+
mlp_type='normal',
|
1241 |
+
patch_embed_type='normal',
|
1242 |
+
patch_merge_type='normal',
|
1243 |
+
strid16=False,
|
1244 |
+
checkpoint_blocks=[255, 255, 255, 255],
|
1245 |
+
mlpfp32_layer_blocks=[[-1], [-1], [-1], [-1]],
|
1246 |
+
out_indices=(0, 1, 2, 3),
|
1247 |
+
frozen_stages=-1,
|
1248 |
+
use_shift=True,
|
1249 |
+
rpe_interpolation='geo',
|
1250 |
+
pretrain_window_size=[-1, -1, -1, -1],
|
1251 |
+
**kwargs):
|
1252 |
+
super().__init__()
|
1253 |
+
|
1254 |
+
self.pretrain_img_size = pretrain_img_size
|
1255 |
+
self.depths = depths
|
1256 |
+
self.num_layers = len(depths)
|
1257 |
+
self.embed_dim = embed_dim
|
1258 |
+
self.ape = ape
|
1259 |
+
self.patch_norm = patch_norm
|
1260 |
+
self.out_indices = out_indices
|
1261 |
+
self.frozen_stages = frozen_stages
|
1262 |
+
self.rpe_interpolation = rpe_interpolation
|
1263 |
+
self.mlp_ratio = mlp_ratio
|
1264 |
+
self.endnorm_interval = endnorm_interval
|
1265 |
+
self.use_mlp_norm_layers = use_mlp_norm_layers
|
1266 |
+
self.relative_coords_table_type = relative_coords_table_type
|
1267 |
+
self.rpe_hidden_dim = rpe_hidden_dim
|
1268 |
+
self.rpe_output_type = rpe_output_type
|
1269 |
+
self.rpe_wd = rpe_wd
|
1270 |
+
self.attn_type = attn_type
|
1271 |
+
self.postnorm = postnorm
|
1272 |
+
self.mlp_type = mlp_type
|
1273 |
+
self.strid16 = strid16
|
1274 |
+
|
1275 |
+
if isinstance(window_size, list):
|
1276 |
+
pass
|
1277 |
+
elif isinstance(window_size, int):
|
1278 |
+
window_size = [window_size] * self.num_layers
|
1279 |
+
else:
|
1280 |
+
raise TypeError("We only support list or int for window size")
|
1281 |
+
|
1282 |
+
if isinstance(use_shift, list):
|
1283 |
+
pass
|
1284 |
+
elif isinstance(use_shift, bool):
|
1285 |
+
use_shift = [use_shift] * self.num_layers
|
1286 |
+
else:
|
1287 |
+
raise TypeError("We only support list or bool for use_shift")
|
1288 |
+
|
1289 |
+
if isinstance(use_checkpoint, list):
|
1290 |
+
pass
|
1291 |
+
elif isinstance(use_checkpoint, bool):
|
1292 |
+
use_checkpoint = [use_checkpoint] * self.num_layers
|
1293 |
+
else:
|
1294 |
+
raise TypeError("We only support list or bool for use_checkpoint")
|
1295 |
+
|
1296 |
+
# split image into non-overlapping patches
|
1297 |
+
if patch_embed_type == 'normal':
|
1298 |
+
self.patch_embed = PatchEmbed(
|
1299 |
+
patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
|
1300 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
1301 |
+
elif patch_embed_type == 'resnetdln':
|
1302 |
+
assert patch_size == 4, "check"
|
1303 |
+
self.patch_embed = ResNetDLNPatchEmbed(
|
1304 |
+
in_chans=in_chans, embed_dim=embed_dim, norm_layer=norm_layer)
|
1305 |
+
elif patch_embed_type == 'resnetdnf':
|
1306 |
+
assert patch_size == 4, "check"
|
1307 |
+
self.patch_embed = ResNetDLNPatchEmbed(
|
1308 |
+
in_chans=in_chans, embed_dim=embed_dim, norm_layer=None)
|
1309 |
+
else:
|
1310 |
+
raise NotImplementedError()
|
1311 |
+
# absolute position embedding
|
1312 |
+
if self.ape:
|
1313 |
+
pretrain_img_size = to_2tuple(pretrain_img_size)
|
1314 |
+
patch_size = to_2tuple(patch_size)
|
1315 |
+
patches_resolution = [pretrain_img_size[0] // patch_size[0], pretrain_img_size[1] // patch_size[1]]
|
1316 |
+
|
1317 |
+
self.absolute_pos_embed = nn.Parameter(
|
1318 |
+
torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1]))
|
1319 |
+
trunc_normal_(self.absolute_pos_embed, std=.02)
|
1320 |
+
|
1321 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
1322 |
+
|
1323 |
+
# stochastic depth
|
1324 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
1325 |
+
|
1326 |
+
if patch_merge_type == 'normal':
|
1327 |
+
downsample_layer = PatchMerging
|
1328 |
+
elif patch_merge_type == 'conv':
|
1329 |
+
downsample_layer = ConvPatchMerging
|
1330 |
+
else:
|
1331 |
+
raise NotImplementedError()
|
1332 |
+
# build layers
|
1333 |
+
self.layers = nn.ModuleList()
|
1334 |
+
num_features = []
|
1335 |
+
for i_layer in range(self.num_layers):
|
1336 |
+
cur_dim = int(embed_dim * 2 ** (i_layer - 1)) \
|
1337 |
+
if (i_layer == self.num_layers - 1 and strid16) else \
|
1338 |
+
int(embed_dim * 2 ** i_layer)
|
1339 |
+
num_features.append(cur_dim)
|
1340 |
+
if i_layer < self.num_layers - 2:
|
1341 |
+
cur_downsample_layer = downsample_layer
|
1342 |
+
elif i_layer == self.num_layers - 2:
|
1343 |
+
if strid16:
|
1344 |
+
cur_downsample_layer = PatchReduction1C
|
1345 |
+
else:
|
1346 |
+
cur_downsample_layer = downsample_layer
|
1347 |
+
else:
|
1348 |
+
cur_downsample_layer = None
|
1349 |
+
layer = BasicLayer(
|
1350 |
+
dim=cur_dim,
|
1351 |
+
depth=depths[i_layer],
|
1352 |
+
num_heads=num_heads[i_layer],
|
1353 |
+
window_size=window_size[i_layer],
|
1354 |
+
mlp_ratio=mlp_ratio,
|
1355 |
+
qkv_bias=qkv_bias,
|
1356 |
+
qk_scale=qk_scale,
|
1357 |
+
drop=drop_rate,
|
1358 |
+
attn_drop=attn_drop_rate,
|
1359 |
+
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
|
1360 |
+
norm_layer=norm_layer,
|
1361 |
+
downsample=cur_downsample_layer,
|
1362 |
+
use_checkpoint=use_checkpoint[i_layer],
|
1363 |
+
checkpoint_blocks=checkpoint_blocks[i_layer],
|
1364 |
+
init_values=init_values,
|
1365 |
+
endnorm_interval=endnorm_interval,
|
1366 |
+
use_mlp_norm=True if i_layer in use_mlp_norm_layers else False,
|
1367 |
+
use_shift=use_shift[i_layer],
|
1368 |
+
relative_coords_table_type=self.relative_coords_table_type,
|
1369 |
+
rpe_hidden_dim=self.rpe_hidden_dim,
|
1370 |
+
rpe_output_type=self.rpe_output_type,
|
1371 |
+
attn_type=self.attn_type,
|
1372 |
+
mlp_type=self.mlp_type,
|
1373 |
+
mlpfp32_blocks=mlpfp32_layer_blocks[i_layer],
|
1374 |
+
postnorm=self.postnorm,
|
1375 |
+
pretrain_window_size=pretrain_window_size[i_layer]
|
1376 |
+
)
|
1377 |
+
self.layers.append(layer)
|
1378 |
+
|
1379 |
+
self.num_features = num_features
|
1380 |
+
|
1381 |
+
# add a norm layer for each output
|
1382 |
+
for i_layer in out_indices:
|
1383 |
+
layer = norm_layer(num_features[i_layer])
|
1384 |
+
layer_name = f'norm{i_layer}'
|
1385 |
+
self.add_module(layer_name, layer)
|
1386 |
+
|
1387 |
+
self._freeze_stages()
|
1388 |
+
|
1389 |
+
def _freeze_stages(self):
|
1390 |
+
if self.frozen_stages >= 0:
|
1391 |
+
self.patch_embed.eval()
|
1392 |
+
for param in self.patch_embed.parameters():
|
1393 |
+
param.requires_grad = False
|
1394 |
+
|
1395 |
+
if self.frozen_stages >= 1 and self.ape:
|
1396 |
+
self.absolute_pos_embed.requires_grad = False
|
1397 |
+
|
1398 |
+
if self.frozen_stages >= 2:
|
1399 |
+
self.pos_drop.eval()
|
1400 |
+
for i in range(0, self.frozen_stages - 1):
|
1401 |
+
m = self.layers[i]
|
1402 |
+
m.eval()
|
1403 |
+
for param in m.parameters():
|
1404 |
+
param.requires_grad = False
|
1405 |
+
|
1406 |
+
def init_weights(self, pretrained=None):
|
1407 |
+
"""Initialize the weights in backbone.
|
1408 |
+
|
1409 |
+
Args:
|
1410 |
+
pretrained (str, optional): Path to pre-trained weights.
|
1411 |
+
Defaults to None.
|
1412 |
+
"""
|
1413 |
+
self.norm3.eval()
|
1414 |
+
for param in self.norm3.parameters():
|
1415 |
+
param.requires_grad = False
|
1416 |
+
|
1417 |
+
def _init_weights(m):
|
1418 |
+
if isinstance(m, nn.Linear):
|
1419 |
+
trunc_normal_(m.weight, std=.02)
|
1420 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
1421 |
+
nn.init.constant_(m.bias, 0)
|
1422 |
+
elif isinstance(m, nn.LayerNorm):
|
1423 |
+
nn.init.constant_(m.bias, 0)
|
1424 |
+
nn.init.constant_(m.weight, 1.0)
|
1425 |
+
elif isinstance(m, nn.Conv2d):
|
1426 |
+
trunc_normal_(m.weight, std=.02)
|
1427 |
+
if m.bias is not None:
|
1428 |
+
nn.init.constant_(m.bias, 0)
|
1429 |
+
|
1430 |
+
self.apply(_init_weights)
|
1431 |
+
for bly in self.layers:
|
1432 |
+
bly._init_block_norm_weights()
|
1433 |
+
|
1434 |
+
if isinstance(pretrained, str):
|
1435 |
+
logger = None
|
1436 |
+
load_checkpoint_swin(self, pretrained, strict=False, map_location='cpu',
|
1437 |
+
logger=logger, rpe_interpolation=self.rpe_interpolation)
|
1438 |
+
elif pretrained is None:
|
1439 |
+
pass
|
1440 |
+
else:
|
1441 |
+
raise TypeError('pretrained must be a str or None')
|
1442 |
+
|
1443 |
+
def forward(self, x):
|
1444 |
+
"""Forward function."""
|
1445 |
+
x = self.patch_embed(x)
|
1446 |
+
|
1447 |
+
Wh, Ww = x.size(2), x.size(3)
|
1448 |
+
if self.ape:
|
1449 |
+
# interpolate the position embedding to the corresponding size
|
1450 |
+
absolute_pos_embed = F.interpolate(self.absolute_pos_embed, size=(Wh, Ww), mode='bicubic')
|
1451 |
+
x = (x + absolute_pos_embed).flatten(2).transpose(1, 2) # B Wh*Ww C
|
1452 |
+
else:
|
1453 |
+
x = x.flatten(2).transpose(1, 2)
|
1454 |
+
|
1455 |
+
x = self.pos_drop(x)
|
1456 |
+
|
1457 |
+
outs = []
|
1458 |
+
for i in range(self.num_layers):
|
1459 |
+
layer = self.layers[i]
|
1460 |
+
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
|
1461 |
+
|
1462 |
+
if i in self.out_indices:
|
1463 |
+
norm_layer = getattr(self, f'norm{i}')
|
1464 |
+
x_out = norm_layer.float()(x_out.float())
|
1465 |
+
|
1466 |
+
out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
|
1467 |
+
|
1468 |
+
outs.append(out)
|
1469 |
+
|
1470 |
+
return outs
|
1471 |
+
|
1472 |
+
def train(self, mode=True):
|
1473 |
+
"""Convert the model into training mode while keep layers freezed."""
|
1474 |
+
super(SwinV2TransformerRPE2FC, self).train(mode)
|
1475 |
+
self._freeze_stages()
|
main/pct_utils/pct_head.py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from pct_utils.pct_tokenizer import PCT_Tokenizer
|
5 |
+
from pct_utils.modules import MixerLayer, FCBlock, BasicBlock
|
6 |
+
|
7 |
+
def constant_init(module, val, bias=0):
|
8 |
+
if hasattr(module, 'weight') and module.weight is not None:
|
9 |
+
nn.init.constant_(module.weight, val)
|
10 |
+
if hasattr(module, 'bias') and module.bias is not None:
|
11 |
+
nn.init.constant_(module.bias, bias)
|
12 |
+
|
13 |
+
def normal_init(module, mean=0, std=1, bias=0):
|
14 |
+
if hasattr(module, 'weight') and module.weight is not None:
|
15 |
+
nn.init.normal_(module.weight, mean, std)
|
16 |
+
if hasattr(module, 'bias') and module.bias is not None:
|
17 |
+
nn.init.constant_(module.bias, bias)
|
18 |
+
|
19 |
+
class PCT_Head(nn.Module):
|
20 |
+
""" Head of Pose Compositional Tokens.
|
21 |
+
paper ref: Zigang Geng et al. "Human Pose as
|
22 |
+
Compositional Tokens"
|
23 |
+
|
24 |
+
The pipelines of two stage during training and inference:
|
25 |
+
|
26 |
+
Tokenizer Stage & Train:
|
27 |
+
Joints -> (Img Guide) -> Encoder -> Codebook -> Decoder -> Recovered Joints
|
28 |
+
Loss: (Joints, Recovered Joints)
|
29 |
+
Tokenizer Stage & Test:
|
30 |
+
Joints -> (Img Guide) -> Encoder -> Codebook -> Decoder -> Recovered Joints
|
31 |
+
|
32 |
+
Classifer Stage & Train:
|
33 |
+
Img -> Classifier -> Predict Class -> Codebook -> Decoder -> Recovered Joints
|
34 |
+
Joints -> (Img Guide) -> Encoder -> Codebook -> Groundtruth Class
|
35 |
+
Loss: (Predict Class, Groundtruth Class), (Joints, Recovered Joints)
|
36 |
+
Classifer Stage & Test:
|
37 |
+
Img -> Classifier -> Predict Class -> Codebook -> Decoder -> Recovered Joints
|
38 |
+
|
39 |
+
Args:
|
40 |
+
stage_pct (str): Training stage (Tokenizer or Classifier).
|
41 |
+
in_channels (int): Feature Dim of the backbone feature.
|
42 |
+
image_size (tuple): Input image size.
|
43 |
+
num_joints (int): Number of annotated joints in the dataset.
|
44 |
+
cls_head (dict): Config for PCT classification head. Default: None.
|
45 |
+
tokenizer (dict): Config for PCT tokenizer. Default: None.
|
46 |
+
loss_keypoint (dict): Config for loss for training classifier. Default: None.
|
47 |
+
"""
|
48 |
+
|
49 |
+
def __init__(self,
|
50 |
+
args,
|
51 |
+
stage_pct,
|
52 |
+
in_channels,
|
53 |
+
image_size,
|
54 |
+
num_joints,
|
55 |
+
cls_head=None,
|
56 |
+
tokenizer=None,
|
57 |
+
loss_keypoint=None,):
|
58 |
+
super().__init__()
|
59 |
+
|
60 |
+
self.image_size = image_size
|
61 |
+
self.stage_pct = stage_pct
|
62 |
+
|
63 |
+
self.guide_ratio = args.tokenizer_guide_ratio
|
64 |
+
self.img_guide = self.guide_ratio > 0.0
|
65 |
+
|
66 |
+
self.conv_channels = args.cls_head_conv_channels
|
67 |
+
self.hidden_dim = args.cls_head_hidden_dim
|
68 |
+
|
69 |
+
self.num_blocks = args.cls_head_num_blocks
|
70 |
+
self.hidden_inter_dim = args.cls_head_hidden_inter_dim
|
71 |
+
self.token_inter_dim = args.cls_head_token_inter_dim
|
72 |
+
self.dropout = args.cls_head_dropout
|
73 |
+
|
74 |
+
self.token_num = args.tokenizer_codebook_token_num
|
75 |
+
self.token_class_num = args.tokenizer_codebook_token_class_num
|
76 |
+
|
77 |
+
if stage_pct == "classifier":
|
78 |
+
self.conv_trans = self._make_transition_for_head(
|
79 |
+
in_channels, self.conv_channels)
|
80 |
+
self.conv_head = self._make_cls_head(args)
|
81 |
+
|
82 |
+
input_size = (image_size[0]//32)*(image_size[1]//32)
|
83 |
+
self.mixer_trans = FCBlock(
|
84 |
+
self.conv_channels * input_size,
|
85 |
+
self.token_num * self.hidden_dim)
|
86 |
+
|
87 |
+
self.mixer_head = nn.ModuleList(
|
88 |
+
[MixerLayer(self.hidden_dim, self.hidden_inter_dim,
|
89 |
+
self.token_num, self.token_inter_dim,
|
90 |
+
self.dropout) for _ in range(self.num_blocks)])
|
91 |
+
self.mixer_norm_layer = FCBlock(
|
92 |
+
self.hidden_dim, self.hidden_dim)
|
93 |
+
|
94 |
+
self.cls_pred_layer = nn.Linear(
|
95 |
+
self.hidden_dim, self.token_class_num)
|
96 |
+
|
97 |
+
self.tokenizer = PCT_Tokenizer(
|
98 |
+
args = args, stage_pct=stage_pct, num_joints=num_joints,
|
99 |
+
guide_ratio=self.guide_ratio, guide_channels=in_channels)
|
100 |
+
|
101 |
+
def forward(self, x, extra_x, joints=None, train=True):
|
102 |
+
"""Forward function."""
|
103 |
+
|
104 |
+
if self.stage_pct == "classifier":
|
105 |
+
batch_size = x[-1].shape[0]
|
106 |
+
cls_feat = self.conv_head[0](self.conv_trans(x[-1]))
|
107 |
+
|
108 |
+
cls_feat = cls_feat.flatten(2).transpose(2,1).flatten(1)
|
109 |
+
cls_feat = self.mixer_trans(cls_feat)
|
110 |
+
cls_feat = cls_feat.reshape(batch_size, self.token_num, -1)
|
111 |
+
|
112 |
+
for mixer_layer in self.mixer_head:
|
113 |
+
cls_feat = mixer_layer(cls_feat)
|
114 |
+
cls_feat = self.mixer_norm_layer(cls_feat)
|
115 |
+
|
116 |
+
cls_logits = self.cls_pred_layer(cls_feat)
|
117 |
+
|
118 |
+
encoding_scores = cls_logits.topk(1, dim=2)[0]
|
119 |
+
cls_logits = cls_logits.flatten(0,1)
|
120 |
+
cls_logits_softmax = cls_logits.clone().softmax(1)
|
121 |
+
else:
|
122 |
+
encoding_scores = None
|
123 |
+
cls_logits = None
|
124 |
+
cls_logits_softmax = None
|
125 |
+
|
126 |
+
if not self.img_guide or \
|
127 |
+
(self.stage_pct == "classifier" and not train):
|
128 |
+
joints_feat = None
|
129 |
+
else:
|
130 |
+
joints_feat = self.extract_joints_feat(extra_x[-1], joints)
|
131 |
+
|
132 |
+
output_joints, cls_label, e_latent_loss, out_part_token_feat = \
|
133 |
+
self.tokenizer(joints, joints_feat, cls_logits_softmax, train=train)
|
134 |
+
|
135 |
+
if train:
|
136 |
+
return cls_logits, output_joints, cls_label, e_latent_loss
|
137 |
+
else:
|
138 |
+
return output_joints, encoding_scores, out_part_token_feat
|
139 |
+
|
140 |
+
def _make_transition_for_head(self, inplanes, outplanes):
|
141 |
+
transition_layer = [
|
142 |
+
nn.Conv2d(inplanes, outplanes, 1, 1, 0, bias=False),
|
143 |
+
nn.BatchNorm2d(outplanes),
|
144 |
+
nn.ReLU(True)
|
145 |
+
]
|
146 |
+
return nn.Sequential(*transition_layer)
|
147 |
+
|
148 |
+
def _make_cls_head(self, args):
|
149 |
+
feature_convs = []
|
150 |
+
feature_conv = self._make_layer(
|
151 |
+
BasicBlock,
|
152 |
+
args.cls_head_conv_channels,
|
153 |
+
args.cls_head_conv_channels,
|
154 |
+
args.cls_head_conv_num_blocks,
|
155 |
+
dilation=args.cls_head_dilation
|
156 |
+
)
|
157 |
+
feature_convs.append(feature_conv)
|
158 |
+
|
159 |
+
return nn.ModuleList(feature_convs)
|
160 |
+
|
161 |
+
def _make_layer(
|
162 |
+
self, block, inplanes, planes, blocks, stride=1, dilation=1):
|
163 |
+
downsample = None
|
164 |
+
if stride != 1 or inplanes != planes * block.expansion:
|
165 |
+
downsample = nn.Sequential(
|
166 |
+
nn.Conv2d(inplanes, planes * block.expansion,
|
167 |
+
kernel_size=1, stride=stride, bias=False),
|
168 |
+
nn.BatchNorm2d(planes * block.expansion, momentum=0.1),
|
169 |
+
)
|
170 |
+
|
171 |
+
layers = []
|
172 |
+
layers.append(block(inplanes, planes,
|
173 |
+
stride, downsample, dilation=dilation))
|
174 |
+
inplanes = planes * block.expansion
|
175 |
+
for _ in range(1, blocks):
|
176 |
+
layers.append(block(inplanes, planes, dilation=dilation))
|
177 |
+
|
178 |
+
return nn.Sequential(*layers)
|
179 |
+
|
180 |
+
def extract_joints_feat(self, feature_map, joint_coords):
|
181 |
+
assert self.image_size[1] == self.image_size[0], \
|
182 |
+
'If you want to use a rectangle input, ' \
|
183 |
+
'please carefully check the length and width below.'
|
184 |
+
batch_size, _, _, height = feature_map.shape
|
185 |
+
stride = self.image_size[0] / feature_map.shape[-1]
|
186 |
+
joint_x = (joint_coords[:,:,0] / stride + 0.5).int()
|
187 |
+
joint_y = (joint_coords[:,:,1] / stride + 0.5).int()
|
188 |
+
joint_x = joint_x.clamp(0, feature_map.shape[-1] - 1)
|
189 |
+
joint_y = joint_y.clamp(0, feature_map.shape[-2] - 1)
|
190 |
+
joint_indices = (joint_y * height + joint_x).long()
|
191 |
+
|
192 |
+
flattened_feature_map = feature_map.clone().flatten(2)
|
193 |
+
joint_features = flattened_feature_map[
|
194 |
+
torch.arange(batch_size).unsqueeze(1), :, joint_indices]
|
195 |
+
|
196 |
+
return joint_features
|
197 |
+
|
198 |
+
def init_weights(self):
|
199 |
+
if self.stage_pct == "classifier":
|
200 |
+
self.tokenizer.eval()
|
201 |
+
for name, params in self.tokenizer.named_parameters():
|
202 |
+
params.requires_grad = False
|
203 |
+
|
204 |
+
for m in self.modules():
|
205 |
+
if isinstance(m, nn.Conv2d):
|
206 |
+
normal_init(m, std=0.001, bias=0)
|
207 |
+
elif isinstance(m, nn.BatchNorm2d):
|
208 |
+
constant_init(m, 1)
|
main/pct_utils/pct_tokenizer.py
ADDED
@@ -0,0 +1,315 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# Pose Compositional Tokens
|
3 |
+
# Written by Zigang Geng (zigang@mail.ustc.edu.cn)
|
4 |
+
# --------------------------------------------------------
|
5 |
+
|
6 |
+
import os
|
7 |
+
import math
|
8 |
+
import warnings
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import torch.distributed as dist
|
13 |
+
|
14 |
+
from pct_utils.modules import MixerLayer
|
15 |
+
|
16 |
+
def _trunc_normal_(tensor, mean, std, a, b):
|
17 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
18 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
19 |
+
def norm_cdf(x):
|
20 |
+
# Computes standard normal cumulative distribution function
|
21 |
+
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
22 |
+
|
23 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
24 |
+
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
25 |
+
"The distribution of values may be incorrect.",
|
26 |
+
stacklevel=2)
|
27 |
+
|
28 |
+
# Values are generated by using a truncated uniform distribution and
|
29 |
+
# then using the inverse CDF for the normal distribution.
|
30 |
+
# Get upper and lower cdf values
|
31 |
+
l = norm_cdf((a - mean) / std)
|
32 |
+
u = norm_cdf((b - mean) / std)
|
33 |
+
|
34 |
+
# Uniformly fill tensor with values from [l, u], then translate to
|
35 |
+
# [2l-1, 2u-1].
|
36 |
+
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
37 |
+
|
38 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
39 |
+
# standard normal
|
40 |
+
tensor.erfinv_()
|
41 |
+
|
42 |
+
# Transform to proper mean, std
|
43 |
+
tensor.mul_(std * math.sqrt(2.))
|
44 |
+
tensor.add_(mean)
|
45 |
+
|
46 |
+
# Clamp to ensure it's in the proper range
|
47 |
+
tensor.clamp_(min=a, max=b)
|
48 |
+
return tensor
|
49 |
+
|
50 |
+
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
51 |
+
r"""Fills the input Tensor with values drawn from a truncated
|
52 |
+
normal distribution. The values are effectively drawn from the
|
53 |
+
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
|
54 |
+
with values outside :math:`[a, b]` redrawn until they are within
|
55 |
+
the bounds. The method used for generating the random values works
|
56 |
+
best when :math:`a \leq \text{mean} \leq b`.
|
57 |
+
|
58 |
+
NOTE: this impl is similar to the PyTorch trunc_normal_, the bounds [a, b] are
|
59 |
+
applied while sampling the normal with mean/std applied, therefore a, b args
|
60 |
+
should be adjusted to match the range of mean, std args.
|
61 |
+
|
62 |
+
Args:
|
63 |
+
tensor: an n-dimensional `torch.Tensor`
|
64 |
+
mean: the mean of the normal distribution
|
65 |
+
std: the standard deviation of the normal distribution
|
66 |
+
a: the minimum cutoff value
|
67 |
+
b: the maximum cutoff value
|
68 |
+
Examples:
|
69 |
+
>>> w = torch.empty(3, 5)
|
70 |
+
>>> nn.init.trunc_normal_(w)
|
71 |
+
"""
|
72 |
+
with torch.no_grad():
|
73 |
+
return _trunc_normal_(tensor, mean, std, a, b)
|
74 |
+
|
75 |
+
class PCT_Tokenizer(nn.Module):
|
76 |
+
""" Tokenizer of Pose Compositional Tokens.
|
77 |
+
paper ref: Zigang Geng et al. "Human Pose as
|
78 |
+
Compositional Tokens"
|
79 |
+
|
80 |
+
Args:
|
81 |
+
stage_pct (str): Training stage (Tokenizer or Classifier).
|
82 |
+
tokenizer (list): Config about the tokenizer.
|
83 |
+
num_joints (int): Number of annotated joints in the dataset.
|
84 |
+
guide_ratio (float): The ratio of image guidance.
|
85 |
+
guide_channels (int): Feature Dim of the image guidance.
|
86 |
+
"""
|
87 |
+
|
88 |
+
def __init__(self,
|
89 |
+
args,
|
90 |
+
stage_pct,
|
91 |
+
num_joints=14,
|
92 |
+
theta_dim=2,
|
93 |
+
guide_ratio=0,
|
94 |
+
guide_channels=0):
|
95 |
+
super().__init__()
|
96 |
+
|
97 |
+
self.stage_pct = stage_pct
|
98 |
+
self.guide_ratio = guide_ratio
|
99 |
+
self.num_joints = num_joints
|
100 |
+
self.theta_dim = theta_dim
|
101 |
+
|
102 |
+
self.drop_rate = args.tokenizer_encoder_drop_rate
|
103 |
+
self.enc_num_blocks = args.tokenizer_encoder_num_blocks
|
104 |
+
self.enc_hidden_dim = args.tokenizer_encoder_hidden_dim
|
105 |
+
self.enc_token_inter_dim = args.tokenizer_encoder_token_inter_dim
|
106 |
+
self.enc_hidden_inter_dim = args.tokenizer_encoder_hidden_inter_dim
|
107 |
+
self.enc_dropout = args.tokenizer_encoder_dropout
|
108 |
+
|
109 |
+
self.dec_num_blocks = args.tokenizer_decoder_num_blocks
|
110 |
+
self.dec_hidden_dim = args.tokenizer_decoder_hidden_dim
|
111 |
+
self.dec_token_inter_dim = args.tokenizer_decoder_token_inter_dim
|
112 |
+
self.dec_hidden_inter_dim = args.tokenizer_decoder_hidden_inter_dim
|
113 |
+
self.dec_dropout = args.tokenizer_decoder_dropout
|
114 |
+
|
115 |
+
self.token_num = args.tokenizer_codebook_token_num
|
116 |
+
self.token_class_num = args.tokenizer_codebook_token_class_num
|
117 |
+
self.token_dim = args.tokenizer_codebook_token_dim
|
118 |
+
self.decay = args.tokenizer_codebook_ema_decay
|
119 |
+
|
120 |
+
self.invisible_token = nn.Parameter(
|
121 |
+
torch.zeros(1, 1, self.enc_hidden_dim))
|
122 |
+
trunc_normal_(self.invisible_token, mean=0., std=0.02, a=-0.02, b=0.02)
|
123 |
+
|
124 |
+
if self.guide_ratio > 0:
|
125 |
+
self.start_img_embed = nn.Linear(
|
126 |
+
guide_channels, int(self.enc_hidden_dim*self.guide_ratio))
|
127 |
+
self.start_embed = nn.Linear(
|
128 |
+
2, int(self.enc_hidden_dim*(1-self.guide_ratio)))
|
129 |
+
|
130 |
+
self.encoder = nn.ModuleList(
|
131 |
+
[MixerLayer(self.enc_hidden_dim, self.enc_hidden_inter_dim,
|
132 |
+
self.num_joints, self.enc_token_inter_dim,
|
133 |
+
self.enc_dropout) for _ in range(self.enc_num_blocks)])
|
134 |
+
self.encoder_layer_norm = nn.LayerNorm(self.enc_hidden_dim)
|
135 |
+
|
136 |
+
self.token_mlp = nn.Linear(
|
137 |
+
self.num_joints, self.token_num)
|
138 |
+
self.feature_embed = nn.Linear(
|
139 |
+
self.enc_hidden_dim, self.token_dim)
|
140 |
+
|
141 |
+
self.register_buffer('codebook',
|
142 |
+
torch.empty(self.token_class_num, self.token_dim))
|
143 |
+
self.codebook.data.normal_()
|
144 |
+
self.register_buffer('ema_cluster_size',
|
145 |
+
torch.zeros(self.token_class_num))
|
146 |
+
self.register_buffer('ema_w',
|
147 |
+
torch.empty(self.token_class_num, self.token_dim))
|
148 |
+
self.ema_w.data.normal_()
|
149 |
+
|
150 |
+
self.decoder_token_mlp = nn.Linear(
|
151 |
+
self.token_num, self.num_joints)
|
152 |
+
self.decoder_start = nn.Linear(
|
153 |
+
self.token_dim, self.dec_hidden_dim)
|
154 |
+
|
155 |
+
self.decoder = nn.ModuleList(
|
156 |
+
[MixerLayer(self.dec_hidden_dim, self.dec_hidden_inter_dim,
|
157 |
+
self.num_joints, self.dec_token_inter_dim,
|
158 |
+
self.dec_dropout) for _ in range(self.dec_num_blocks)])
|
159 |
+
self.decoder_layer_norm = nn.LayerNorm(self.dec_hidden_dim)
|
160 |
+
|
161 |
+
self.recover_embed = nn.Linear(self.dec_hidden_dim, 2)
|
162 |
+
|
163 |
+
def forward(self, joints, joints_feature, cls_logits, train=True):
|
164 |
+
"""Forward function. """
|
165 |
+
|
166 |
+
if train or self.stage_pct == "tokenizer":
|
167 |
+
# Encoder of Tokenizer, Get the PCT groundtruth class labels.
|
168 |
+
bs, num_joints, _ = joints.shape
|
169 |
+
device = joints.device
|
170 |
+
joints_coord, joints_visible, bs \
|
171 |
+
= joints[:,:,:-1], joints[:,:,-1].bool(), joints.shape[0]
|
172 |
+
|
173 |
+
encode_feat = self.start_embed(joints_coord)
|
174 |
+
if self.guide_ratio > 0:
|
175 |
+
encode_img_feat = self.start_img_embed(joints_feature)
|
176 |
+
encode_feat = torch.cat((encode_feat, encode_img_feat), dim=2)
|
177 |
+
|
178 |
+
if train and self.stage_pct == "tokenizer":
|
179 |
+
rand_mask_ind = torch.rand(
|
180 |
+
joints_visible.shape, device=joints.device) > self.drop_rate
|
181 |
+
joints_visible = torch.logical_and(rand_mask_ind, joints_visible)
|
182 |
+
|
183 |
+
mask_tokens = self.invisible_token.expand(bs, joints.shape[1], -1)
|
184 |
+
w = joints_visible.unsqueeze(-1).type_as(mask_tokens)
|
185 |
+
encode_feat = encode_feat * w + mask_tokens * (1 - w)
|
186 |
+
|
187 |
+
for num_layer in self.encoder:
|
188 |
+
encode_feat = num_layer(encode_feat)
|
189 |
+
encode_feat = self.encoder_layer_norm(encode_feat)
|
190 |
+
|
191 |
+
encode_feat = encode_feat.transpose(2, 1)
|
192 |
+
encode_feat = self.token_mlp(encode_feat).transpose(2, 1)
|
193 |
+
encode_feat = self.feature_embed(encode_feat).flatten(0,1)
|
194 |
+
|
195 |
+
distances = torch.sum(encode_feat**2, dim=1, keepdim=True) \
|
196 |
+
+ torch.sum(self.codebook**2, dim=1) \
|
197 |
+
- 2 * torch.matmul(encode_feat, self.codebook.t())
|
198 |
+
|
199 |
+
encoding_indices = torch.argmin(distances, dim=1)
|
200 |
+
encodings = torch.zeros(
|
201 |
+
encoding_indices.shape[0], self.token_class_num, device=joints.device)
|
202 |
+
encodings.scatter_(1, encoding_indices.unsqueeze(1), 1)
|
203 |
+
else:
|
204 |
+
# here it suppose cls_logits shape [bs * token_num * token_cls_num]
|
205 |
+
# predict prob of each token 0,1,2...M-1 belongs to entries 0,1,2...V-1
|
206 |
+
# see paper
|
207 |
+
bs = cls_logits.shape[0] // self.token_num
|
208 |
+
encoding_indices = None
|
209 |
+
|
210 |
+
if self.stage_pct == "classifier":
|
211 |
+
part_token_feat = torch.matmul(cls_logits, self.codebook)
|
212 |
+
else:
|
213 |
+
part_token_feat = torch.matmul(encodings, self.codebook)
|
214 |
+
|
215 |
+
if train and self.stage_pct == "tokenizer":
|
216 |
+
# Updating Codebook using EMA
|
217 |
+
dw = torch.matmul(encodings.t(), encode_feat.detach())
|
218 |
+
# sync
|
219 |
+
n_encodings, n_dw = encodings.numel(), dw.numel()
|
220 |
+
encodings_shape, dw_shape = encodings.shape, dw.shape
|
221 |
+
combined = torch.cat((encodings.flatten(), dw.flatten()))
|
222 |
+
dist.all_reduce(combined) # math sum
|
223 |
+
sync_encodings, sync_dw = torch.split(combined, [n_encodings, n_dw])
|
224 |
+
sync_encodings, sync_dw = \
|
225 |
+
sync_encodings.view(encodings_shape), sync_dw.view(dw_shape)
|
226 |
+
|
227 |
+
self.ema_cluster_size = self.ema_cluster_size * self.decay + \
|
228 |
+
(1 - self.decay) * torch.sum(sync_encodings, 0)
|
229 |
+
|
230 |
+
n = torch.sum(self.ema_cluster_size.data)
|
231 |
+
self.ema_cluster_size = (
|
232 |
+
(self.ema_cluster_size + 1e-5)
|
233 |
+
/ (n + self.token_class_num * 1e-5) * n)
|
234 |
+
|
235 |
+
self.ema_w = self.ema_w * self.decay + (1 - self.decay) * sync_dw
|
236 |
+
self.codebook = self.ema_w / self.ema_cluster_size.unsqueeze(1)
|
237 |
+
e_latent_loss = F.mse_loss(part_token_feat.detach(), encode_feat)
|
238 |
+
part_token_feat = encode_feat + (part_token_feat - encode_feat).detach()
|
239 |
+
else:
|
240 |
+
e_latent_loss = None
|
241 |
+
|
242 |
+
# Decoder of Tokenizer, Recover the joints.
|
243 |
+
part_token_feat = part_token_feat.view(bs, -1, self.token_dim)
|
244 |
+
|
245 |
+
# Store part token
|
246 |
+
out_part_token_feat = part_token_feat.clone().detach()
|
247 |
+
|
248 |
+
part_token_feat = part_token_feat.transpose(2,1)
|
249 |
+
part_token_feat = self.decoder_token_mlp(part_token_feat).transpose(2,1)
|
250 |
+
decode_feat = self.decoder_start(part_token_feat)
|
251 |
+
|
252 |
+
for num_layer in self.decoder:
|
253 |
+
decode_feat = num_layer(decode_feat)
|
254 |
+
decode_feat = self.decoder_layer_norm(decode_feat)
|
255 |
+
|
256 |
+
recoverd_joints = self.recover_embed(decode_feat)
|
257 |
+
|
258 |
+
return recoverd_joints, encoding_indices, e_latent_loss, out_part_token_feat
|
259 |
+
|
260 |
+
def init_weights(self, pretrained=""):
|
261 |
+
"""Initialize model weights."""
|
262 |
+
|
263 |
+
parameters_names = set()
|
264 |
+
for name, _ in self.named_parameters():
|
265 |
+
parameters_names.add(name)
|
266 |
+
|
267 |
+
buffers_names = set()
|
268 |
+
for name, _ in self.named_buffers():
|
269 |
+
buffers_names.add(name)
|
270 |
+
|
271 |
+
if os.path.isfile(pretrained):
|
272 |
+
assert (self.stage_pct == "classifier"), \
|
273 |
+
"Training tokenizer does not need to load model"
|
274 |
+
pretrained_state_dict = torch.load(pretrained,
|
275 |
+
map_location=lambda storage, loc: storage)
|
276 |
+
|
277 |
+
need_init_state_dict = {}
|
278 |
+
|
279 |
+
if 'state_dict' in pretrained_state_dict:
|
280 |
+
key = 'state_dict'
|
281 |
+
else:
|
282 |
+
key = 'model'
|
283 |
+
for name, m in pretrained_state_dict[key].items():
|
284 |
+
if 'keypoint_head.tokenizer.' in name:
|
285 |
+
name = name.replace('keypoint_head.tokenizer.', '')
|
286 |
+
if name in parameters_names or name in buffers_names:
|
287 |
+
need_init_state_dict[name] = m
|
288 |
+
self.load_state_dict(need_init_state_dict, strict=True)
|
289 |
+
else:
|
290 |
+
if self.stage_pct == "classifier":
|
291 |
+
print('If you are training a classifier, '\
|
292 |
+
'must check that the well-trained tokenizer '\
|
293 |
+
'is located in the correct path.')
|
294 |
+
|
295 |
+
|
296 |
+
def save_checkpoint(model, optimizer, epoch, loss, filepath):
|
297 |
+
checkpoint = {
|
298 |
+
'epoch': epoch,
|
299 |
+
'model_state_dict': model.state_dict(),
|
300 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
301 |
+
'loss': loss
|
302 |
+
}
|
303 |
+
torch.save(checkpoint, filepath)
|
304 |
+
print(f"Checkpoint saved at {filepath}")
|
305 |
+
|
306 |
+
def load_checkpoint(model, optimizer, filepath):
|
307 |
+
checkpoint = torch.load(filepath)
|
308 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
309 |
+
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
310 |
+
epoch = checkpoint['epoch']
|
311 |
+
loss = checkpoint['loss']
|
312 |
+
|
313 |
+
print(f"Checkpoint loaded from {filepath}. Resuming training from epoch {epoch} with loss {loss}")
|
314 |
+
|
315 |
+
return epoch, loss
|
main/postometro.py
ADDED
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ----------------------------------------------------------------------------------------------
|
2 |
+
# FastMETRO Official Code
|
3 |
+
# Copyright (c) POSTECH Algorithmic Machine Intelligence Lab. (P-AMI Lab.) All Rights Reserved
|
4 |
+
# Licensed under the MIT license.
|
5 |
+
# ----------------------------------------------------------------------------------------------
|
6 |
+
|
7 |
+
# ----------------------------------------------------------------------------------------------
|
8 |
+
# PostoMETRO Official Code
|
9 |
+
# Copyright (c) MIRACLE Lab. All Rights Reserved
|
10 |
+
# Licensed under the MIT license.
|
11 |
+
# ----------------------------------------------------------------------------------------------
|
12 |
+
|
13 |
+
from __future__ import absolute_import, division, print_function
|
14 |
+
import torch
|
15 |
+
import numpy as np
|
16 |
+
import argparse
|
17 |
+
import os
|
18 |
+
import os.path as osp
|
19 |
+
from torch import nn
|
20 |
+
from postometro_utils.smpl import Mesh
|
21 |
+
from postometro_utils.transformer import build_transformer
|
22 |
+
from postometro_utils.positional_encoding import build_position_encoding
|
23 |
+
from postometro_utils.modules import FCBlock, MixerLayer
|
24 |
+
from pct_utils.pct import PCT
|
25 |
+
from pct_utils.pct_backbone import SwinV2TransformerRPE2FC
|
26 |
+
from postometro_utils.pose_resnet import get_pose_net as get_pose_resnet
|
27 |
+
from postometro_utils.pose_resnet_config import config as resnet_config
|
28 |
+
from postometro_utils.pose_hrnet import get_pose_hrnet
|
29 |
+
from postometro_utils.pose_hrnet_config import _C as hrnet_config
|
30 |
+
from postometro_utils.pose_hrnet_config import update_config as hrnet_update_config
|
31 |
+
|
32 |
+
CUR_DIR = osp.dirname(os.path.abspath(__file__))
|
33 |
+
|
34 |
+
class PostoMETRO(nn.Module):
|
35 |
+
"""PostoMETRO for 3D human pose and mesh reconstruction from a single RGB image"""
|
36 |
+
def __init__(self, args, backbone, mesh_sampler, pct = None, num_joints=14, num_vertices=431):
|
37 |
+
"""
|
38 |
+
Parameters:
|
39 |
+
- args: Arguments
|
40 |
+
- backbone: CNN Backbone used to extract image features from the given image
|
41 |
+
- mesh_sampler: Mesh Sampler used in the coarse-to-fine mesh upsampling
|
42 |
+
- num_joints: The number of joint tokens used in the transformer decoder
|
43 |
+
- num_vertices: The number of vertex tokens used in the transformer decoder
|
44 |
+
"""
|
45 |
+
super().__init__()
|
46 |
+
self.args = args
|
47 |
+
self.backbone = backbone
|
48 |
+
self.mesh_sampler = mesh_sampler
|
49 |
+
self.num_joints = num_joints
|
50 |
+
self.num_vertices = num_vertices
|
51 |
+
|
52 |
+
# the number of transformer layers, set to default
|
53 |
+
num_enc_layers = 3
|
54 |
+
num_dec_layers = 3
|
55 |
+
|
56 |
+
# configurations for the first transformer
|
57 |
+
self.transformer_config_1 = {"model_dim": args.model_dim_1, "dropout": args.transformer_dropout, "nhead": args.transformer_nhead,
|
58 |
+
"feedforward_dim": args.feedforward_dim_1, "num_enc_layers": num_enc_layers, "num_dec_layers": num_dec_layers,
|
59 |
+
"pos_type": args.pos_type}
|
60 |
+
# configurations for the second transformer
|
61 |
+
self.transformer_config_2 = {"model_dim": args.model_dim_2, "dropout": args.transformer_dropout, "nhead": args.transformer_nhead,
|
62 |
+
"feedforward_dim": args.feedforward_dim_2, "num_enc_layers": num_enc_layers, "num_dec_layers": num_dec_layers,
|
63 |
+
"pos_type": args.pos_type}
|
64 |
+
# build transformers
|
65 |
+
self.transformer_1 = build_transformer(self.transformer_config_1)
|
66 |
+
self.transformer_2 = build_transformer(self.transformer_config_2)
|
67 |
+
|
68 |
+
# dimensionality reduction
|
69 |
+
self.dim_reduce_enc_cam = nn.Linear(self.transformer_config_1["model_dim"], self.transformer_config_2["model_dim"])
|
70 |
+
self.dim_reduce_enc_img = nn.Linear(self.transformer_config_1["model_dim"], self.transformer_config_2["model_dim"])
|
71 |
+
self.dim_reduce_dec = nn.Linear(self.transformer_config_1["model_dim"], self.transformer_config_2["model_dim"])
|
72 |
+
|
73 |
+
# token embeddings
|
74 |
+
self.cam_token_embed = nn.Embedding(1, self.transformer_config_1["model_dim"])
|
75 |
+
self.joint_token_embed = nn.Embedding(self.num_joints, self.transformer_config_1["model_dim"])
|
76 |
+
self.vertex_token_embed = nn.Embedding(self.num_vertices, self.transformer_config_1["model_dim"])
|
77 |
+
# positional encodings
|
78 |
+
self.position_encoding_1 = build_position_encoding(pos_type=self.transformer_config_1['pos_type'], hidden_dim=self.transformer_config_1['model_dim'])
|
79 |
+
self.position_encoding_2 = build_position_encoding(pos_type=self.transformer_config_2['pos_type'], hidden_dim=self.transformer_config_2['model_dim'])
|
80 |
+
# estimators
|
81 |
+
self.xyz_regressor = nn.Linear(self.transformer_config_2["model_dim"], 3)
|
82 |
+
self.cam_predictor = nn.Linear(self.transformer_config_2["model_dim"], 3)
|
83 |
+
|
84 |
+
# 1x1 Convolution
|
85 |
+
self.conv_1x1 = nn.Conv2d(args.conv_1x1_dim, self.transformer_config_1["model_dim"], kernel_size=1)
|
86 |
+
|
87 |
+
# attention mask
|
88 |
+
zeros_1 = torch.tensor(np.zeros((num_vertices, num_joints)).astype(bool))
|
89 |
+
zeros_2 = torch.tensor(np.zeros((num_joints, (num_joints + num_vertices))).astype(bool))
|
90 |
+
adjacency_indices = torch.load(osp.join(CUR_DIR, 'data/smpl_431_adjmat_indices.pt'))
|
91 |
+
adjacency_matrix_value = torch.load(osp.join(CUR_DIR, 'data/smpl_431_adjmat_values.pt'))
|
92 |
+
adjacency_matrix_size = torch.load(osp.join(CUR_DIR, 'data/smpl_431_adjmat_size.pt'))
|
93 |
+
adjacency_matrix = torch.sparse_coo_tensor(adjacency_indices, adjacency_matrix_value, size=adjacency_matrix_size).to_dense()
|
94 |
+
temp_mask_1 = (adjacency_matrix == 0)
|
95 |
+
temp_mask_2 = torch.cat([zeros_1, temp_mask_1], dim=1)
|
96 |
+
self.attention_mask = torch.cat([zeros_2, temp_mask_2], dim=0)
|
97 |
+
|
98 |
+
# learnable upsampling layer is used (from coarse mesh to intermediate mesh); for visually pleasing mesh result
|
99 |
+
### pre-computed upsampling matrix is used (from intermediate mesh to fine mesh); to reduce optimization difficulty
|
100 |
+
self.coarse2intermediate_upsample = nn.Linear(431, 1723)
|
101 |
+
|
102 |
+
# using extra token
|
103 |
+
self.pct = None
|
104 |
+
if pct is not None:
|
105 |
+
self.pct = pct
|
106 |
+
# +1 to align with uncertainty score
|
107 |
+
self.token_mixer = FCBlock(args.tokenizer_codebook_token_dim + 1, self.transformer_config_1["model_dim"])
|
108 |
+
self.start_embed = nn.Linear(512, args.enc_hidden_dim)
|
109 |
+
self.encoder = nn.ModuleList(
|
110 |
+
[MixerLayer(args.enc_hidden_dim, args.enc_hidden_inter_dim,
|
111 |
+
args.num_joints, args.token_inter_dim,
|
112 |
+
args.enc_dropout) for _ in range(args.enc_num_blocks)])
|
113 |
+
self.encoder_layer_norm = nn.LayerNorm(args.enc_hidden_dim)
|
114 |
+
self.token_mlp = nn.Linear(args.num_joints, args.token_num)
|
115 |
+
self.dim_reduce_enc_pct = nn.Linear(self.transformer_config_1["model_dim"], self.transformer_config_2["model_dim"])
|
116 |
+
|
117 |
+
|
118 |
+
def forward(self, images):
|
119 |
+
device = images.device
|
120 |
+
batch_size = images.size(0)
|
121 |
+
|
122 |
+
# preparation
|
123 |
+
cam_token = self.cam_token_embed.weight.unsqueeze(1).repeat(1, batch_size, 1) # 1 X batch_size X 512
|
124 |
+
jv_tokens = torch.cat([self.joint_token_embed.weight, self.vertex_token_embed.weight], dim=0).unsqueeze(1).repeat(1, batch_size, 1) # (num_joints + num_vertices) X batch_size X 512
|
125 |
+
attention_mask = self.attention_mask.to(device) # (num_joints + num_vertices) X (num_joints + num_vertices)
|
126 |
+
|
127 |
+
pct_token = None
|
128 |
+
if self.pct is not None:
|
129 |
+
pct_out = self.pct(images, None, train=False)
|
130 |
+
pct_pose = pct_out['part_token_feat'].clone()
|
131 |
+
|
132 |
+
encode_feat = self.start_embed(pct_pose) # 2, 17, 512
|
133 |
+
for num_layer in self.encoder:
|
134 |
+
encode_feat = num_layer(encode_feat)
|
135 |
+
encode_feat = self.encoder_layer_norm(encode_feat)
|
136 |
+
encode_feat = encode_feat.transpose(2, 1)
|
137 |
+
encode_feat = self.token_mlp(encode_feat).transpose(2, 1)
|
138 |
+
pct_token_out = encode_feat.permute(1,0,2)
|
139 |
+
|
140 |
+
pct_score = pct_out['encoding_scores']
|
141 |
+
pct_score = pct_score.permute(1,0,2)
|
142 |
+
pct_token = torch.cat([pct_token_out, pct_score], dim = -1)
|
143 |
+
pct_token = self.token_mixer(pct_token) # [b, 34, 512]
|
144 |
+
|
145 |
+
# extract image features through a CNN backbone
|
146 |
+
_img_features = self.backbone(images) # batch_size X 2048 X 7 X 7
|
147 |
+
_, _, h, w = _img_features.shape
|
148 |
+
img_features = self.conv_1x1(_img_features).flatten(2).permute(2, 0, 1) # 49 X batch_size X 512
|
149 |
+
|
150 |
+
# positional encodings
|
151 |
+
pos_enc_1 = self.position_encoding_1(batch_size, h, w, device).flatten(2).permute(2, 0, 1) # 49 X batch_size X 512
|
152 |
+
pos_enc_2 = self.position_encoding_2(batch_size, h, w, device).flatten(2).permute(2, 0, 1) # 49 X batch_size X 128
|
153 |
+
|
154 |
+
# first transformer encoder-decoder
|
155 |
+
cam_features_1, enc_img_features_1, jv_features_1, pct_features_1 = self.transformer_1(img_features, cam_token, jv_tokens, pos_enc_1, pct_token = pct_token, attention_mask=attention_mask)
|
156 |
+
|
157 |
+
# progressive dimensionality reduction
|
158 |
+
reduced_cam_features_1 = self.dim_reduce_enc_cam(cam_features_1) # 1 X batch_size X 128
|
159 |
+
reduced_enc_img_features_1 = self.dim_reduce_enc_img(enc_img_features_1) # 49 X batch_size X 128
|
160 |
+
reduced_jv_features_1 = self.dim_reduce_dec(jv_features_1) # (num_joints + num_vertices) X batch_size X 128
|
161 |
+
reduced_pct_features_1 = None
|
162 |
+
if pct_features_1 is not None:
|
163 |
+
reduced_pct_features_1 = self.dim_reduce_enc_pct(pct_features_1)
|
164 |
+
|
165 |
+
# second transformer encoder-decoder
|
166 |
+
cam_features_2, _, jv_features_2,_ = self.transformer_2(reduced_enc_img_features_1, reduced_cam_features_1, reduced_jv_features_1, pos_enc_2, pct_token = reduced_pct_features_1, attention_mask=attention_mask)
|
167 |
+
|
168 |
+
# estimators
|
169 |
+
pred_cam = self.cam_predictor(cam_features_2).view(batch_size, 3) # batch_size X 3
|
170 |
+
|
171 |
+
pred_3d_coordinates = self.xyz_regressor(jv_features_2.transpose(0, 1)) # batch_size X (num_joints + num_vertices) X 3
|
172 |
+
pred_3d_joints = pred_3d_coordinates[:,:self.num_joints,:] # batch_size X num_joints X 3
|
173 |
+
pred_3d_vertices_coarse = pred_3d_coordinates[:,self.num_joints:,:] # batch_size X num_vertices(coarse) X 3
|
174 |
+
|
175 |
+
# coarse-to-intermediate mesh upsampling
|
176 |
+
pred_3d_vertices_intermediate = self.coarse2intermediate_upsample(pred_3d_vertices_coarse.transpose(1,2)).transpose(1,2) # batch_size X num_vertices(intermediate) X 3
|
177 |
+
# intermediate-to-fine mesh upsampling
|
178 |
+
pred_3d_vertices_fine = self.mesh_sampler.upsample(pred_3d_vertices_intermediate, n1=1, n2=0) # batch_size X num_vertices(fine) X 3
|
179 |
+
|
180 |
+
out = {}
|
181 |
+
out['pred_cam'] = pred_cam
|
182 |
+
out['pct_pose'] = pct_out['pred_pose'] if self.pct is not None else torch.zeros((batch_size, 34, 2)).cuda(device)
|
183 |
+
out['pred_3d_joints'] = pred_3d_joints
|
184 |
+
out['pred_3d_vertices_coarse'] = pred_3d_vertices_coarse
|
185 |
+
out['pred_3d_vertices_intermediate'] = pred_3d_vertices_intermediate
|
186 |
+
out['pred_3d_vertices_fine'] = pred_3d_vertices_fine
|
187 |
+
|
188 |
+
return out
|
189 |
+
|
190 |
+
|
191 |
+
defaults_args = argparse.Namespace(
|
192 |
+
pos_type = 'sine',
|
193 |
+
transformer_dropout = 0.1,
|
194 |
+
transformer_nhead = 8,
|
195 |
+
conv_1x1_dim = 2048,
|
196 |
+
tokenizer_codebook_token_dim = 512,
|
197 |
+
model_dim_1 = 512,
|
198 |
+
feedforward_dim_1 = 2048,
|
199 |
+
model_dim_2 = 128,
|
200 |
+
feedforward_dim_2 = 512,
|
201 |
+
enc_hidden_dim = 512,
|
202 |
+
enc_hidden_inter_dim = 512,
|
203 |
+
token_inter_dim = 64,
|
204 |
+
enc_dropout = 0.0,
|
205 |
+
enc_num_blocks = 4,
|
206 |
+
num_joints = 34,
|
207 |
+
token_num = 34
|
208 |
+
)
|
209 |
+
|
210 |
+
default_pct_args = argparse.Namespace(
|
211 |
+
pct_backbone_channel = 1536,
|
212 |
+
tokenizer_guide_ratio=0.5,
|
213 |
+
cls_head_conv_channels=256,
|
214 |
+
cls_head_hidden_dim=64,
|
215 |
+
cls_head_num_blocks=4,
|
216 |
+
cls_head_hidden_inter_dim=256,
|
217 |
+
cls_head_token_inter_dim=64,
|
218 |
+
cls_head_dropout=0.0,
|
219 |
+
cls_head_conv_num_blocks=2,
|
220 |
+
cls_head_dilation=1,
|
221 |
+
# tokenzier
|
222 |
+
tokenizer_encoder_drop_rate=0.2,
|
223 |
+
tokenizer_encoder_num_blocks=4,
|
224 |
+
tokenizer_encoder_hidden_dim=512,
|
225 |
+
tokenizer_encoder_token_inter_dim=64,
|
226 |
+
tokenizer_encoder_hidden_inter_dim=512,
|
227 |
+
tokenizer_encoder_dropout=0.0,
|
228 |
+
tokenizer_decoder_num_blocks=1,
|
229 |
+
tokenizer_decoder_hidden_dim=32,
|
230 |
+
tokenizer_decoder_token_inter_dim=64,
|
231 |
+
tokenizer_decoder_hidden_inter_dim=64,
|
232 |
+
tokenizer_decoder_dropout=0.0,
|
233 |
+
tokenizer_codebook_token_num=34,
|
234 |
+
tokenizer_codebook_token_dim=512,
|
235 |
+
tokenizer_codebook_token_class_num=2048,
|
236 |
+
tokenizer_codebook_ema_decay=0.9,
|
237 |
+
)
|
238 |
+
|
239 |
+
backbone_config=dict(
|
240 |
+
embed_dim=192,
|
241 |
+
depths=[2, 2, 18, 2],
|
242 |
+
num_heads=[6, 12, 24, 48],
|
243 |
+
window_size=[16, 16, 16, 8],
|
244 |
+
pretrain_window_size=[12, 12, 12, 6],
|
245 |
+
ape=False,
|
246 |
+
drop_path_rate=0.5,
|
247 |
+
patch_norm=True,
|
248 |
+
use_checkpoint=True,
|
249 |
+
rpe_interpolation='geo',
|
250 |
+
use_shift=[True, True, False, False],
|
251 |
+
relative_coords_table_type='norm8_log_bylayer',
|
252 |
+
attn_type='cosine_mh',
|
253 |
+
rpe_output_type='sigmoid',
|
254 |
+
postnorm=True,
|
255 |
+
mlp_type='normal',
|
256 |
+
out_indices=(3,),
|
257 |
+
patch_embed_type='normal',
|
258 |
+
patch_merge_type='normal',
|
259 |
+
strid16=False,
|
260 |
+
frozen_stages=5,
|
261 |
+
)
|
262 |
+
|
263 |
+
def get_model(backbone_str = 'resnet50', device = torch.device('cpu'), checkpoint_file = None):
|
264 |
+
if backbone_str == 'hrnet-w48':
|
265 |
+
defaults_args.conv_1x1_dim = 384
|
266 |
+
# update hrnet config by yaml
|
267 |
+
hrnet_yaml = osp.join(CUR_DIR,'postometro_utils', 'pose_w48_256x192_adam_lr1e-3.yaml')
|
268 |
+
hrnet_update_config(hrnet_config, hrnet_yaml)
|
269 |
+
backbone = get_pose_hrnet(hrnet_config, None)
|
270 |
+
else:
|
271 |
+
backbone = get_pose_resnet(resnet_config, is_train=False)
|
272 |
+
mesh_upsampler = Mesh(device=device)
|
273 |
+
pct_swin_backbone = SwinV2TransformerRPE2FC(**backbone_config)
|
274 |
+
# initialize pct head
|
275 |
+
pct = PCT(default_pct_args, pct_swin_backbone, 'classifier', default_pct_args.pct_backbone_channel, (256, 256), 17, None, None).to(device)
|
276 |
+
model = PostoMETRO(defaults_args, backbone, mesh_upsampler, pct=pct).to(device)
|
277 |
+
print("[INFO] model loaded, params: {}, {}".format(backbone_str, device))
|
278 |
+
if checkpoint_file:
|
279 |
+
cpu_device = torch.device('cpu')
|
280 |
+
state_dict = torch.load(checkpoint_file, map_location=cpu_device)
|
281 |
+
model.load_state_dict(state_dict, strict=True)
|
282 |
+
del state_dict
|
283 |
+
print("[INFO] checkpoint loaded, params: {}, {}".format(backbone_str, device))
|
284 |
+
return model
|
285 |
+
|
286 |
+
if __name__ == '__main__':
|
287 |
+
test_model = get_model(device=torch.device('cuda'))
|
288 |
+
images = torch.randn(1,3,256,256).to(torch.device('cuda'))
|
289 |
+
test_out = test_model(images)
|
290 |
+
print("[TEST] resnet50, cuda : pass")
|
291 |
+
|
292 |
+
test_model = get_model()
|
293 |
+
images = torch.randn(1,3,256,256).to()
|
294 |
+
test_out = test_model(images)
|
295 |
+
print("[TEST] resnet50, cpu : pass")
|
296 |
+
|
297 |
+
test_model = get_model(backbone_str='hrnet-w48', device=torch.device('cuda'))
|
298 |
+
images = torch.randn(1,3,256,256).to(torch.device('cuda'))
|
299 |
+
test_out = test_model(images)
|
300 |
+
print("[TEST] hrnet-w48, cuda : pass")
|
301 |
+
|
302 |
+
test_model = get_model(backbone_str='hrnet-w48')
|
303 |
+
images = torch.randn(1,3,256,256).to()
|
304 |
+
test_out = test_model(images)
|
305 |
+
print("[TEST] hrnet-w48, cpu : pass")
|
main/postometro_utils/__pycache__/geometric_layers.cpython-39.pyc
ADDED
Binary file (14.2 kB). View file
|
|
main/postometro_utils/__pycache__/modules.cpython-39.pyc
ADDED
Binary file (3.41 kB). View file
|
|
main/postometro_utils/__pycache__/pose_hrnet.cpython-39.pyc
ADDED
Binary file (11.1 kB). View file
|
|
main/postometro_utils/__pycache__/pose_hrnet_config.cpython-39.pyc
ADDED
Binary file (2.63 kB). View file
|
|
main/postometro_utils/__pycache__/pose_resnet.cpython-39.pyc
ADDED
Binary file (7.36 kB). View file
|
|
main/postometro_utils/__pycache__/pose_resnet_config.cpython-39.pyc
ADDED
Binary file (5.02 kB). View file
|
|
main/postometro_utils/__pycache__/positional_encoding.cpython-39.pyc
ADDED
Binary file (2.2 kB). View file
|
|
main/postometro_utils/__pycache__/renderer_pyrender.cpython-39.pyc
ADDED
Binary file (6.62 kB). View file
|
|
main/postometro_utils/__pycache__/smpl.cpython-39.pyc
ADDED
Binary file (10.2 kB). View file
|
|
main/postometro_utils/__pycache__/transformer.cpython-39.pyc
ADDED
Binary file (8.17 kB). View file
|
|
main/postometro_utils/geometric_layers.py
ADDED
@@ -0,0 +1,679 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ----------------------------------------------------------------------------------------------
|
2 |
+
# METRO (https://github.com/microsoft/MeshTransformer)
|
3 |
+
# Copyright (c) Microsoft Corporation. All Rights Reserved [see https://github.com/microsoft/MeshTransformer/blob/main/LICENSE for details]
|
4 |
+
# Licensed under the MIT license.
|
5 |
+
# ----------------------------------------------------------------------------------------------
|
6 |
+
"""
|
7 |
+
Useful geometric operations, e.g. Orthographic projection and a differentiable Rodrigues formula
|
8 |
+
|
9 |
+
Parts of the code are taken from https://github.com/MandyMo/pytorch_HMR
|
10 |
+
"""
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.nn.functional as F
|
14 |
+
|
15 |
+
def rodrigues(theta):
|
16 |
+
"""Convert axis-angle representation to rotation matrix.
|
17 |
+
Args:
|
18 |
+
theta: size = [B, 3]
|
19 |
+
Returns:
|
20 |
+
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]
|
21 |
+
"""
|
22 |
+
l1norm = torch.norm(theta + 1e-8, p = 2, dim = 1)
|
23 |
+
angle = torch.unsqueeze(l1norm, -1)
|
24 |
+
normalized = torch.div(theta, angle)
|
25 |
+
angle = angle * 0.5
|
26 |
+
v_cos = torch.cos(angle)
|
27 |
+
v_sin = torch.sin(angle)
|
28 |
+
quat = torch.cat([v_cos, v_sin * normalized], dim = 1)
|
29 |
+
return quat2mat(quat)
|
30 |
+
|
31 |
+
def quat2mat(quat):
|
32 |
+
"""Convert quaternion coefficients to rotation matrix.
|
33 |
+
Args:
|
34 |
+
quat: size = [B, 4] 4 <===>(w, x, y, z)
|
35 |
+
Returns:
|
36 |
+
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]
|
37 |
+
"""
|
38 |
+
norm_quat = quat
|
39 |
+
norm_quat = norm_quat/norm_quat.norm(p=2, dim=1, keepdim=True)
|
40 |
+
w, x, y, z = norm_quat[:,0], norm_quat[:,1], norm_quat[:,2], norm_quat[:,3]
|
41 |
+
|
42 |
+
B = quat.size(0)
|
43 |
+
|
44 |
+
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2)
|
45 |
+
wx, wy, wz = w*x, w*y, w*z
|
46 |
+
xy, xz, yz = x*y, x*z, y*z
|
47 |
+
|
48 |
+
rotMat = torch.stack([w2 + x2 - y2 - z2, 2*xy - 2*wz, 2*wy + 2*xz,
|
49 |
+
2*wz + 2*xy, w2 - x2 + y2 - z2, 2*yz - 2*wx,
|
50 |
+
2*xz - 2*wy, 2*wx + 2*yz, w2 - x2 - y2 + z2], dim=1).view(B, 3, 3)
|
51 |
+
return rotMat
|
52 |
+
|
53 |
+
def orthographic_projection(X, camera):
|
54 |
+
"""Perform orthographic projection of 3D points X using the camera parameters
|
55 |
+
Args:
|
56 |
+
X: size = [B, N, 3]
|
57 |
+
camera: size = [B, 3]
|
58 |
+
Returns:
|
59 |
+
Projected 2D points -- size = [B, N, 2]
|
60 |
+
"""
|
61 |
+
camera = camera.view(-1, 1, 3)
|
62 |
+
X_trans = X[:, :, :2] + camera[:, :, 1:]
|
63 |
+
shape = X_trans.shape
|
64 |
+
X_2d = (camera[:, :, 0] * X_trans.view(shape[0], -1)).view(shape)
|
65 |
+
return X_2d
|
66 |
+
|
67 |
+
def orthographic_projection_reshape(X, camera):
|
68 |
+
"""Perform orthographic projection of 3D points X using the camera parameters
|
69 |
+
Args:
|
70 |
+
X: size = [B, N, 3]
|
71 |
+
camera: size = [B, 3]
|
72 |
+
Returns:
|
73 |
+
Projected 2D points -- size = [B, N, 2]
|
74 |
+
"""
|
75 |
+
camera = camera.reshape(-1, 1, 3)
|
76 |
+
X_trans = X[:, :, :2] + camera[:, :, 1:]
|
77 |
+
shape = X_trans.shape
|
78 |
+
X_2d = (camera[:, :, 0] * X_trans.reshape(shape[0], -1)).reshape(shape)
|
79 |
+
return X_2d
|
80 |
+
|
81 |
+
def orthographic_projection_reshape(X, camera):
|
82 |
+
"""Perform orthographic projection of 3D points X using the camera parameters
|
83 |
+
Args:
|
84 |
+
X: size = [B, N, 3]
|
85 |
+
camera: size = [B, 3]
|
86 |
+
Returns:
|
87 |
+
Projected 2D points -- size = [B, N, 2]
|
88 |
+
"""
|
89 |
+
camera = camera.reshape(-1, 1, 3)
|
90 |
+
X_trans = X[:, :, :2] + camera[:, :, 1:]
|
91 |
+
shape = X_trans.shape
|
92 |
+
X_2d = (camera[:, :, 0] * X_trans.reshape(shape[0], -1)).reshape(shape)
|
93 |
+
return X_2d
|
94 |
+
|
95 |
+
|
96 |
+
def _copysign(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
|
97 |
+
"""
|
98 |
+
Return a tensor where each element has the absolute value taken from the,
|
99 |
+
corresponding element of a, with sign taken from the corresponding
|
100 |
+
element of b. This is like the standard copysign floating-point operation,
|
101 |
+
but is not careful about negative 0 and NaN.
|
102 |
+
|
103 |
+
Args:
|
104 |
+
a: source tensor.
|
105 |
+
b: tensor whose signs will be used, of the same shape as a.
|
106 |
+
|
107 |
+
Returns:
|
108 |
+
Tensor of the same shape as a with the signs of b.
|
109 |
+
"""
|
110 |
+
signs_differ = (a < 0) != (b < 0)
|
111 |
+
return torch.where(signs_differ, -a, a)
|
112 |
+
|
113 |
+
|
114 |
+
def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor:
|
115 |
+
"""
|
116 |
+
Returns torch.sqrt(torch.max(0, x))
|
117 |
+
but with a zero subgradient where x is 0.
|
118 |
+
"""
|
119 |
+
ret = torch.zeros_like(x)
|
120 |
+
positive_mask = x > 0
|
121 |
+
ret[positive_mask] = torch.sqrt(x[positive_mask])
|
122 |
+
return ret
|
123 |
+
|
124 |
+
def rotation_6d_to_matrix(d6: torch.Tensor) -> torch.Tensor:
|
125 |
+
"""
|
126 |
+
Converts 6D rotation representation by Zhou et al. [1] to rotation matrix
|
127 |
+
using Gram--Schmidt orthogonalization per Section B of [1].
|
128 |
+
Args:
|
129 |
+
d6: 6D rotation representation, of size (*, 6)
|
130 |
+
|
131 |
+
Returns:
|
132 |
+
batch of rotation matrices of size (*, 3, 3)
|
133 |
+
|
134 |
+
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H.
|
135 |
+
On the Continuity of Rotation Representations in Neural Networks.
|
136 |
+
IEEE Conference on Computer Vision and Pattern Recognition, 2019.
|
137 |
+
Retrieved from http://arxiv.org/abs/1812.07035
|
138 |
+
"""
|
139 |
+
|
140 |
+
a1, a2 = d6[..., :3], d6[..., 3:]
|
141 |
+
b1 = F.normalize(a1, dim=-1)
|
142 |
+
b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1
|
143 |
+
b2 = F.normalize(b2, dim=-1)
|
144 |
+
b3 = torch.cross(b1, b2, dim=-1)
|
145 |
+
return torch.stack((b1, b2, b3), dim=-2)
|
146 |
+
|
147 |
+
|
148 |
+
def matrix_to_rotation_6d(matrix: torch.Tensor) -> torch.Tensor:
|
149 |
+
"""
|
150 |
+
Converts rotation matrices to 6D rotation representation by Zhou et al. [1]
|
151 |
+
by dropping the last row. Note that 6D representation is not unique.
|
152 |
+
Args:
|
153 |
+
matrix: batch of rotation matrices of size (*, 3, 3)
|
154 |
+
|
155 |
+
Returns:
|
156 |
+
6D rotation representation, of size (*, 6)
|
157 |
+
|
158 |
+
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H.
|
159 |
+
On the Continuity of Rotation Representations in Neural Networks.
|
160 |
+
IEEE Conference on Computer Vision and Pattern Recognition, 2019.
|
161 |
+
Retrieved from http://arxiv.org/abs/1812.07035
|
162 |
+
"""
|
163 |
+
batch_dim = matrix.size()[:-2]
|
164 |
+
return matrix[..., :2, :].clone().reshape(batch_dim + (6,))
|
165 |
+
|
166 |
+
def axis_angle_to_quaternion(axis_angle: torch.Tensor) -> torch.Tensor:
|
167 |
+
"""
|
168 |
+
Convert rotations given as axis/angle to quaternions.
|
169 |
+
|
170 |
+
Args:
|
171 |
+
axis_angle: Rotations given as a vector in axis angle form,
|
172 |
+
as a tensor of shape (..., 3), where the magnitude is
|
173 |
+
the angle turned anticlockwise in radians around the
|
174 |
+
vector's direction.
|
175 |
+
|
176 |
+
Returns:
|
177 |
+
quaternions with real part first, as tensor of shape (..., 4).
|
178 |
+
"""
|
179 |
+
angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True)
|
180 |
+
half_angles = angles * 0.5
|
181 |
+
eps = 1e-6
|
182 |
+
small_angles = angles.abs() < eps
|
183 |
+
sin_half_angles_over_angles = torch.empty_like(angles)
|
184 |
+
sin_half_angles_over_angles[~small_angles] = (
|
185 |
+
torch.sin(half_angles[~small_angles]) / angles[~small_angles]
|
186 |
+
)
|
187 |
+
# for x small, sin(x/2) is about x/2 - (x/2)^3/6
|
188 |
+
# so sin(x/2)/x is about 1/2 - (x*x)/48
|
189 |
+
sin_half_angles_over_angles[small_angles] = (
|
190 |
+
0.5 - (angles[small_angles] * angles[small_angles]) / 48
|
191 |
+
)
|
192 |
+
quaternions = torch.cat(
|
193 |
+
[torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1
|
194 |
+
)
|
195 |
+
return quaternions
|
196 |
+
|
197 |
+
|
198 |
+
def quaternion_to_axis_angle(quaternions: torch.Tensor) -> torch.Tensor:
|
199 |
+
"""
|
200 |
+
Convert rotations given as quaternions to axis/angle.
|
201 |
+
|
202 |
+
Args:
|
203 |
+
quaternions: quaternions with real part first,
|
204 |
+
as tensor of shape (..., 4).
|
205 |
+
|
206 |
+
Returns:
|
207 |
+
Rotations given as a vector in axis angle form, as a tensor
|
208 |
+
of shape (..., 3), where the magnitude is the angle
|
209 |
+
turned anticlockwise in radians around the vector's
|
210 |
+
direction.
|
211 |
+
"""
|
212 |
+
norms = torch.norm(quaternions[..., 1:], p=2, dim=-1, keepdim=True)
|
213 |
+
half_angles = torch.atan2(norms, quaternions[..., :1])
|
214 |
+
angles = 2 * half_angles
|
215 |
+
eps = 1e-6
|
216 |
+
small_angles = angles.abs() < eps
|
217 |
+
sin_half_angles_over_angles = torch.empty_like(angles)
|
218 |
+
sin_half_angles_over_angles[~small_angles] = (
|
219 |
+
torch.sin(half_angles[~small_angles]) / angles[~small_angles]
|
220 |
+
)
|
221 |
+
# for x small, sin(x/2) is about x/2 - (x/2)^3/6
|
222 |
+
# so sin(x/2)/x is about 1/2 - (x*x)/48
|
223 |
+
sin_half_angles_over_angles[small_angles] = (
|
224 |
+
0.5 - (angles[small_angles] * angles[small_angles]) / 48
|
225 |
+
)
|
226 |
+
return quaternions[..., 1:] / sin_half_angles_over_angles
|
227 |
+
|
228 |
+
def quaternion_to_matrix(quaternions: torch.Tensor) -> torch.Tensor:
|
229 |
+
"""
|
230 |
+
Convert rotations given as quaternions to rotation matrices.
|
231 |
+
|
232 |
+
Args:
|
233 |
+
quaternions: quaternions with real part first,
|
234 |
+
as tensor of shape (..., 4).
|
235 |
+
|
236 |
+
Returns:
|
237 |
+
Rotation matrices as tensor of shape (..., 3, 3).
|
238 |
+
"""
|
239 |
+
r, i, j, k = torch.unbind(quaternions, -1)
|
240 |
+
# pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`.
|
241 |
+
two_s = 2.0 / (quaternions * quaternions).sum(-1)
|
242 |
+
|
243 |
+
o = torch.stack(
|
244 |
+
(
|
245 |
+
1 - two_s * (j * j + k * k),
|
246 |
+
two_s * (i * j - k * r),
|
247 |
+
two_s * (i * k + j * r),
|
248 |
+
two_s * (i * j + k * r),
|
249 |
+
1 - two_s * (i * i + k * k),
|
250 |
+
two_s * (j * k - i * r),
|
251 |
+
two_s * (i * k - j * r),
|
252 |
+
two_s * (j * k + i * r),
|
253 |
+
1 - two_s * (i * i + j * j),
|
254 |
+
),
|
255 |
+
-1,
|
256 |
+
)
|
257 |
+
return o.reshape(quaternions.shape[:-1] + (3, 3))
|
258 |
+
|
259 |
+
def matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor:
|
260 |
+
"""
|
261 |
+
Convert rotations given as rotation matrices to quaternions.
|
262 |
+
|
263 |
+
Args:
|
264 |
+
matrix: Rotation matrices as tensor of shape (..., 3, 3).
|
265 |
+
|
266 |
+
Returns:
|
267 |
+
quaternions with real part first, as tensor of shape (..., 4).
|
268 |
+
"""
|
269 |
+
if matrix.size(-1) != 3 or matrix.size(-2) != 3:
|
270 |
+
raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.")
|
271 |
+
|
272 |
+
batch_dim = matrix.shape[:-2]
|
273 |
+
m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind(
|
274 |
+
matrix.reshape(batch_dim + (9,)), dim=-1
|
275 |
+
)
|
276 |
+
|
277 |
+
q_abs = _sqrt_positive_part(
|
278 |
+
torch.stack(
|
279 |
+
[
|
280 |
+
1.0 + m00 + m11 + m22,
|
281 |
+
1.0 + m00 - m11 - m22,
|
282 |
+
1.0 - m00 + m11 - m22,
|
283 |
+
1.0 - m00 - m11 + m22,
|
284 |
+
],
|
285 |
+
dim=-1,
|
286 |
+
)
|
287 |
+
)
|
288 |
+
|
289 |
+
# we produce the desired quaternion multiplied by each of r, i, j, k
|
290 |
+
quat_by_rijk = torch.stack(
|
291 |
+
[
|
292 |
+
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
|
293 |
+
# `int`.
|
294 |
+
torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1),
|
295 |
+
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
|
296 |
+
# `int`.
|
297 |
+
torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1),
|
298 |
+
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
|
299 |
+
# `int`.
|
300 |
+
torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1),
|
301 |
+
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
|
302 |
+
# `int`.
|
303 |
+
torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1),
|
304 |
+
],
|
305 |
+
dim=-2,
|
306 |
+
)
|
307 |
+
|
308 |
+
# We floor here at 0.1 but the exact level is not important; if q_abs is small,
|
309 |
+
# the candidate won't be picked.
|
310 |
+
flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device)
|
311 |
+
quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr))
|
312 |
+
|
313 |
+
# if not for numerical problems, quat_candidates[i] should be same (up to a sign),
|
314 |
+
# forall i; we pick the best-conditioned one (with the largest denominator)
|
315 |
+
|
316 |
+
return quat_candidates[
|
317 |
+
F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, :
|
318 |
+
].reshape(batch_dim + (4,))
|
319 |
+
|
320 |
+
def axis_angle_to_matrix(axis_angle: torch.Tensor) -> torch.Tensor:
|
321 |
+
"""
|
322 |
+
Convert rotations given as axis/angle to rotation matrices.
|
323 |
+
|
324 |
+
Args:
|
325 |
+
axis_angle: Rotations given as a vector in axis angle form,
|
326 |
+
as a tensor of shape (..., 3), where the magnitude is
|
327 |
+
the angle turned anticlockwise in radians around the
|
328 |
+
vector's direction.
|
329 |
+
|
330 |
+
Returns:
|
331 |
+
Rotation matrices as tensor of shape (..., 3, 3).
|
332 |
+
"""
|
333 |
+
return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle))
|
334 |
+
|
335 |
+
|
336 |
+
def matrix_to_axis_angle(matrix: torch.Tensor) -> torch.Tensor:
|
337 |
+
"""
|
338 |
+
Convert rotations given as rotation matrices to axis/angle.
|
339 |
+
|
340 |
+
Args:
|
341 |
+
matrix: Rotation matrices as tensor of shape (..., 3, 3).
|
342 |
+
|
343 |
+
Returns:
|
344 |
+
Rotations given as a vector in axis angle form, as a tensor
|
345 |
+
of shape (..., 3), where the magnitude is the angle
|
346 |
+
turned anticlockwise in radians around the vector's
|
347 |
+
direction.
|
348 |
+
"""
|
349 |
+
return quaternion_to_axis_angle(matrix_to_quaternion(matrix))
|
350 |
+
|
351 |
+
def axis_angle_to_rotation_6d(axis_angle: torch.Tensor) -> torch.Tensor:
|
352 |
+
"""
|
353 |
+
Convert rotations given as axis/angle to rotation matrices.
|
354 |
+
|
355 |
+
Args:
|
356 |
+
axis_angle: Rotations given as a vector in axis angle form,
|
357 |
+
as a tensor of shape (..., 3), where the magnitude is
|
358 |
+
the angle turned anticlockwise in radians around the
|
359 |
+
vector's direction.
|
360 |
+
|
361 |
+
Returns:
|
362 |
+
6D rotation representation, of size (*, 6)
|
363 |
+
"""
|
364 |
+
return matrix_to_rotation_6d(axis_angle_to_matrix(axis_angle))
|
365 |
+
|
366 |
+
def rotation_6d_to_axis_angle(d6):
|
367 |
+
"""
|
368 |
+
Converts 6D rotation representation by Zhou et al. [1] to rotation matrix
|
369 |
+
using Gram--Schmidt orthogonalization per Section B of [1].
|
370 |
+
Args:
|
371 |
+
d6: 6D rotation representation, of size (*, 6)
|
372 |
+
|
373 |
+
Returns:
|
374 |
+
axis_angle: Rotations given as a vector in axis angle form,
|
375 |
+
as a tensor of shape (..., 3), where the magnitude is
|
376 |
+
the angle turned anticlockwise in radians around the
|
377 |
+
vector's direction.
|
378 |
+
|
379 |
+
|
380 |
+
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H.
|
381 |
+
On the Continuity of Rotation Representations in Neural Networks.
|
382 |
+
IEEE Conference on Computer Vision and Pattern Recognition, 2019.
|
383 |
+
Retrieved from http://arxiv.org/abs/1812.07035
|
384 |
+
"""
|
385 |
+
|
386 |
+
return matrix_to_axis_angle(rotation_6d_to_matrix(d6))
|
387 |
+
|
388 |
+
|
389 |
+
def _copysign(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
|
390 |
+
"""
|
391 |
+
Return a tensor where each element has the absolute value taken from the,
|
392 |
+
corresponding element of a, with sign taken from the corresponding
|
393 |
+
element of b. This is like the standard copysign floating-point operation,
|
394 |
+
but is not careful about negative 0 and NaN.
|
395 |
+
|
396 |
+
Args:
|
397 |
+
a: source tensor.
|
398 |
+
b: tensor whose signs will be used, of the same shape as a.
|
399 |
+
|
400 |
+
Returns:
|
401 |
+
Tensor of the same shape as a with the signs of b.
|
402 |
+
"""
|
403 |
+
signs_differ = (a < 0) != (b < 0)
|
404 |
+
return torch.where(signs_differ, -a, a)
|
405 |
+
|
406 |
+
|
407 |
+
def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor:
|
408 |
+
"""
|
409 |
+
Returns torch.sqrt(torch.max(0, x))
|
410 |
+
but with a zero subgradient where x is 0.
|
411 |
+
"""
|
412 |
+
ret = torch.zeros_like(x)
|
413 |
+
positive_mask = x > 0
|
414 |
+
ret[positive_mask] = torch.sqrt(x[positive_mask])
|
415 |
+
return ret
|
416 |
+
|
417 |
+
def rotation_6d_to_matrix(d6: torch.Tensor) -> torch.Tensor:
|
418 |
+
"""
|
419 |
+
Converts 6D rotation representation by Zhou et al. [1] to rotation matrix
|
420 |
+
using Gram--Schmidt orthogonalization per Section B of [1].
|
421 |
+
Args:
|
422 |
+
d6: 6D rotation representation, of size (*, 6)
|
423 |
+
|
424 |
+
Returns:
|
425 |
+
batch of rotation matrices of size (*, 3, 3)
|
426 |
+
|
427 |
+
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H.
|
428 |
+
On the Continuity of Rotation Representations in Neural Networks.
|
429 |
+
IEEE Conference on Computer Vision and Pattern Recognition, 2019.
|
430 |
+
Retrieved from http://arxiv.org/abs/1812.07035
|
431 |
+
"""
|
432 |
+
|
433 |
+
a1, a2 = d6[..., :3], d6[..., 3:]
|
434 |
+
b1 = F.normalize(a1, dim=-1)
|
435 |
+
b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1
|
436 |
+
b2 = F.normalize(b2, dim=-1)
|
437 |
+
b3 = torch.cross(b1, b2, dim=-1)
|
438 |
+
return torch.stack((b1, b2, b3), dim=-2)
|
439 |
+
|
440 |
+
|
441 |
+
def matrix_to_rotation_6d(matrix: torch.Tensor) -> torch.Tensor:
|
442 |
+
"""
|
443 |
+
Converts rotation matrices to 6D rotation representation by Zhou et al. [1]
|
444 |
+
by dropping the last row. Note that 6D representation is not unique.
|
445 |
+
Args:
|
446 |
+
matrix: batch of rotation matrices of size (*, 3, 3)
|
447 |
+
|
448 |
+
Returns:
|
449 |
+
6D rotation representation, of size (*, 6)
|
450 |
+
|
451 |
+
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H.
|
452 |
+
On the Continuity of Rotation Representations in Neural Networks.
|
453 |
+
IEEE Conference on Computer Vision and Pattern Recognition, 2019.
|
454 |
+
Retrieved from http://arxiv.org/abs/1812.07035
|
455 |
+
"""
|
456 |
+
batch_dim = matrix.size()[:-2]
|
457 |
+
return matrix[..., :2, :].clone().reshape(batch_dim + (6,))
|
458 |
+
|
459 |
+
def axis_angle_to_quaternion(axis_angle: torch.Tensor) -> torch.Tensor:
|
460 |
+
"""
|
461 |
+
Convert rotations given as axis/angle to quaternions.
|
462 |
+
|
463 |
+
Args:
|
464 |
+
axis_angle: Rotations given as a vector in axis angle form,
|
465 |
+
as a tensor of shape (..., 3), where the magnitude is
|
466 |
+
the angle turned anticlockwise in radians around the
|
467 |
+
vector's direction.
|
468 |
+
|
469 |
+
Returns:
|
470 |
+
quaternions with real part first, as tensor of shape (..., 4).
|
471 |
+
"""
|
472 |
+
angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True)
|
473 |
+
half_angles = angles * 0.5
|
474 |
+
eps = 1e-6
|
475 |
+
small_angles = angles.abs() < eps
|
476 |
+
sin_half_angles_over_angles = torch.empty_like(angles)
|
477 |
+
sin_half_angles_over_angles[~small_angles] = (
|
478 |
+
torch.sin(half_angles[~small_angles]) / angles[~small_angles]
|
479 |
+
)
|
480 |
+
# for x small, sin(x/2) is about x/2 - (x/2)^3/6
|
481 |
+
# so sin(x/2)/x is about 1/2 - (x*x)/48
|
482 |
+
sin_half_angles_over_angles[small_angles] = (
|
483 |
+
0.5 - (angles[small_angles] * angles[small_angles]) / 48
|
484 |
+
)
|
485 |
+
quaternions = torch.cat(
|
486 |
+
[torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1
|
487 |
+
)
|
488 |
+
return quaternions
|
489 |
+
|
490 |
+
|
491 |
+
def quaternion_to_axis_angle(quaternions: torch.Tensor) -> torch.Tensor:
|
492 |
+
"""
|
493 |
+
Convert rotations given as quaternions to axis/angle.
|
494 |
+
|
495 |
+
Args:
|
496 |
+
quaternions: quaternions with real part first,
|
497 |
+
as tensor of shape (..., 4).
|
498 |
+
|
499 |
+
Returns:
|
500 |
+
Rotations given as a vector in axis angle form, as a tensor
|
501 |
+
of shape (..., 3), where the magnitude is the angle
|
502 |
+
turned anticlockwise in radians around the vector's
|
503 |
+
direction.
|
504 |
+
"""
|
505 |
+
norms = torch.norm(quaternions[..., 1:], p=2, dim=-1, keepdim=True)
|
506 |
+
half_angles = torch.atan2(norms, quaternions[..., :1])
|
507 |
+
angles = 2 * half_angles
|
508 |
+
eps = 1e-6
|
509 |
+
small_angles = angles.abs() < eps
|
510 |
+
sin_half_angles_over_angles = torch.empty_like(angles)
|
511 |
+
sin_half_angles_over_angles[~small_angles] = (
|
512 |
+
torch.sin(half_angles[~small_angles]) / angles[~small_angles]
|
513 |
+
)
|
514 |
+
# for x small, sin(x/2) is about x/2 - (x/2)^3/6
|
515 |
+
# so sin(x/2)/x is about 1/2 - (x*x)/48
|
516 |
+
sin_half_angles_over_angles[small_angles] = (
|
517 |
+
0.5 - (angles[small_angles] * angles[small_angles]) / 48
|
518 |
+
)
|
519 |
+
return quaternions[..., 1:] / sin_half_angles_over_angles
|
520 |
+
|
521 |
+
def quaternion_to_matrix(quaternions: torch.Tensor) -> torch.Tensor:
|
522 |
+
"""
|
523 |
+
Convert rotations given as quaternions to rotation matrices.
|
524 |
+
|
525 |
+
Args:
|
526 |
+
quaternions: quaternions with real part first,
|
527 |
+
as tensor of shape (..., 4).
|
528 |
+
|
529 |
+
Returns:
|
530 |
+
Rotation matrices as tensor of shape (..., 3, 3).
|
531 |
+
"""
|
532 |
+
r, i, j, k = torch.unbind(quaternions, -1)
|
533 |
+
# pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`.
|
534 |
+
two_s = 2.0 / (quaternions * quaternions).sum(-1)
|
535 |
+
|
536 |
+
o = torch.stack(
|
537 |
+
(
|
538 |
+
1 - two_s * (j * j + k * k),
|
539 |
+
two_s * (i * j - k * r),
|
540 |
+
two_s * (i * k + j * r),
|
541 |
+
two_s * (i * j + k * r),
|
542 |
+
1 - two_s * (i * i + k * k),
|
543 |
+
two_s * (j * k - i * r),
|
544 |
+
two_s * (i * k - j * r),
|
545 |
+
two_s * (j * k + i * r),
|
546 |
+
1 - two_s * (i * i + j * j),
|
547 |
+
),
|
548 |
+
-1,
|
549 |
+
)
|
550 |
+
return o.reshape(quaternions.shape[:-1] + (3, 3))
|
551 |
+
|
552 |
+
def matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor:
|
553 |
+
"""
|
554 |
+
Convert rotations given as rotation matrices to quaternions.
|
555 |
+
|
556 |
+
Args:
|
557 |
+
matrix: Rotation matrices as tensor of shape (..., 3, 3).
|
558 |
+
|
559 |
+
Returns:
|
560 |
+
quaternions with real part first, as tensor of shape (..., 4).
|
561 |
+
"""
|
562 |
+
if matrix.size(-1) != 3 or matrix.size(-2) != 3:
|
563 |
+
raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.")
|
564 |
+
|
565 |
+
batch_dim = matrix.shape[:-2]
|
566 |
+
m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind(
|
567 |
+
matrix.reshape(batch_dim + (9,)), dim=-1
|
568 |
+
)
|
569 |
+
|
570 |
+
q_abs = _sqrt_positive_part(
|
571 |
+
torch.stack(
|
572 |
+
[
|
573 |
+
1.0 + m00 + m11 + m22,
|
574 |
+
1.0 + m00 - m11 - m22,
|
575 |
+
1.0 - m00 + m11 - m22,
|
576 |
+
1.0 - m00 - m11 + m22,
|
577 |
+
],
|
578 |
+
dim=-1,
|
579 |
+
)
|
580 |
+
)
|
581 |
+
|
582 |
+
# we produce the desired quaternion multiplied by each of r, i, j, k
|
583 |
+
quat_by_rijk = torch.stack(
|
584 |
+
[
|
585 |
+
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
|
586 |
+
# `int`.
|
587 |
+
torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1),
|
588 |
+
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
|
589 |
+
# `int`.
|
590 |
+
torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1),
|
591 |
+
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
|
592 |
+
# `int`.
|
593 |
+
torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1),
|
594 |
+
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
|
595 |
+
# `int`.
|
596 |
+
torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1),
|
597 |
+
],
|
598 |
+
dim=-2,
|
599 |
+
)
|
600 |
+
|
601 |
+
# We floor here at 0.1 but the exact level is not important; if q_abs is small,
|
602 |
+
# the candidate won't be picked.
|
603 |
+
flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device)
|
604 |
+
quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr))
|
605 |
+
|
606 |
+
# if not for numerical problems, quat_candidates[i] should be same (up to a sign),
|
607 |
+
# forall i; we pick the best-conditioned one (with the largest denominator)
|
608 |
+
|
609 |
+
return quat_candidates[
|
610 |
+
F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, :
|
611 |
+
].reshape(batch_dim + (4,))
|
612 |
+
|
613 |
+
def axis_angle_to_matrix(axis_angle: torch.Tensor) -> torch.Tensor:
|
614 |
+
"""
|
615 |
+
Convert rotations given as axis/angle to rotation matrices.
|
616 |
+
|
617 |
+
Args:
|
618 |
+
axis_angle: Rotations given as a vector in axis angle form,
|
619 |
+
as a tensor of shape (..., 3), where the magnitude is
|
620 |
+
the angle turned anticlockwise in radians around the
|
621 |
+
vector's direction.
|
622 |
+
|
623 |
+
Returns:
|
624 |
+
Rotation matrices as tensor of shape (..., 3, 3).
|
625 |
+
"""
|
626 |
+
return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle))
|
627 |
+
|
628 |
+
|
629 |
+
def matrix_to_axis_angle(matrix: torch.Tensor) -> torch.Tensor:
|
630 |
+
"""
|
631 |
+
Convert rotations given as rotation matrices to axis/angle.
|
632 |
+
|
633 |
+
Args:
|
634 |
+
matrix: Rotation matrices as tensor of shape (..., 3, 3).
|
635 |
+
|
636 |
+
Returns:
|
637 |
+
Rotations given as a vector in axis angle form, as a tensor
|
638 |
+
of shape (..., 3), where the magnitude is the angle
|
639 |
+
turned anticlockwise in radians around the vector's
|
640 |
+
direction.
|
641 |
+
"""
|
642 |
+
return quaternion_to_axis_angle(matrix_to_quaternion(matrix))
|
643 |
+
|
644 |
+
def axis_angle_to_rotation_6d(axis_angle: torch.Tensor) -> torch.Tensor:
|
645 |
+
"""
|
646 |
+
Convert rotations given as axis/angle to rotation matrices.
|
647 |
+
|
648 |
+
Args:
|
649 |
+
axis_angle: Rotations given as a vector in axis angle form,
|
650 |
+
as a tensor of shape (..., 3), where the magnitude is
|
651 |
+
the angle turned anticlockwise in radians around the
|
652 |
+
vector's direction.
|
653 |
+
|
654 |
+
Returns:
|
655 |
+
6D rotation representation, of size (*, 6)
|
656 |
+
"""
|
657 |
+
return matrix_to_rotation_6d(axis_angle_to_matrix(axis_angle))
|
658 |
+
|
659 |
+
def rotation_6d_to_axis_angle(d6):
|
660 |
+
"""
|
661 |
+
Converts 6D rotation representation by Zhou et al. [1] to rotation matrix
|
662 |
+
using Gram--Schmidt orthogonalization per Section B of [1].
|
663 |
+
Args:
|
664 |
+
d6: 6D rotation representation, of size (*, 6)
|
665 |
+
|
666 |
+
Returns:
|
667 |
+
axis_angle: Rotations given as a vector in axis angle form,
|
668 |
+
as a tensor of shape (..., 3), where the magnitude is
|
669 |
+
the angle turned anticlockwise in radians around the
|
670 |
+
vector's direction.
|
671 |
+
|
672 |
+
|
673 |
+
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H.
|
674 |
+
On the Continuity of Rotation Representations in Neural Networks.
|
675 |
+
IEEE Conference on Computer Vision and Pattern Recognition, 2019.
|
676 |
+
Retrieved from http://arxiv.org/abs/1812.07035
|
677 |
+
"""
|
678 |
+
|
679 |
+
return matrix_to_axis_angle(rotation_6d_to_matrix(d6))
|
main/postometro_utils/modules.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# Borrow from unofficial MLPMixer (https://github.com/920232796/MlpMixer-pytorch)
|
3 |
+
# Borrow from ResNet
|
4 |
+
# Modified by Zigang Geng (zigang@mail.ustc.edu.cn)
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
|
10 |
+
|
11 |
+
class FCBlock(nn.Module):
|
12 |
+
def __init__(self, dim, out_dim):
|
13 |
+
super().__init__()
|
14 |
+
|
15 |
+
self.ff = nn.Sequential(
|
16 |
+
nn.Linear(dim, out_dim),
|
17 |
+
nn.LayerNorm(out_dim),
|
18 |
+
nn.ReLU(inplace=True),
|
19 |
+
)
|
20 |
+
|
21 |
+
def forward(self, x):
|
22 |
+
return self.ff(x)
|
23 |
+
|
24 |
+
|
25 |
+
class MLPBlock(nn.Module):
|
26 |
+
def __init__(self, dim, inter_dim, dropout_ratio):
|
27 |
+
super().__init__()
|
28 |
+
|
29 |
+
self.ff = nn.Sequential(
|
30 |
+
nn.Linear(dim, inter_dim),
|
31 |
+
nn.GELU(),
|
32 |
+
nn.Dropout(dropout_ratio),
|
33 |
+
nn.Linear(inter_dim, dim),
|
34 |
+
nn.Dropout(dropout_ratio)
|
35 |
+
)
|
36 |
+
|
37 |
+
def forward(self, x):
|
38 |
+
return self.ff(x)
|
39 |
+
|
40 |
+
|
41 |
+
class MixerLayer(nn.Module):
|
42 |
+
def __init__(self,
|
43 |
+
hidden_dim,
|
44 |
+
hidden_inter_dim,
|
45 |
+
token_dim,
|
46 |
+
token_inter_dim,
|
47 |
+
dropout_ratio):
|
48 |
+
super().__init__()
|
49 |
+
|
50 |
+
self.layernorm1 = nn.LayerNorm(hidden_dim)
|
51 |
+
self.MLP_token = MLPBlock(token_dim, token_inter_dim, dropout_ratio)
|
52 |
+
self.layernorm2 = nn.LayerNorm(hidden_dim)
|
53 |
+
self.MLP_channel = MLPBlock(hidden_dim, hidden_inter_dim, dropout_ratio)
|
54 |
+
|
55 |
+
def forward(self, x):
|
56 |
+
y = self.layernorm1(x)
|
57 |
+
y = y.transpose(2, 1)
|
58 |
+
y = self.MLP_token(y)
|
59 |
+
y = y.transpose(2, 1)
|
60 |
+
z = self.layernorm2(x + y)
|
61 |
+
z = self.MLP_channel(z)
|
62 |
+
out = x + y + z
|
63 |
+
return out
|
64 |
+
|
65 |
+
|
66 |
+
class BasicBlock(nn.Module):
|
67 |
+
expansion = 1
|
68 |
+
|
69 |
+
def __init__(self, inplanes, planes, stride=1,
|
70 |
+
downsample=None, dilation=1):
|
71 |
+
super(BasicBlock, self).__init__()
|
72 |
+
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride,
|
73 |
+
padding=dilation, bias=False, dilation=dilation)
|
74 |
+
self.bn1 = nn.BatchNorm2d(planes, momentum=0.1)
|
75 |
+
self.relu = nn.ReLU(inplace=True)
|
76 |
+
self.conv2 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride,
|
77 |
+
padding=dilation, bias=False, dilation=dilation)
|
78 |
+
self.bn2 = nn.BatchNorm2d(planes, momentum=0.1)
|
79 |
+
self.downsample = downsample
|
80 |
+
self.stride = stride
|
81 |
+
|
82 |
+
|
83 |
+
def forward(self, x):
|
84 |
+
residual = x
|
85 |
+
|
86 |
+
out = self.conv1(x)
|
87 |
+
out = self.bn1(out)
|
88 |
+
out = self.relu(out)
|
89 |
+
|
90 |
+
out = self.conv2(out)
|
91 |
+
out = self.bn2(out)
|
92 |
+
|
93 |
+
if self.downsample is not None:
|
94 |
+
residual = self.downsample(x)
|
95 |
+
|
96 |
+
out += residual
|
97 |
+
out = self.relu(out)
|
98 |
+
|
99 |
+
return out
|
100 |
+
|
101 |
+
def make_conv_layers(feat_dims, kernel=3, stride=1, padding=1, bnrelu_final=True):
|
102 |
+
layers = []
|
103 |
+
for i in range(len(feat_dims)-1):
|
104 |
+
layers.append(
|
105 |
+
nn.Conv2d(
|
106 |
+
in_channels=feat_dims[i],
|
107 |
+
out_channels=feat_dims[i+1],
|
108 |
+
kernel_size=kernel,
|
109 |
+
stride=stride,
|
110 |
+
padding=padding
|
111 |
+
))
|
112 |
+
# Do not use BN and ReLU for final estimation
|
113 |
+
if i < len(feat_dims)-2 or (i == len(feat_dims)-2 and bnrelu_final):
|
114 |
+
layers.append(nn.BatchNorm2d(feat_dims[i+1]))
|
115 |
+
layers.append(nn.ReLU(inplace=True))
|
116 |
+
|
117 |
+
return nn.Sequential(*layers)
|
main/postometro_utils/pose_hrnet.py
ADDED
@@ -0,0 +1,502 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------
|
2 |
+
# Copyright (c) Microsoft
|
3 |
+
# Licensed under the MIT License.
|
4 |
+
# Written by Bin Xiao (Bin.Xiao@microsoft.com)
|
5 |
+
# ------------------------------------------------------------------------------
|
6 |
+
|
7 |
+
from __future__ import absolute_import
|
8 |
+
from __future__ import division
|
9 |
+
from __future__ import print_function
|
10 |
+
|
11 |
+
import os
|
12 |
+
import logging
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
|
17 |
+
|
18 |
+
BN_MOMENTUM = 0.1
|
19 |
+
logger = logging.getLogger(__name__)
|
20 |
+
|
21 |
+
|
22 |
+
def conv3x3(in_planes, out_planes, stride=1):
|
23 |
+
"""3x3 convolution with padding"""
|
24 |
+
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
25 |
+
padding=1, bias=False)
|
26 |
+
|
27 |
+
|
28 |
+
class BasicBlock(nn.Module):
|
29 |
+
expansion = 1
|
30 |
+
|
31 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
32 |
+
super(BasicBlock, self).__init__()
|
33 |
+
self.conv1 = conv3x3(inplanes, planes, stride)
|
34 |
+
self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
|
35 |
+
self.relu = nn.ReLU(inplace=True)
|
36 |
+
self.conv2 = conv3x3(planes, planes)
|
37 |
+
self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
|
38 |
+
self.downsample = downsample
|
39 |
+
self.stride = stride
|
40 |
+
|
41 |
+
def forward(self, x):
|
42 |
+
residual = x
|
43 |
+
|
44 |
+
out = self.conv1(x)
|
45 |
+
out = self.bn1(out)
|
46 |
+
out = self.relu(out)
|
47 |
+
|
48 |
+
out = self.conv2(out)
|
49 |
+
out = self.bn2(out)
|
50 |
+
|
51 |
+
if self.downsample is not None:
|
52 |
+
residual = self.downsample(x)
|
53 |
+
|
54 |
+
out += residual
|
55 |
+
out = self.relu(out)
|
56 |
+
|
57 |
+
return out
|
58 |
+
|
59 |
+
|
60 |
+
class Bottleneck(nn.Module):
|
61 |
+
expansion = 4
|
62 |
+
|
63 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
64 |
+
super(Bottleneck, self).__init__()
|
65 |
+
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
|
66 |
+
self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
|
67 |
+
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
|
68 |
+
padding=1, bias=False)
|
69 |
+
self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
|
70 |
+
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1,
|
71 |
+
bias=False)
|
72 |
+
self.bn3 = nn.BatchNorm2d(planes * self.expansion,
|
73 |
+
momentum=BN_MOMENTUM)
|
74 |
+
self.relu = nn.ReLU(inplace=True)
|
75 |
+
self.downsample = downsample
|
76 |
+
self.stride = stride
|
77 |
+
|
78 |
+
def forward(self, x):
|
79 |
+
residual = x
|
80 |
+
|
81 |
+
out = self.conv1(x)
|
82 |
+
out = self.bn1(out)
|
83 |
+
out = self.relu(out)
|
84 |
+
|
85 |
+
out = self.conv2(out)
|
86 |
+
out = self.bn2(out)
|
87 |
+
out = self.relu(out)
|
88 |
+
|
89 |
+
out = self.conv3(out)
|
90 |
+
out = self.bn3(out)
|
91 |
+
|
92 |
+
if self.downsample is not None:
|
93 |
+
residual = self.downsample(x)
|
94 |
+
|
95 |
+
out += residual
|
96 |
+
out = self.relu(out)
|
97 |
+
|
98 |
+
return out
|
99 |
+
|
100 |
+
|
101 |
+
class HighResolutionModule(nn.Module):
|
102 |
+
def __init__(self, num_branches, blocks, num_blocks, num_inchannels,
|
103 |
+
num_channels, fuse_method, multi_scale_output=True):
|
104 |
+
super(HighResolutionModule, self).__init__()
|
105 |
+
self._check_branches(
|
106 |
+
num_branches, blocks, num_blocks, num_inchannels, num_channels)
|
107 |
+
|
108 |
+
self.num_inchannels = num_inchannels
|
109 |
+
self.fuse_method = fuse_method
|
110 |
+
self.num_branches = num_branches
|
111 |
+
|
112 |
+
self.multi_scale_output = multi_scale_output
|
113 |
+
|
114 |
+
self.branches = self._make_branches(
|
115 |
+
num_branches, blocks, num_blocks, num_channels)
|
116 |
+
self.fuse_layers = self._make_fuse_layers()
|
117 |
+
self.relu = nn.ReLU(True)
|
118 |
+
|
119 |
+
def _check_branches(self, num_branches, blocks, num_blocks,
|
120 |
+
num_inchannels, num_channels):
|
121 |
+
if num_branches != len(num_blocks):
|
122 |
+
error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format(
|
123 |
+
num_branches, len(num_blocks))
|
124 |
+
logger.error(error_msg)
|
125 |
+
raise ValueError(error_msg)
|
126 |
+
|
127 |
+
if num_branches != len(num_channels):
|
128 |
+
error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format(
|
129 |
+
num_branches, len(num_channels))
|
130 |
+
logger.error(error_msg)
|
131 |
+
raise ValueError(error_msg)
|
132 |
+
|
133 |
+
if num_branches != len(num_inchannels):
|
134 |
+
error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format(
|
135 |
+
num_branches, len(num_inchannels))
|
136 |
+
logger.error(error_msg)
|
137 |
+
raise ValueError(error_msg)
|
138 |
+
|
139 |
+
def _make_one_branch(self, branch_index, block, num_blocks, num_channels,
|
140 |
+
stride=1):
|
141 |
+
downsample = None
|
142 |
+
if stride != 1 or \
|
143 |
+
self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion:
|
144 |
+
downsample = nn.Sequential(
|
145 |
+
nn.Conv2d(
|
146 |
+
self.num_inchannels[branch_index],
|
147 |
+
num_channels[branch_index] * block.expansion,
|
148 |
+
kernel_size=1, stride=stride, bias=False
|
149 |
+
),
|
150 |
+
nn.BatchNorm2d(
|
151 |
+
num_channels[branch_index] * block.expansion,
|
152 |
+
momentum=BN_MOMENTUM
|
153 |
+
),
|
154 |
+
)
|
155 |
+
|
156 |
+
layers = []
|
157 |
+
layers.append(
|
158 |
+
block(
|
159 |
+
self.num_inchannels[branch_index],
|
160 |
+
num_channels[branch_index],
|
161 |
+
stride,
|
162 |
+
downsample
|
163 |
+
)
|
164 |
+
)
|
165 |
+
self.num_inchannels[branch_index] = \
|
166 |
+
num_channels[branch_index] * block.expansion
|
167 |
+
for i in range(1, num_blocks[branch_index]):
|
168 |
+
layers.append(
|
169 |
+
block(
|
170 |
+
self.num_inchannels[branch_index],
|
171 |
+
num_channels[branch_index]
|
172 |
+
)
|
173 |
+
)
|
174 |
+
|
175 |
+
return nn.Sequential(*layers)
|
176 |
+
|
177 |
+
def _make_branches(self, num_branches, block, num_blocks, num_channels):
|
178 |
+
branches = []
|
179 |
+
|
180 |
+
for i in range(num_branches):
|
181 |
+
branches.append(
|
182 |
+
self._make_one_branch(i, block, num_blocks, num_channels)
|
183 |
+
)
|
184 |
+
|
185 |
+
return nn.ModuleList(branches)
|
186 |
+
|
187 |
+
def _make_fuse_layers(self):
|
188 |
+
if self.num_branches == 1:
|
189 |
+
return None
|
190 |
+
|
191 |
+
num_branches = self.num_branches
|
192 |
+
num_inchannels = self.num_inchannels
|
193 |
+
fuse_layers = []
|
194 |
+
for i in range(num_branches if self.multi_scale_output else 1):
|
195 |
+
fuse_layer = []
|
196 |
+
for j in range(num_branches):
|
197 |
+
if j > i:
|
198 |
+
fuse_layer.append(
|
199 |
+
nn.Sequential(
|
200 |
+
nn.Conv2d(
|
201 |
+
num_inchannels[j],
|
202 |
+
num_inchannels[i],
|
203 |
+
1, 1, 0, bias=False
|
204 |
+
),
|
205 |
+
nn.BatchNorm2d(num_inchannels[i]),
|
206 |
+
nn.Upsample(scale_factor=2**(j-i), mode='nearest')
|
207 |
+
)
|
208 |
+
)
|
209 |
+
elif j == i:
|
210 |
+
fuse_layer.append(None)
|
211 |
+
else:
|
212 |
+
conv3x3s = []
|
213 |
+
for k in range(i-j):
|
214 |
+
if k == i - j - 1:
|
215 |
+
num_outchannels_conv3x3 = num_inchannels[i]
|
216 |
+
conv3x3s.append(
|
217 |
+
nn.Sequential(
|
218 |
+
nn.Conv2d(
|
219 |
+
num_inchannels[j],
|
220 |
+
num_outchannels_conv3x3,
|
221 |
+
3, 2, 1, bias=False
|
222 |
+
),
|
223 |
+
nn.BatchNorm2d(num_outchannels_conv3x3)
|
224 |
+
)
|
225 |
+
)
|
226 |
+
else:
|
227 |
+
num_outchannels_conv3x3 = num_inchannels[j]
|
228 |
+
conv3x3s.append(
|
229 |
+
nn.Sequential(
|
230 |
+
nn.Conv2d(
|
231 |
+
num_inchannels[j],
|
232 |
+
num_outchannels_conv3x3,
|
233 |
+
3, 2, 1, bias=False
|
234 |
+
),
|
235 |
+
nn.BatchNorm2d(num_outchannels_conv3x3),
|
236 |
+
nn.ReLU(True)
|
237 |
+
)
|
238 |
+
)
|
239 |
+
fuse_layer.append(nn.Sequential(*conv3x3s))
|
240 |
+
fuse_layers.append(nn.ModuleList(fuse_layer))
|
241 |
+
|
242 |
+
return nn.ModuleList(fuse_layers)
|
243 |
+
|
244 |
+
def get_num_inchannels(self):
|
245 |
+
return self.num_inchannels
|
246 |
+
|
247 |
+
def forward(self, x):
|
248 |
+
if self.num_branches == 1:
|
249 |
+
return [self.branches[0](x[0])]
|
250 |
+
|
251 |
+
for i in range(self.num_branches):
|
252 |
+
x[i] = self.branches[i](x[i])
|
253 |
+
|
254 |
+
x_fuse = []
|
255 |
+
|
256 |
+
for i in range(len(self.fuse_layers)):
|
257 |
+
y = x[0] if i == 0 else self.fuse_layers[i][0](x[0])
|
258 |
+
for j in range(1, self.num_branches):
|
259 |
+
if i == j:
|
260 |
+
y = y + x[j]
|
261 |
+
else:
|
262 |
+
y = y + self.fuse_layers[i][j](x[j])
|
263 |
+
x_fuse.append(self.relu(y))
|
264 |
+
|
265 |
+
return x_fuse
|
266 |
+
|
267 |
+
|
268 |
+
blocks_dict = {
|
269 |
+
'BASIC': BasicBlock,
|
270 |
+
'BOTTLENECK': Bottleneck
|
271 |
+
}
|
272 |
+
|
273 |
+
|
274 |
+
class PoseHighResolutionNet(nn.Module):
|
275 |
+
|
276 |
+
def __init__(self, cfg, **kwargs):
|
277 |
+
self.inplanes = 64
|
278 |
+
extra = cfg['MODEL']['EXTRA']
|
279 |
+
super(PoseHighResolutionNet, self).__init__()
|
280 |
+
|
281 |
+
# stem net
|
282 |
+
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1,
|
283 |
+
bias=False)
|
284 |
+
self.bn1 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM)
|
285 |
+
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1,
|
286 |
+
bias=False)
|
287 |
+
self.bn2 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM)
|
288 |
+
self.relu = nn.ReLU(inplace=True)
|
289 |
+
self.layer1 = self._make_layer(Bottleneck, 64, 4)
|
290 |
+
|
291 |
+
self.stage2_cfg = extra['STAGE2']
|
292 |
+
num_channels = self.stage2_cfg['NUM_CHANNELS']
|
293 |
+
block = blocks_dict[self.stage2_cfg['BLOCK']]
|
294 |
+
num_channels = [
|
295 |
+
num_channels[i] * block.expansion for i in range(len(num_channels))
|
296 |
+
]
|
297 |
+
self.transition1 = self._make_transition_layer([256], num_channels)
|
298 |
+
self.stage2, pre_stage_channels = self._make_stage(
|
299 |
+
self.stage2_cfg, num_channels)
|
300 |
+
|
301 |
+
self.stage3_cfg = extra['STAGE3']
|
302 |
+
num_channels = self.stage3_cfg['NUM_CHANNELS']
|
303 |
+
block = blocks_dict[self.stage3_cfg['BLOCK']]
|
304 |
+
num_channels = [
|
305 |
+
num_channels[i] * block.expansion for i in range(len(num_channels))
|
306 |
+
]
|
307 |
+
self.transition2 = self._make_transition_layer(
|
308 |
+
pre_stage_channels, num_channels)
|
309 |
+
self.stage3, pre_stage_channels = self._make_stage(
|
310 |
+
self.stage3_cfg, num_channels)
|
311 |
+
|
312 |
+
self.stage4_cfg = extra['STAGE4']
|
313 |
+
num_channels = self.stage4_cfg['NUM_CHANNELS']
|
314 |
+
block = blocks_dict[self.stage4_cfg['BLOCK']]
|
315 |
+
num_channels = [
|
316 |
+
num_channels[i] * block.expansion for i in range(len(num_channels))
|
317 |
+
]
|
318 |
+
self.transition3 = self._make_transition_layer(
|
319 |
+
pre_stage_channels, num_channels)
|
320 |
+
self.stage4, pre_stage_channels = self._make_stage(
|
321 |
+
self.stage4_cfg, num_channels,
|
322 |
+
multi_scale_output=True)
|
323 |
+
# multi_scale_output=False)
|
324 |
+
|
325 |
+
self.final_layer = nn.Conv2d(
|
326 |
+
in_channels=pre_stage_channels[0],
|
327 |
+
out_channels=cfg['MODEL']['NUM_JOINTS'],
|
328 |
+
kernel_size=extra['FINAL_CONV_KERNEL'],
|
329 |
+
stride=1,
|
330 |
+
padding=1 if extra['FINAL_CONV_KERNEL'] == 3 else 0
|
331 |
+
)
|
332 |
+
|
333 |
+
self.pretrained_layers = extra['PRETRAINED_LAYERS']
|
334 |
+
|
335 |
+
def _make_transition_layer(
|
336 |
+
self, num_channels_pre_layer, num_channels_cur_layer):
|
337 |
+
num_branches_cur = len(num_channels_cur_layer)
|
338 |
+
num_branches_pre = len(num_channels_pre_layer)
|
339 |
+
|
340 |
+
transition_layers = []
|
341 |
+
for i in range(num_branches_cur):
|
342 |
+
if i < num_branches_pre:
|
343 |
+
if num_channels_cur_layer[i] != num_channels_pre_layer[i]:
|
344 |
+
transition_layers.append(
|
345 |
+
nn.Sequential(
|
346 |
+
nn.Conv2d(
|
347 |
+
num_channels_pre_layer[i],
|
348 |
+
num_channels_cur_layer[i],
|
349 |
+
3, 1, 1, bias=False
|
350 |
+
),
|
351 |
+
nn.BatchNorm2d(num_channels_cur_layer[i]),
|
352 |
+
nn.ReLU(inplace=True)
|
353 |
+
)
|
354 |
+
)
|
355 |
+
else:
|
356 |
+
transition_layers.append(None)
|
357 |
+
else:
|
358 |
+
conv3x3s = []
|
359 |
+
for j in range(i+1-num_branches_pre):
|
360 |
+
inchannels = num_channels_pre_layer[-1]
|
361 |
+
outchannels = num_channels_cur_layer[i] \
|
362 |
+
if j == i-num_branches_pre else inchannels
|
363 |
+
conv3x3s.append(
|
364 |
+
nn.Sequential(
|
365 |
+
nn.Conv2d(
|
366 |
+
inchannels, outchannels, 3, 2, 1, bias=False
|
367 |
+
),
|
368 |
+
nn.BatchNorm2d(outchannels),
|
369 |
+
nn.ReLU(inplace=True)
|
370 |
+
)
|
371 |
+
)
|
372 |
+
transition_layers.append(nn.Sequential(*conv3x3s))
|
373 |
+
|
374 |
+
return nn.ModuleList(transition_layers)
|
375 |
+
|
376 |
+
def _make_layer(self, block, planes, blocks, stride=1):
|
377 |
+
downsample = None
|
378 |
+
if stride != 1 or self.inplanes != planes * block.expansion:
|
379 |
+
downsample = nn.Sequential(
|
380 |
+
nn.Conv2d(
|
381 |
+
self.inplanes, planes * block.expansion,
|
382 |
+
kernel_size=1, stride=stride, bias=False
|
383 |
+
),
|
384 |
+
nn.BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM),
|
385 |
+
)
|
386 |
+
|
387 |
+
layers = []
|
388 |
+
layers.append(block(self.inplanes, planes, stride, downsample))
|
389 |
+
self.inplanes = planes * block.expansion
|
390 |
+
for i in range(1, blocks):
|
391 |
+
layers.append(block(self.inplanes, planes))
|
392 |
+
|
393 |
+
return nn.Sequential(*layers)
|
394 |
+
|
395 |
+
def _make_stage(self, layer_config, num_inchannels,
|
396 |
+
multi_scale_output=True):
|
397 |
+
num_modules = layer_config['NUM_MODULES']
|
398 |
+
num_branches = layer_config['NUM_BRANCHES']
|
399 |
+
num_blocks = layer_config['NUM_BLOCKS']
|
400 |
+
num_channels = layer_config['NUM_CHANNELS']
|
401 |
+
block = blocks_dict[layer_config['BLOCK']]
|
402 |
+
fuse_method = layer_config['FUSE_METHOD']
|
403 |
+
|
404 |
+
modules = []
|
405 |
+
for i in range(num_modules):
|
406 |
+
# multi_scale_output is only used last module
|
407 |
+
if not multi_scale_output and i == num_modules - 1:
|
408 |
+
reset_multi_scale_output = False
|
409 |
+
else:
|
410 |
+
reset_multi_scale_output = True
|
411 |
+
|
412 |
+
modules.append(
|
413 |
+
HighResolutionModule(
|
414 |
+
num_branches,
|
415 |
+
block,
|
416 |
+
num_blocks,
|
417 |
+
num_inchannels,
|
418 |
+
num_channels,
|
419 |
+
fuse_method,
|
420 |
+
reset_multi_scale_output
|
421 |
+
)
|
422 |
+
)
|
423 |
+
num_inchannels = modules[-1].get_num_inchannels()
|
424 |
+
|
425 |
+
return nn.Sequential(*modules), num_inchannels
|
426 |
+
|
427 |
+
def forward(self, x):
|
428 |
+
x = self.conv1(x)
|
429 |
+
x = self.bn1(x)
|
430 |
+
x = self.relu(x)
|
431 |
+
x = self.conv2(x)
|
432 |
+
x = self.bn2(x)
|
433 |
+
x = self.relu(x)
|
434 |
+
x = self.layer1(x)
|
435 |
+
|
436 |
+
x_list = []
|
437 |
+
for i in range(self.stage2_cfg['NUM_BRANCHES']):
|
438 |
+
if self.transition1[i] is not None:
|
439 |
+
x_list.append(self.transition1[i](x))
|
440 |
+
else:
|
441 |
+
x_list.append(x)
|
442 |
+
y_list = self.stage2(x_list)
|
443 |
+
|
444 |
+
x_list = []
|
445 |
+
for i in range(self.stage3_cfg['NUM_BRANCHES']):
|
446 |
+
if self.transition2[i] is not None:
|
447 |
+
x_list.append(self.transition2[i](y_list[-1]))
|
448 |
+
else:
|
449 |
+
x_list.append(y_list[i])
|
450 |
+
y_list = self.stage3(x_list)
|
451 |
+
|
452 |
+
x_list = []
|
453 |
+
for i in range(self.stage4_cfg['NUM_BRANCHES']):
|
454 |
+
if self.transition3[i] is not None:
|
455 |
+
x_list.append(self.transition3[i](y_list[-1]))
|
456 |
+
else:
|
457 |
+
x_list.append(y_list[i])
|
458 |
+
y_list = self.stage4(x_list)
|
459 |
+
|
460 |
+
return y_list[-1]
|
461 |
+
# x = self.final_layer(y_list[0])
|
462 |
+
# return x
|
463 |
+
|
464 |
+
def init_weights(self, pretrained=''):
|
465 |
+
logger.info('=> init weights from normal distribution')
|
466 |
+
for m in self.modules():
|
467 |
+
if isinstance(m, nn.Conv2d):
|
468 |
+
# nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
469 |
+
nn.init.normal_(m.weight, std=0.001)
|
470 |
+
for name, _ in m.named_parameters():
|
471 |
+
if name in ['bias']:
|
472 |
+
nn.init.constant_(m.bias, 0)
|
473 |
+
elif isinstance(m, nn.BatchNorm2d):
|
474 |
+
nn.init.constant_(m.weight, 1)
|
475 |
+
nn.init.constant_(m.bias, 0)
|
476 |
+
elif isinstance(m, nn.ConvTranspose2d):
|
477 |
+
nn.init.normal_(m.weight, std=0.001)
|
478 |
+
for name, _ in m.named_parameters():
|
479 |
+
if name in ['bias']:
|
480 |
+
nn.init.constant_(m.bias, 0)
|
481 |
+
|
482 |
+
if os.path.isfile(pretrained):
|
483 |
+
pretrained_state_dict = torch.load(pretrained)
|
484 |
+
logger.info('=> loading pretrained model {}'.format(pretrained))
|
485 |
+
|
486 |
+
need_init_state_dict = {}
|
487 |
+
for name, m in pretrained_state_dict.items():
|
488 |
+
if name.split('.')[0] in self.pretrained_layers \
|
489 |
+
or self.pretrained_layers[0] is '*':
|
490 |
+
need_init_state_dict[name] = m
|
491 |
+
out = self.load_state_dict(need_init_state_dict, strict=False)
|
492 |
+
elif pretrained:
|
493 |
+
logger.error('=> please download pre-trained models first!')
|
494 |
+
raise ValueError('{} is not exist!'.format(pretrained))
|
495 |
+
|
496 |
+
|
497 |
+
def get_pose_hrnet(cfg, pretrained, **kwargs):
|
498 |
+
model = PoseHighResolutionNet(cfg, **kwargs)
|
499 |
+
if pretrained is not None:
|
500 |
+
model.init_weights(pretrained=pretrained)
|
501 |
+
|
502 |
+
return model
|
main/postometro_utils/pose_hrnet_config.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------
|
2 |
+
# Copyright (c) Microsoft
|
3 |
+
# Licensed under the MIT License.
|
4 |
+
# Written by Bin Xiao (Bin.Xiao@microsoft.com)
|
5 |
+
# Modified by Ke Sun (sunk@mail.ustc.edu.cn)
|
6 |
+
# ------------------------------------------------------------------------------
|
7 |
+
|
8 |
+
from __future__ import absolute_import
|
9 |
+
from __future__ import division
|
10 |
+
from __future__ import print_function
|
11 |
+
|
12 |
+
import os
|
13 |
+
|
14 |
+
from yacs.config import CfgNode as CN
|
15 |
+
|
16 |
+
|
17 |
+
_C = CN()
|
18 |
+
|
19 |
+
_C.OUTPUT_DIR = ''
|
20 |
+
_C.LOG_DIR = ''
|
21 |
+
_C.DATA_DIR = ''
|
22 |
+
_C.GPUS = (0,)
|
23 |
+
_C.WORKERS = 4
|
24 |
+
_C.PRINT_FREQ = 20
|
25 |
+
_C.AUTO_RESUME = False
|
26 |
+
_C.PIN_MEMORY = True
|
27 |
+
_C.RANK = 0
|
28 |
+
|
29 |
+
# Cudnn related params
|
30 |
+
_C.CUDNN = CN()
|
31 |
+
_C.CUDNN.BENCHMARK = True
|
32 |
+
_C.CUDNN.DETERMINISTIC = False
|
33 |
+
_C.CUDNN.ENABLED = True
|
34 |
+
|
35 |
+
# common params for NETWORK
|
36 |
+
_C.MODEL = CN()
|
37 |
+
_C.MODEL.NAME = 'cls_hrnet'
|
38 |
+
_C.MODEL.INIT_WEIGHTS = True
|
39 |
+
_C.MODEL.PRETRAINED = ''
|
40 |
+
_C.MODEL.NUM_JOINTS = 17
|
41 |
+
_C.MODEL.NUM_CLASSES = 1000
|
42 |
+
_C.MODEL.TAG_PER_JOINT = True
|
43 |
+
_C.MODEL.TARGET_TYPE = 'gaussian'
|
44 |
+
_C.MODEL.IMAGE_SIZE = [256, 256] # width * height, ex: 192 * 256
|
45 |
+
_C.MODEL.HEATMAP_SIZE = [64, 64] # width * height, ex: 24 * 32
|
46 |
+
_C.MODEL.SIGMA = 2
|
47 |
+
_C.MODEL.EXTRA = CN(new_allowed=True)
|
48 |
+
|
49 |
+
_C.LOSS = CN()
|
50 |
+
_C.LOSS.USE_OHKM = False
|
51 |
+
_C.LOSS.TOPK = 8
|
52 |
+
_C.LOSS.USE_TARGET_WEIGHT = True
|
53 |
+
_C.LOSS.USE_DIFFERENT_JOINTS_WEIGHT = False
|
54 |
+
|
55 |
+
# DATASET related params
|
56 |
+
_C.DATASET = CN()
|
57 |
+
_C.DATASET.ROOT = ''
|
58 |
+
_C.DATASET.DATASET = 'mpii'
|
59 |
+
_C.DATASET.TRAIN_SET = 'train'
|
60 |
+
_C.DATASET.TEST_SET = 'valid'
|
61 |
+
_C.DATASET.DATA_FORMAT = 'jpg'
|
62 |
+
_C.DATASET.HYBRID_JOINTS_TYPE = ''
|
63 |
+
_C.DATASET.SELECT_DATA = False
|
64 |
+
|
65 |
+
# training data augmentation
|
66 |
+
_C.DATASET.FLIP = True
|
67 |
+
_C.DATASET.SCALE_FACTOR = 0.25
|
68 |
+
_C.DATASET.ROT_FACTOR = 30
|
69 |
+
_C.DATASET.PROB_HALF_BODY = 0.0
|
70 |
+
_C.DATASET.NUM_JOINTS_HALF_BODY = 8
|
71 |
+
_C.DATASET.COLOR_RGB = False
|
72 |
+
|
73 |
+
# train
|
74 |
+
_C.TRAIN = CN()
|
75 |
+
|
76 |
+
_C.TRAIN.LR_FACTOR = 0.1
|
77 |
+
_C.TRAIN.LR_STEP = [90, 110]
|
78 |
+
_C.TRAIN.LR = 0.001
|
79 |
+
|
80 |
+
_C.TRAIN.OPTIMIZER = 'adam'
|
81 |
+
_C.TRAIN.MOMENTUM = 0.9
|
82 |
+
_C.TRAIN.WD = 0.0001
|
83 |
+
_C.TRAIN.NESTEROV = False
|
84 |
+
_C.TRAIN.GAMMA1 = 0.99
|
85 |
+
_C.TRAIN.GAMMA2 = 0.0
|
86 |
+
|
87 |
+
_C.TRAIN.BEGIN_EPOCH = 0
|
88 |
+
_C.TRAIN.END_EPOCH = 140
|
89 |
+
|
90 |
+
_C.TRAIN.RESUME = False
|
91 |
+
_C.TRAIN.CHECKPOINT = ''
|
92 |
+
|
93 |
+
_C.TRAIN.BATCH_SIZE_PER_GPU = 32
|
94 |
+
_C.TRAIN.SHUFFLE = True
|
95 |
+
|
96 |
+
# testing
|
97 |
+
_C.TEST = CN()
|
98 |
+
|
99 |
+
# size of images for each device
|
100 |
+
_C.TEST.BATCH_SIZE_PER_GPU = 32
|
101 |
+
# Test Model Epoch
|
102 |
+
_C.TEST.FLIP_TEST = False
|
103 |
+
_C.TEST.POST_PROCESS = False
|
104 |
+
_C.TEST.SHIFT_HEATMAP = False
|
105 |
+
|
106 |
+
_C.TEST.USE_GT_BBOX = False
|
107 |
+
|
108 |
+
# nms
|
109 |
+
_C.TEST.IMAGE_THRE = 0.1
|
110 |
+
_C.TEST.NMS_THRE = 0.6
|
111 |
+
_C.TEST.SOFT_NMS = False
|
112 |
+
_C.TEST.OKS_THRE = 0.5
|
113 |
+
_C.TEST.IN_VIS_THRE = 0.0
|
114 |
+
_C.TEST.COCO_BBOX_FILE = ''
|
115 |
+
_C.TEST.BBOX_THRE = 1.0
|
116 |
+
_C.TEST.MODEL_FILE = ''
|
117 |
+
|
118 |
+
# debug
|
119 |
+
_C.DEBUG = CN()
|
120 |
+
_C.DEBUG.DEBUG = False
|
121 |
+
_C.DEBUG.SAVE_BATCH_IMAGES_GT = False
|
122 |
+
_C.DEBUG.SAVE_BATCH_IMAGES_PRED = False
|
123 |
+
_C.DEBUG.SAVE_HEATMAPS_GT = False
|
124 |
+
_C.DEBUG.SAVE_HEATMAPS_PRED = False
|
125 |
+
|
126 |
+
|
127 |
+
def update_config(cfg, config_file):
|
128 |
+
cfg.defrost()
|
129 |
+
cfg.merge_from_file(config_file)
|
130 |
+
cfg.freeze()
|
131 |
+
|
132 |
+
|
133 |
+
if __name__ == '__main__':
|
134 |
+
import sys
|
135 |
+
with open(sys.argv[1], 'w') as f:
|
136 |
+
print(_C, file=f)
|
137 |
+
|
main/postometro_utils/pose_resnet.py
ADDED
@@ -0,0 +1,318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------
|
2 |
+
# Copyright (c) Microsoft
|
3 |
+
# Licensed under the MIT License.
|
4 |
+
# Written by Bin Xiao (Bin.Xiao@microsoft.com)
|
5 |
+
# ------------------------------------------------------------------------------
|
6 |
+
|
7 |
+
from __future__ import absolute_import
|
8 |
+
from __future__ import division
|
9 |
+
from __future__ import print_function
|
10 |
+
|
11 |
+
import os
|
12 |
+
import logging
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
from collections import OrderedDict
|
17 |
+
|
18 |
+
|
19 |
+
BN_MOMENTUM = 0.1
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
+
|
22 |
+
|
23 |
+
def conv3x3(in_planes, out_planes, stride=1):
|
24 |
+
"""3x3 convolution with padding"""
|
25 |
+
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
26 |
+
padding=1, bias=False)
|
27 |
+
|
28 |
+
|
29 |
+
class BasicBlock(nn.Module):
|
30 |
+
expansion = 1
|
31 |
+
|
32 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
33 |
+
super(BasicBlock, self).__init__()
|
34 |
+
self.conv1 = conv3x3(inplanes, planes, stride)
|
35 |
+
self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
|
36 |
+
self.relu = nn.ReLU(inplace=True)
|
37 |
+
self.conv2 = conv3x3(planes, planes)
|
38 |
+
self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
|
39 |
+
self.downsample = downsample
|
40 |
+
self.stride = stride
|
41 |
+
|
42 |
+
def forward(self, x):
|
43 |
+
residual = x
|
44 |
+
|
45 |
+
out = self.conv1(x)
|
46 |
+
out = self.bn1(out)
|
47 |
+
out = self.relu(out)
|
48 |
+
|
49 |
+
out = self.conv2(out)
|
50 |
+
out = self.bn2(out)
|
51 |
+
|
52 |
+
if self.downsample is not None:
|
53 |
+
residual = self.downsample(x)
|
54 |
+
|
55 |
+
out += residual
|
56 |
+
out = self.relu(out)
|
57 |
+
|
58 |
+
return out
|
59 |
+
|
60 |
+
|
61 |
+
class Bottleneck(nn.Module):
|
62 |
+
expansion = 4
|
63 |
+
|
64 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
65 |
+
super(Bottleneck, self).__init__()
|
66 |
+
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
|
67 |
+
self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
|
68 |
+
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
|
69 |
+
padding=1, bias=False)
|
70 |
+
self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
|
71 |
+
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1,
|
72 |
+
bias=False)
|
73 |
+
self.bn3 = nn.BatchNorm2d(planes * self.expansion,
|
74 |
+
momentum=BN_MOMENTUM)
|
75 |
+
self.relu = nn.ReLU(inplace=True)
|
76 |
+
self.downsample = downsample
|
77 |
+
self.stride = stride
|
78 |
+
|
79 |
+
def forward(self, x):
|
80 |
+
residual = x
|
81 |
+
|
82 |
+
out = self.conv1(x)
|
83 |
+
out = self.bn1(out)
|
84 |
+
out = self.relu(out)
|
85 |
+
|
86 |
+
out = self.conv2(out)
|
87 |
+
out = self.bn2(out)
|
88 |
+
out = self.relu(out)
|
89 |
+
|
90 |
+
out = self.conv3(out)
|
91 |
+
out = self.bn3(out)
|
92 |
+
|
93 |
+
if self.downsample is not None:
|
94 |
+
residual = self.downsample(x)
|
95 |
+
|
96 |
+
out += residual
|
97 |
+
out = self.relu(out)
|
98 |
+
|
99 |
+
return out
|
100 |
+
|
101 |
+
|
102 |
+
class Bottleneck_CAFFE(nn.Module):
|
103 |
+
expansion = 4
|
104 |
+
|
105 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
106 |
+
super(Bottleneck_CAFFE, self).__init__()
|
107 |
+
# add stride to conv1x1
|
108 |
+
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False)
|
109 |
+
self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
|
110 |
+
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1,
|
111 |
+
padding=1, bias=False)
|
112 |
+
self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
|
113 |
+
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1,
|
114 |
+
bias=False)
|
115 |
+
self.bn3 = nn.BatchNorm2d(planes * self.expansion,
|
116 |
+
momentum=BN_MOMENTUM)
|
117 |
+
self.relu = nn.ReLU(inplace=True)
|
118 |
+
self.downsample = downsample
|
119 |
+
self.stride = stride
|
120 |
+
|
121 |
+
def forward(self, x):
|
122 |
+
residual = x
|
123 |
+
|
124 |
+
out = self.conv1(x)
|
125 |
+
out = self.bn1(out)
|
126 |
+
out = self.relu(out)
|
127 |
+
|
128 |
+
out = self.conv2(out)
|
129 |
+
out = self.bn2(out)
|
130 |
+
out = self.relu(out)
|
131 |
+
|
132 |
+
out = self.conv3(out)
|
133 |
+
out = self.bn3(out)
|
134 |
+
|
135 |
+
if self.downsample is not None:
|
136 |
+
residual = self.downsample(x)
|
137 |
+
|
138 |
+
out += residual
|
139 |
+
out = self.relu(out)
|
140 |
+
|
141 |
+
return out
|
142 |
+
|
143 |
+
|
144 |
+
class PoseResNet(nn.Module):
|
145 |
+
|
146 |
+
def __init__(self, block, layers, cfg, **kwargs):
|
147 |
+
self.inplanes = 64
|
148 |
+
extra = cfg.MODEL.EXTRA
|
149 |
+
self.deconv_with_bias = extra.DECONV_WITH_BIAS
|
150 |
+
|
151 |
+
super(PoseResNet, self).__init__()
|
152 |
+
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
|
153 |
+
bias=False)
|
154 |
+
self.bn1 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM)
|
155 |
+
self.relu = nn.ReLU(inplace=True)
|
156 |
+
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
157 |
+
self.layer1 = self._make_layer(block, 64, layers[0])
|
158 |
+
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
|
159 |
+
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
|
160 |
+
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
|
161 |
+
|
162 |
+
# used for deconv layers
|
163 |
+
# self.deconv_layers = self._make_deconv_layer(
|
164 |
+
# extra.NUM_DECONV_LAYERS,
|
165 |
+
# extra.NUM_DECONV_FILTERS,
|
166 |
+
# extra.NUM_DECONV_KERNELS,
|
167 |
+
# )
|
168 |
+
|
169 |
+
# self.final_layer = nn.Conv2d(
|
170 |
+
# in_channels=extra.NUM_DECONV_FILTERS[-1],
|
171 |
+
# out_channels=cfg.MODEL.NUM_JOINTS,
|
172 |
+
# kernel_size=extra.FINAL_CONV_KERNEL,
|
173 |
+
# stride=1,
|
174 |
+
# padding=1 if extra.FINAL_CONV_KERNEL == 3 else 0
|
175 |
+
# )
|
176 |
+
|
177 |
+
def _make_layer(self, block, planes, blocks, stride=1):
|
178 |
+
downsample = None
|
179 |
+
if stride != 1 or self.inplanes != planes * block.expansion:
|
180 |
+
downsample = nn.Sequential(
|
181 |
+
nn.Conv2d(self.inplanes, planes * block.expansion,
|
182 |
+
kernel_size=1, stride=stride, bias=False),
|
183 |
+
nn.BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM),
|
184 |
+
)
|
185 |
+
|
186 |
+
layers = []
|
187 |
+
layers.append(block(self.inplanes, planes, stride, downsample))
|
188 |
+
self.inplanes = planes * block.expansion
|
189 |
+
for i in range(1, blocks):
|
190 |
+
layers.append(block(self.inplanes, planes))
|
191 |
+
|
192 |
+
return nn.Sequential(*layers)
|
193 |
+
|
194 |
+
def _get_deconv_cfg(self, deconv_kernel, index):
|
195 |
+
if deconv_kernel == 4:
|
196 |
+
padding = 1
|
197 |
+
output_padding = 0
|
198 |
+
elif deconv_kernel == 3:
|
199 |
+
padding = 1
|
200 |
+
output_padding = 1
|
201 |
+
elif deconv_kernel == 2:
|
202 |
+
padding = 0
|
203 |
+
output_padding = 0
|
204 |
+
|
205 |
+
return deconv_kernel, padding, output_padding
|
206 |
+
|
207 |
+
def _make_deconv_layer(self, num_layers, num_filters, num_kernels):
|
208 |
+
assert num_layers == len(num_filters), \
|
209 |
+
'ERROR: num_deconv_layers is different len(num_deconv_filters)'
|
210 |
+
assert num_layers == len(num_kernels), \
|
211 |
+
'ERROR: num_deconv_layers is different len(num_deconv_filters)'
|
212 |
+
|
213 |
+
layers = []
|
214 |
+
for i in range(num_layers):
|
215 |
+
kernel, padding, output_padding = \
|
216 |
+
self._get_deconv_cfg(num_kernels[i], i)
|
217 |
+
|
218 |
+
planes = num_filters[i]
|
219 |
+
layers.append(
|
220 |
+
nn.ConvTranspose2d(
|
221 |
+
in_channels=self.inplanes,
|
222 |
+
out_channels=planes,
|
223 |
+
kernel_size=kernel,
|
224 |
+
stride=2,
|
225 |
+
padding=padding,
|
226 |
+
output_padding=output_padding,
|
227 |
+
bias=self.deconv_with_bias))
|
228 |
+
layers.append(nn.BatchNorm2d(planes, momentum=BN_MOMENTUM))
|
229 |
+
layers.append(nn.ReLU(inplace=True))
|
230 |
+
self.inplanes = planes
|
231 |
+
|
232 |
+
return nn.Sequential(*layers)
|
233 |
+
|
234 |
+
def forward(self, x, skip_early = False, use_pct = False):
|
235 |
+
if not use_pct:
|
236 |
+
x = self.conv1(x)
|
237 |
+
x = self.bn1(x)
|
238 |
+
x = self.relu(x)
|
239 |
+
x = self.maxpool(x)
|
240 |
+
x = self.layer1(x)
|
241 |
+
x = self.layer2(x)
|
242 |
+
x = self.layer3(x)
|
243 |
+
x = self.layer4(x)
|
244 |
+
|
245 |
+
return x
|
246 |
+
|
247 |
+
if skip_early:
|
248 |
+
x = self.conv1(x)
|
249 |
+
x = self.bn1(x)
|
250 |
+
x = self.relu(x)
|
251 |
+
x = self.maxpool(x)
|
252 |
+
return x
|
253 |
+
|
254 |
+
x = self.layer1(x)
|
255 |
+
x = self.layer2(x)
|
256 |
+
x = self.layer3(x)
|
257 |
+
x = self.layer4(x)
|
258 |
+
|
259 |
+
return x
|
260 |
+
|
261 |
+
def init_weights(self, pretrained=''):
|
262 |
+
if os.path.isfile(pretrained):
|
263 |
+
# pretrained_state_dict = torch.load(pretrained)
|
264 |
+
logger.info('=> loading pretrained model {}'.format(pretrained))
|
265 |
+
# self.load_state_dict(pretrained_state_dict, strict=False)
|
266 |
+
checkpoint = torch.load(pretrained)
|
267 |
+
if isinstance(checkpoint, OrderedDict):
|
268 |
+
state_dict = checkpoint
|
269 |
+
elif isinstance(checkpoint, dict) and 'state_dict' in checkpoint:
|
270 |
+
state_dict_old = checkpoint['state_dict']
|
271 |
+
state_dict = OrderedDict()
|
272 |
+
# delete 'module.' because it is saved from DataParallel module
|
273 |
+
for key in state_dict_old.keys():
|
274 |
+
if key.startswith('module.'):
|
275 |
+
# state_dict[key[7:]] = state_dict[key]
|
276 |
+
# state_dict.pop(key)
|
277 |
+
state_dict[key[7:]] = state_dict_old[key]
|
278 |
+
else:
|
279 |
+
state_dict[key] = state_dict_old[key]
|
280 |
+
else:
|
281 |
+
raise RuntimeError(
|
282 |
+
'No state_dict found in checkpoint file {}'.format(pretrained))
|
283 |
+
state_dict_old = state_dict
|
284 |
+
state_dict = OrderedDict()
|
285 |
+
for k,v in state_dict_old.items():
|
286 |
+
if 'deconv_layers' in k or 'final_layer' in k:
|
287 |
+
continue
|
288 |
+
else:
|
289 |
+
state_dict[k] = state_dict_old[k]
|
290 |
+
self.load_state_dict(state_dict, strict=True)
|
291 |
+
else:
|
292 |
+
logger.error('=> imagenet pretrained model dose not exist')
|
293 |
+
logger.error('=> please download it first')
|
294 |
+
raise ValueError('imagenet pretrained model does not exist')
|
295 |
+
|
296 |
+
|
297 |
+
resnet_spec = {18: (BasicBlock, [2, 2, 2, 2]),
|
298 |
+
34: (BasicBlock, [3, 4, 6, 3]),
|
299 |
+
50: (Bottleneck, [3, 4, 6, 3]),
|
300 |
+
101: (Bottleneck, [3, 4, 23, 3]),
|
301 |
+
152: (Bottleneck, [3, 8, 36, 3])}
|
302 |
+
|
303 |
+
|
304 |
+
def get_pose_net(cfg, is_train, **kwargs):
|
305 |
+
num_layers = cfg.MODEL.EXTRA.NUM_LAYERS
|
306 |
+
style = cfg.MODEL.STYLE
|
307 |
+
|
308 |
+
block_class, layers = resnet_spec[num_layers]
|
309 |
+
|
310 |
+
if style == 'caffe':
|
311 |
+
block_class = Bottleneck_CAFFE
|
312 |
+
|
313 |
+
model = PoseResNet(block_class, layers, cfg, **kwargs)
|
314 |
+
|
315 |
+
if is_train and cfg.MODEL.INIT_WEIGHTS:
|
316 |
+
model.init_weights(cfg.MODEL.PRETRAINED)
|
317 |
+
|
318 |
+
return model
|
main/postometro_utils/pose_resnet_config.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------
|
2 |
+
# Copyright (c) Microsoft
|
3 |
+
# Licensed under the MIT License.
|
4 |
+
# Written by Bin Xiao (Bin.Xiao@microsoft.com)
|
5 |
+
# ------------------------------------------------------------------------------
|
6 |
+
|
7 |
+
from __future__ import absolute_import
|
8 |
+
from __future__ import division
|
9 |
+
from __future__ import print_function
|
10 |
+
|
11 |
+
import os
|
12 |
+
import yaml
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
from easydict import EasyDict as edict
|
16 |
+
|
17 |
+
|
18 |
+
config = edict()
|
19 |
+
|
20 |
+
config.OUTPUT_DIR = ''
|
21 |
+
config.LOG_DIR = ''
|
22 |
+
config.DATA_DIR = ''
|
23 |
+
config.GPUS = '0'
|
24 |
+
config.WORKERS = 4
|
25 |
+
config.PRINT_FREQ = 20
|
26 |
+
|
27 |
+
# Cudnn related params
|
28 |
+
config.CUDNN = edict()
|
29 |
+
config.CUDNN.BENCHMARK = True
|
30 |
+
config.CUDNN.DETERMINISTIC = False
|
31 |
+
config.CUDNN.ENABLED = True
|
32 |
+
|
33 |
+
# pose_resnet related params
|
34 |
+
POSE_RESNET = edict()
|
35 |
+
POSE_RESNET.NUM_LAYERS = 50
|
36 |
+
POSE_RESNET.DECONV_WITH_BIAS = False
|
37 |
+
POSE_RESNET.NUM_DECONV_LAYERS = 3
|
38 |
+
POSE_RESNET.NUM_DECONV_FILTERS = [256, 256, 256]
|
39 |
+
POSE_RESNET.NUM_DECONV_KERNELS = [4, 4, 4]
|
40 |
+
POSE_RESNET.FINAL_CONV_KERNEL = 1
|
41 |
+
POSE_RESNET.TARGET_TYPE = 'gaussian'
|
42 |
+
POSE_RESNET.HEATMAP_SIZE = [64, 64] # width * height, ex: 24 * 32
|
43 |
+
POSE_RESNET.SIGMA = 2
|
44 |
+
|
45 |
+
MODEL_EXTRAS = {
|
46 |
+
'pose_resnet': POSE_RESNET,
|
47 |
+
}
|
48 |
+
|
49 |
+
# common params for NETWORK
|
50 |
+
config.MODEL = edict()
|
51 |
+
config.MODEL.NAME = 'pose_resnet'
|
52 |
+
config.MODEL.INIT_WEIGHTS = True
|
53 |
+
config.MODEL.PRETRAINED = ''
|
54 |
+
config.MODEL.NUM_JOINTS = 16
|
55 |
+
config.MODEL.IMAGE_SIZE = [256, 256] # width * height, ex: 192 * 256
|
56 |
+
config.MODEL.EXTRA = MODEL_EXTRAS[config.MODEL.NAME]
|
57 |
+
|
58 |
+
config.MODEL.STYLE = 'pytorch'
|
59 |
+
|
60 |
+
config.LOSS = edict()
|
61 |
+
config.LOSS.USE_TARGET_WEIGHT = True
|
62 |
+
|
63 |
+
# DATASET related params
|
64 |
+
config.DATASET = edict()
|
65 |
+
config.DATASET.ROOT = ''
|
66 |
+
config.DATASET.DATASET = 'mpii'
|
67 |
+
config.DATASET.TRAIN_SET = 'train'
|
68 |
+
config.DATASET.TEST_SET = 'valid'
|
69 |
+
config.DATASET.DATA_FORMAT = 'jpg'
|
70 |
+
config.DATASET.HYBRID_JOINTS_TYPE = ''
|
71 |
+
config.DATASET.SELECT_DATA = False
|
72 |
+
|
73 |
+
# training data augmentation
|
74 |
+
config.DATASET.FLIP = True
|
75 |
+
config.DATASET.SCALE_FACTOR = 0.25
|
76 |
+
config.DATASET.ROT_FACTOR = 30
|
77 |
+
|
78 |
+
# train
|
79 |
+
config.TRAIN = edict()
|
80 |
+
|
81 |
+
config.TRAIN.LR_FACTOR = 0.1
|
82 |
+
config.TRAIN.LR_STEP = [90, 110]
|
83 |
+
config.TRAIN.LR = 0.001
|
84 |
+
|
85 |
+
config.TRAIN.OPTIMIZER = 'adam'
|
86 |
+
config.TRAIN.MOMENTUM = 0.9
|
87 |
+
config.TRAIN.WD = 0.0001
|
88 |
+
config.TRAIN.NESTEROV = False
|
89 |
+
config.TRAIN.GAMMA1 = 0.99
|
90 |
+
config.TRAIN.GAMMA2 = 0.0
|
91 |
+
|
92 |
+
config.TRAIN.BEGIN_EPOCH = 0
|
93 |
+
config.TRAIN.END_EPOCH = 140
|
94 |
+
|
95 |
+
config.TRAIN.RESUME = False
|
96 |
+
config.TRAIN.CHECKPOINT = ''
|
97 |
+
|
98 |
+
config.TRAIN.BATCH_SIZE = 32
|
99 |
+
config.TRAIN.SHUFFLE = True
|
100 |
+
|
101 |
+
# testing
|
102 |
+
config.TEST = edict()
|
103 |
+
|
104 |
+
# size of images for each device
|
105 |
+
config.TEST.BATCH_SIZE = 32
|
106 |
+
# Test Model Epoch
|
107 |
+
config.TEST.FLIP_TEST = False
|
108 |
+
config.TEST.POST_PROCESS = True
|
109 |
+
config.TEST.SHIFT_HEATMAP = True
|
110 |
+
|
111 |
+
config.TEST.USE_GT_BBOX = False
|
112 |
+
# nms
|
113 |
+
config.TEST.OKS_THRE = 0.5
|
114 |
+
config.TEST.IN_VIS_THRE = 0.0
|
115 |
+
config.TEST.COCO_BBOX_FILE = ''
|
116 |
+
config.TEST.BBOX_THRE = 1.0
|
117 |
+
config.TEST.MODEL_FILE = ''
|
118 |
+
config.TEST.IMAGE_THRE = 0.0
|
119 |
+
config.TEST.NMS_THRE = 1.0
|
120 |
+
|
121 |
+
# debug
|
122 |
+
config.DEBUG = edict()
|
123 |
+
config.DEBUG.DEBUG = False
|
124 |
+
config.DEBUG.SAVE_BATCH_IMAGES_GT = False
|
125 |
+
config.DEBUG.SAVE_BATCH_IMAGES_PRED = False
|
126 |
+
config.DEBUG.SAVE_HEATMAPS_GT = False
|
127 |
+
config.DEBUG.SAVE_HEATMAPS_PRED = False
|
128 |
+
|
129 |
+
|
130 |
+
def _update_dict(k, v):
|
131 |
+
if k == 'DATASET':
|
132 |
+
if 'MEAN' in v and v['MEAN']:
|
133 |
+
v['MEAN'] = np.array([eval(x) if isinstance(x, str) else x
|
134 |
+
for x in v['MEAN']])
|
135 |
+
if 'STD' in v and v['STD']:
|
136 |
+
v['STD'] = np.array([eval(x) if isinstance(x, str) else x
|
137 |
+
for x in v['STD']])
|
138 |
+
if k == 'MODEL':
|
139 |
+
if 'EXTRA' in v and 'HEATMAP_SIZE' in v['EXTRA']:
|
140 |
+
if isinstance(v['EXTRA']['HEATMAP_SIZE'], int):
|
141 |
+
v['EXTRA']['HEATMAP_SIZE'] = np.array(
|
142 |
+
[v['EXTRA']['HEATMAP_SIZE'], v['EXTRA']['HEATMAP_SIZE']])
|
143 |
+
else:
|
144 |
+
v['EXTRA']['HEATMAP_SIZE'] = np.array(
|
145 |
+
v['EXTRA']['HEATMAP_SIZE'])
|
146 |
+
if 'IMAGE_SIZE' in v:
|
147 |
+
if isinstance(v['IMAGE_SIZE'], int):
|
148 |
+
v['IMAGE_SIZE'] = np.array([v['IMAGE_SIZE'], v['IMAGE_SIZE']])
|
149 |
+
else:
|
150 |
+
v['IMAGE_SIZE'] = np.array(v['IMAGE_SIZE'])
|
151 |
+
for vk, vv in v.items():
|
152 |
+
if vk in config[k]:
|
153 |
+
config[k][vk] = vv
|
154 |
+
else:
|
155 |
+
raise ValueError("{}.{} not exist in config.py".format(k, vk))
|
156 |
+
|
157 |
+
|
158 |
+
def update_config(config_file):
|
159 |
+
exp_config = None
|
160 |
+
with open(config_file) as f:
|
161 |
+
exp_config = edict(yaml.load(f))
|
162 |
+
for k, v in exp_config.items():
|
163 |
+
if k in config:
|
164 |
+
if isinstance(v, dict):
|
165 |
+
_update_dict(k, v)
|
166 |
+
else:
|
167 |
+
if k == 'SCALES':
|
168 |
+
config[k][0] = (tuple(v))
|
169 |
+
else:
|
170 |
+
config[k] = v
|
171 |
+
else:
|
172 |
+
raise ValueError("{} not exist in config.py".format(k))
|
173 |
+
|
174 |
+
|
175 |
+
def gen_config(config_file):
|
176 |
+
cfg = dict(config)
|
177 |
+
for k, v in cfg.items():
|
178 |
+
if isinstance(v, edict):
|
179 |
+
cfg[k] = dict(v)
|
180 |
+
|
181 |
+
with open(config_file, 'w') as f:
|
182 |
+
yaml.dump(dict(cfg), f, default_flow_style=False)
|
183 |
+
|
184 |
+
|
185 |
+
def update_dir(model_dir, log_dir, data_dir):
|
186 |
+
if model_dir:
|
187 |
+
config.OUTPUT_DIR = model_dir
|
188 |
+
|
189 |
+
if log_dir:
|
190 |
+
config.LOG_DIR = log_dir
|
191 |
+
|
192 |
+
if data_dir:
|
193 |
+
config.DATA_DIR = data_dir
|
194 |
+
|
195 |
+
config.DATASET.ROOT = os.path.join(
|
196 |
+
config.DATA_DIR, config.DATASET.ROOT)
|
197 |
+
|
198 |
+
config.TEST.COCO_BBOX_FILE = os.path.join(
|
199 |
+
config.DATA_DIR, config.TEST.COCO_BBOX_FILE)
|
200 |
+
|
201 |
+
config.MODEL.PRETRAINED = os.path.join(
|
202 |
+
config.DATA_DIR, config.MODEL.PRETRAINED)
|
203 |
+
|
204 |
+
|
205 |
+
def get_model_name(cfg):
|
206 |
+
name = cfg.MODEL.NAME
|
207 |
+
full_name = cfg.MODEL.NAME
|
208 |
+
extra = cfg.MODEL.EXTRA
|
209 |
+
if name in ['pose_resnet']:
|
210 |
+
name = '{model}_{num_layers}'.format(
|
211 |
+
model=name,
|
212 |
+
num_layers=extra.NUM_LAYERS)
|
213 |
+
deconv_suffix = ''.join(
|
214 |
+
'd{}'.format(num_filters)
|
215 |
+
for num_filters in extra.NUM_DECONV_FILTERS)
|
216 |
+
full_name = '{height}x{width}_{name}_{deconv_suffix}'.format(
|
217 |
+
height=cfg.MODEL.IMAGE_SIZE[1],
|
218 |
+
width=cfg.MODEL.IMAGE_SIZE[0],
|
219 |
+
name=name,
|
220 |
+
deconv_suffix=deconv_suffix)
|
221 |
+
else:
|
222 |
+
raise ValueError('Unkown model: {}'.format(cfg.MODEL))
|
223 |
+
|
224 |
+
return name, full_name
|
225 |
+
|
226 |
+
|
227 |
+
if __name__ == '__main__':
|
228 |
+
import sys
|
229 |
+
gen_config(sys.argv[1])
|
main/postometro_utils/pose_w48_256x192_adam_lr1e-3.yaml
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
AUTO_RESUME: true
|
2 |
+
CUDNN:
|
3 |
+
BENCHMARK: true
|
4 |
+
DETERMINISTIC: false
|
5 |
+
ENABLED: true
|
6 |
+
DATA_DIR: ''
|
7 |
+
GPUS: (0,1,2,3)
|
8 |
+
OUTPUT_DIR: 'output'
|
9 |
+
LOG_DIR: 'log'
|
10 |
+
WORKERS: 24
|
11 |
+
PRINT_FREQ: 100
|
12 |
+
|
13 |
+
DATASET:
|
14 |
+
COLOR_RGB: true
|
15 |
+
DATASET: 'coco'
|
16 |
+
DATA_FORMAT: jpg
|
17 |
+
FLIP: true
|
18 |
+
NUM_JOINTS_HALF_BODY: 8
|
19 |
+
PROB_HALF_BODY: 0.3
|
20 |
+
ROOT: 'data/coco/'
|
21 |
+
ROT_FACTOR: 45
|
22 |
+
SCALE_FACTOR: 0.35
|
23 |
+
TEST_SET: 'val2017'
|
24 |
+
TRAIN_SET: 'train2017'
|
25 |
+
MODEL:
|
26 |
+
INIT_WEIGHTS: true
|
27 |
+
NAME: pose_hrnet
|
28 |
+
NUM_JOINTS: 17
|
29 |
+
PRETRAINED: 'models/pytorch/imagenet/hrnet_w48-8ef0771d.pth'
|
30 |
+
TARGET_TYPE: gaussian
|
31 |
+
IMAGE_SIZE:
|
32 |
+
- 192
|
33 |
+
- 256
|
34 |
+
HEATMAP_SIZE:
|
35 |
+
- 48
|
36 |
+
- 64
|
37 |
+
SIGMA: 2
|
38 |
+
EXTRA:
|
39 |
+
PRETRAINED_LAYERS:
|
40 |
+
- 'conv1'
|
41 |
+
- 'bn1'
|
42 |
+
- 'conv2'
|
43 |
+
- 'bn2'
|
44 |
+
- 'layer1'
|
45 |
+
- 'transition1'
|
46 |
+
- 'stage2'
|
47 |
+
- 'transition2'
|
48 |
+
- 'stage3'
|
49 |
+
- 'transition3'
|
50 |
+
- 'stage4'
|
51 |
+
FINAL_CONV_KERNEL: 1
|
52 |
+
STAGE2:
|
53 |
+
NUM_MODULES: 1
|
54 |
+
NUM_BRANCHES: 2
|
55 |
+
BLOCK: BASIC
|
56 |
+
NUM_BLOCKS:
|
57 |
+
- 4
|
58 |
+
- 4
|
59 |
+
NUM_CHANNELS:
|
60 |
+
- 48
|
61 |
+
- 96
|
62 |
+
FUSE_METHOD: SUM
|
63 |
+
STAGE3:
|
64 |
+
NUM_MODULES: 4
|
65 |
+
NUM_BRANCHES: 3
|
66 |
+
BLOCK: BASIC
|
67 |
+
NUM_BLOCKS:
|
68 |
+
- 4
|
69 |
+
- 4
|
70 |
+
- 4
|
71 |
+
NUM_CHANNELS:
|
72 |
+
- 48
|
73 |
+
- 96
|
74 |
+
- 192
|
75 |
+
FUSE_METHOD: SUM
|
76 |
+
STAGE4:
|
77 |
+
NUM_MODULES: 3
|
78 |
+
NUM_BRANCHES: 4
|
79 |
+
BLOCK: BASIC
|
80 |
+
NUM_BLOCKS:
|
81 |
+
- 4
|
82 |
+
- 4
|
83 |
+
- 4
|
84 |
+
- 4
|
85 |
+
NUM_CHANNELS:
|
86 |
+
- 48
|
87 |
+
- 96
|
88 |
+
- 192
|
89 |
+
- 384
|
90 |
+
FUSE_METHOD: SUM
|
91 |
+
LOSS:
|
92 |
+
USE_TARGET_WEIGHT: true
|
93 |
+
TRAIN:
|
94 |
+
BATCH_SIZE_PER_GPU: 32
|
95 |
+
SHUFFLE: true
|
96 |
+
BEGIN_EPOCH: 0
|
97 |
+
END_EPOCH: 210
|
98 |
+
OPTIMIZER: adam
|
99 |
+
LR: 0.001
|
100 |
+
LR_FACTOR: 0.1
|
101 |
+
LR_STEP:
|
102 |
+
- 170
|
103 |
+
- 200
|
104 |
+
WD: 0.0001
|
105 |
+
GAMMA1: 0.99
|
106 |
+
GAMMA2: 0.0
|
107 |
+
MOMENTUM: 0.9
|
108 |
+
NESTEROV: false
|
109 |
+
TEST:
|
110 |
+
BATCH_SIZE_PER_GPU: 32
|
111 |
+
COCO_BBOX_FILE: 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json'
|
112 |
+
BBOX_THRE: 1.0
|
113 |
+
IMAGE_THRE: 0.0
|
114 |
+
IN_VIS_THRE: 0.2
|
115 |
+
MODEL_FILE: ''
|
116 |
+
NMS_THRE: 1.0
|
117 |
+
OKS_THRE: 0.9
|
118 |
+
USE_GT_BBOX: true
|
119 |
+
FLIP_TEST: true
|
120 |
+
POST_PROCESS: true
|
121 |
+
SHIFT_HEATMAP: true
|
122 |
+
DEBUG:
|
123 |
+
DEBUG: true
|
124 |
+
SAVE_BATCH_IMAGES_GT: true
|
125 |
+
SAVE_BATCH_IMAGES_PRED: true
|
126 |
+
SAVE_HEATMAPS_GT: true
|
127 |
+
SAVE_HEATMAPS_PRED: true
|
main/postometro_utils/positional_encoding.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ----------------------------------------------------------------------------------------------
|
2 |
+
# FastMETRO Official Code
|
3 |
+
# Copyright (c) POSTECH Algorithmic Machine Intelligence Lab. (P-AMI Lab.) All Rights Reserved
|
4 |
+
# Licensed under the MIT license.
|
5 |
+
# ----------------------------------------------------------------------------------------------
|
6 |
+
# Modified from DETR (https://github.com/facebookresearch/detr)
|
7 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved [see https://github.com/facebookresearch/detr/blob/main/LICENSE for details]
|
8 |
+
# ----------------------------------------------------------------------------------------------
|
9 |
+
|
10 |
+
import math
|
11 |
+
import torch
|
12 |
+
from torch import nn
|
13 |
+
|
14 |
+
class PositionEmbeddingSine(nn.Module):
|
15 |
+
"""
|
16 |
+
This is a more standard version of the position embedding, very similar to the one
|
17 |
+
used by the Attention is all you need paper, generalized to work on images.
|
18 |
+
"""
|
19 |
+
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
|
20 |
+
super().__init__()
|
21 |
+
self.num_pos_feats = num_pos_feats
|
22 |
+
self.temperature = temperature
|
23 |
+
self.normalize = normalize
|
24 |
+
if scale is not None and normalize is False:
|
25 |
+
raise ValueError("normalize should be True if scale is passed")
|
26 |
+
if scale is None:
|
27 |
+
scale = 2 * math.pi
|
28 |
+
self.scale = scale
|
29 |
+
|
30 |
+
def forward(self, bs, h, w, device):
|
31 |
+
ones = torch.ones((bs, h, w), dtype=torch.bool, device=device)
|
32 |
+
y_embed = ones.cumsum(1, dtype=torch.float32)
|
33 |
+
x_embed = ones.cumsum(2, dtype=torch.float32)
|
34 |
+
if self.normalize:
|
35 |
+
eps = 1e-6
|
36 |
+
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
|
37 |
+
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
|
38 |
+
|
39 |
+
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=device)
|
40 |
+
dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode='floor') / self.num_pos_feats) # cancel warning
|
41 |
+
|
42 |
+
pos_x = x_embed[:, :, :, None] / dim_t
|
43 |
+
pos_y = y_embed[:, :, :, None] / dim_t
|
44 |
+
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
|
45 |
+
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
|
46 |
+
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
47 |
+
return pos
|
48 |
+
|
49 |
+
|
50 |
+
def build_position_encoding(pos_type, hidden_dim):
|
51 |
+
N_steps = hidden_dim // 2
|
52 |
+
if pos_type == 'sine':
|
53 |
+
position_embedding = PositionEmbeddingSine(N_steps, normalize=True)
|
54 |
+
else:
|
55 |
+
raise ValueError("not supported {pos_type}")
|
56 |
+
|
57 |
+
return position_embedding
|
main/postometro_utils/renderer_pyrender.py
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ----------------------------------------------------------------------------------------------
|
2 |
+
# Modified from Pose2Mesh (https://github.com/hongsukchoi/Pose2Mesh_RELEASE)
|
3 |
+
# Copyright (c) Hongsuk Choi. All Rights Reserved [see https://github.com/hongsukchoi/Pose2Mesh_RELEASE/blob/main/LICENSE for details]
|
4 |
+
# ----------------------------------------------------------------------------------------------
|
5 |
+
|
6 |
+
import os
|
7 |
+
os.environ['PYOPENGL_PLATFORM'] = 'osmesa'
|
8 |
+
import torch
|
9 |
+
import numpy as np
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import math
|
12 |
+
import cv2
|
13 |
+
import trimesh
|
14 |
+
import pyrender
|
15 |
+
from pyrender.constants import RenderFlags
|
16 |
+
|
17 |
+
def crop_bbox(bbox_meta, resolution, rgb, valid_mask):
|
18 |
+
bbox, original_img_height, original_img_width = bbox_meta['bbox'], *bbox_meta['img_hw']
|
19 |
+
start_x = int(bbox[0])
|
20 |
+
start_y = int(bbox[1])
|
21 |
+
end_x = start_x + int(resolution[0]) # w + start_x
|
22 |
+
end_y = start_y + int(resolution[1]) # h + start_y
|
23 |
+
real_start_x, real_start_y, real_end_x, real_end_y = max(0, start_x), max(0, start_y), min(original_img_width, end_x), min(original_img_height, end_y)
|
24 |
+
max_height, max_width = rgb.shape[:2]
|
25 |
+
real_rgb = rgb[(real_start_y - start_y):((real_end_y - end_y) if real_end_y < end_y else max_height),
|
26 |
+
(real_start_x - start_x):((real_end_x - end_x) if real_end_x < end_x else max_width)].copy()
|
27 |
+
real_valid_mask = valid_mask[(real_start_y - start_y):((real_end_y - end_y) if real_end_y < end_y else max_height),
|
28 |
+
(real_start_x - start_x):((real_end_x - end_x) if real_end_x < end_x else max_width)].copy()
|
29 |
+
return {'bbox': [real_start_x, real_start_y, real_end_x, real_end_y], 'img_hw': [original_img_height, original_img_width]}, real_rgb, real_valid_mask
|
30 |
+
|
31 |
+
|
32 |
+
class WeakPerspectiveCamera(pyrender.Camera):
|
33 |
+
def __init__(self, scale, translation, znear=pyrender.camera.DEFAULT_Z_NEAR, zfar=None, name=None):
|
34 |
+
super(WeakPerspectiveCamera, self).__init__(znear=znear, zfar=zfar, name=name)
|
35 |
+
self.scale = scale
|
36 |
+
self.translation = translation
|
37 |
+
|
38 |
+
def get_projection_matrix(self, width=None, height=None):
|
39 |
+
P = np.eye(4)
|
40 |
+
P[0, 0] = self.scale[0]
|
41 |
+
P[1, 1] = self.scale[1]
|
42 |
+
P[0, 3] = self.translation[0] * self.scale[0]
|
43 |
+
P[1, 3] = -self.translation[1] * self.scale[1]
|
44 |
+
P[2, 2] = -1
|
45 |
+
return P
|
46 |
+
|
47 |
+
|
48 |
+
class PyRender_Renderer:
|
49 |
+
def __init__(self, resolution=(256, 256), faces=None, orig_img=False, wireframe=False):
|
50 |
+
self.resolution = resolution
|
51 |
+
self.faces = faces
|
52 |
+
self.orig_img = orig_img
|
53 |
+
self.wireframe = wireframe
|
54 |
+
self.renderer = pyrender.OffscreenRenderer(viewport_width=self.resolution[0],
|
55 |
+
viewport_height=self.resolution[1],
|
56 |
+
point_size=1.0)
|
57 |
+
|
58 |
+
# set the scene & create light source
|
59 |
+
self.scene = pyrender.Scene(bg_color=[0.0, 0.0, 0.0, 0.0], ambient_light=(0.05, 0.05, 0.05))
|
60 |
+
light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=3.0)
|
61 |
+
light_pose = trimesh.transformations.rotation_matrix(np.radians(-45), [1, 0, 0])
|
62 |
+
self.scene.add(light, pose=light_pose)
|
63 |
+
light_pose = trimesh.transformations.rotation_matrix(np.radians(45), [0, 1, 0])
|
64 |
+
self.scene.add(light, pose=light_pose)
|
65 |
+
|
66 |
+
# mesh colors
|
67 |
+
self.colors_dict = {'blue': np.array([0.35, 0.60, 0.92]),
|
68 |
+
'neutral': np.array([0.7, 0.7, 0.6]),
|
69 |
+
'pink': np.array([0.7, 0.5, 0.5]),
|
70 |
+
'white': np.array([1.0, 0.98, 0.94]),
|
71 |
+
'green': np.array([0.5, 0.55, 0.3]),
|
72 |
+
'sky': np.array([0.3, 0.5, 0.55])}
|
73 |
+
|
74 |
+
def __call__(self, verts, bbox_meta, img=np.zeros((224, 224, 3)), cam=np.array([1, 0, 0]),
|
75 |
+
angle=None, axis=None, mesh_filename=None, color_type=None, color=[0.7, 0.7, 0.6]):
|
76 |
+
if color_type != None:
|
77 |
+
color = self.colors_dict[color_type]
|
78 |
+
|
79 |
+
mesh = trimesh.Trimesh(vertices=verts, faces=self.faces, process=False)
|
80 |
+
Rx = trimesh.transformations.rotation_matrix(math.radians(180), [1, 0, 0])
|
81 |
+
mesh.apply_transform(Rx)
|
82 |
+
if mesh_filename is not None:
|
83 |
+
mesh.export(mesh_filename)
|
84 |
+
if angle and axis:
|
85 |
+
R = trimesh.transformations.rotation_matrix(math.radians(angle), axis)
|
86 |
+
mesh.apply_transform(R)
|
87 |
+
|
88 |
+
sy, tx, ty = cam
|
89 |
+
sx = sy
|
90 |
+
camera = WeakPerspectiveCamera(scale=[sx, sy], translation=[tx, ty], zfar=1000.0)
|
91 |
+
|
92 |
+
material = pyrender.MetallicRoughnessMaterial(
|
93 |
+
metallicFactor=0.2,
|
94 |
+
roughnessFactor=1.0,
|
95 |
+
alphaMode='OPAQUE',
|
96 |
+
baseColorFactor=(color[0], color[1], color[2], 1.0)
|
97 |
+
)
|
98 |
+
|
99 |
+
mesh = pyrender.Mesh.from_trimesh(mesh, material=material)
|
100 |
+
mesh_node = self.scene.add(mesh, 'mesh')
|
101 |
+
|
102 |
+
camera_pose = np.eye(4)
|
103 |
+
cam_node = self.scene.add(camera, pose=camera_pose)
|
104 |
+
|
105 |
+
if self.wireframe:
|
106 |
+
render_flags = RenderFlags.RGBA | RenderFlags.ALL_WIREFRAME
|
107 |
+
else:
|
108 |
+
render_flags = RenderFlags.RGBA
|
109 |
+
|
110 |
+
rgb, depth = self.renderer.render(self.scene, flags=render_flags)
|
111 |
+
valid_mask = (depth > 0)[:, :, np.newaxis] # bbox size
|
112 |
+
# adjust bbox (no out of boundary)
|
113 |
+
bbox_meta, rgb, valid_mask = crop_bbox(bbox_meta, [self.resolution[0], self.resolution[1]], rgb, valid_mask)
|
114 |
+
# parse bbox
|
115 |
+
start_x, start_y, end_x, end_y, original_img_height, original_img_width = *bbox_meta['bbox'], *bbox_meta['img_hw']
|
116 |
+
# start_x = int(bbox_meta['bbox'][0])
|
117 |
+
# start_y = int(bbox_meta['bbox'][1])
|
118 |
+
# end_x = start_x + int(self.resolution[0]) # w + start_x
|
119 |
+
# end_y = start_y + int(self.resolution[1]) # h + start_y
|
120 |
+
whole_img_mask = np.zeros((original_img_height, original_img_width,1))
|
121 |
+
whole_img_mask[start_y:end_y, start_x:end_x] = valid_mask
|
122 |
+
whole_rgb = np.zeros((original_img_height, original_img_width,4))
|
123 |
+
whole_rgb[start_y:end_y, start_x:end_x,:3] = rgb
|
124 |
+
output_img = whole_rgb[:, :, :3] * whole_img_mask + (1 - whole_img_mask) * img
|
125 |
+
image = output_img.astype(np.uint8)
|
126 |
+
|
127 |
+
self.scene.remove_node(mesh_node)
|
128 |
+
self.scene.remove_node(cam_node)
|
129 |
+
|
130 |
+
return image
|
131 |
+
|
132 |
+
|
133 |
+
def visualize_reconstruction_pyrender(img, vertices, camera, renderer, color='blue', focal_length=1000):
|
134 |
+
img = (img * 255).astype(np.uint8)
|
135 |
+
save_mesh_path = None
|
136 |
+
rend_color = color
|
137 |
+
|
138 |
+
# Render front view
|
139 |
+
rend_img = renderer(vertices,
|
140 |
+
img=img,
|
141 |
+
cam=camera,
|
142 |
+
color_type=rend_color,
|
143 |
+
mesh_filename=save_mesh_path)
|
144 |
+
|
145 |
+
combined = np.hstack([img, rend_img])
|
146 |
+
|
147 |
+
return combined
|
148 |
+
|
149 |
+
def visualize_reconstruction_multi_view_pyrender(img, vertices, camera, renderer, color='blue', focal_length=1000):
|
150 |
+
img = (img * 255).astype(np.uint8)
|
151 |
+
save_mesh_path = None
|
152 |
+
rend_color = color
|
153 |
+
|
154 |
+
# Render front view
|
155 |
+
rend_img = renderer(vertices,
|
156 |
+
img=img,
|
157 |
+
cam=camera,
|
158 |
+
color_type=rend_color,
|
159 |
+
mesh_filename=save_mesh_path)
|
160 |
+
|
161 |
+
# Render side views
|
162 |
+
aroundy0 = cv2.Rodrigues(np.array([0, np.radians(0.), 0]))[0]
|
163 |
+
aroundy1 = cv2.Rodrigues(np.array([0, np.radians(90.), 0]))[0]
|
164 |
+
aroundy2 = cv2.Rodrigues(np.array([0, np.radians(180.), 0]))[0]
|
165 |
+
aroundy3 = cv2.Rodrigues(np.array([0, np.radians(270.), 0]))[0]
|
166 |
+
aroundy4 = cv2.Rodrigues(np.array([0, np.radians(45.), 0]))[0]
|
167 |
+
center = vertices.mean(axis=0)
|
168 |
+
rot_vertices0 = np.dot((vertices - center), aroundy0) + center
|
169 |
+
rot_vertices1 = np.dot((vertices - center), aroundy1) + center
|
170 |
+
rot_vertices2 = np.dot((vertices - center), aroundy2) + center
|
171 |
+
rot_vertices3 = np.dot((vertices - center), aroundy3) + center
|
172 |
+
rot_vertices4 = np.dot((vertices - center), aroundy4) + center
|
173 |
+
|
174 |
+
# Render side-view shape
|
175 |
+
img_side0 = renderer(rot_vertices0,
|
176 |
+
img=np.ones_like(img)*255,
|
177 |
+
cam=camera,
|
178 |
+
color_type=rend_color,
|
179 |
+
mesh_filename=save_mesh_path)
|
180 |
+
img_side1 = renderer(rot_vertices1,
|
181 |
+
img=np.ones_like(img)*255,
|
182 |
+
cam=camera,
|
183 |
+
color_type=rend_color,
|
184 |
+
mesh_filename=save_mesh_path)
|
185 |
+
img_side2 = renderer(rot_vertices2,
|
186 |
+
img=np.ones_like(img)*255,
|
187 |
+
cam=camera,
|
188 |
+
color_type=rend_color,
|
189 |
+
mesh_filename=save_mesh_path)
|
190 |
+
img_side3 = renderer(rot_vertices3,
|
191 |
+
img=np.ones_like(img)*255,
|
192 |
+
cam=camera,
|
193 |
+
color_type=rend_color,
|
194 |
+
mesh_filename=save_mesh_path)
|
195 |
+
img_side4 = renderer(rot_vertices4,
|
196 |
+
img=np.ones_like(img)*255,
|
197 |
+
cam=camera,
|
198 |
+
color_type=rend_color,
|
199 |
+
mesh_filename=save_mesh_path)
|
200 |
+
|
201 |
+
combined = np.hstack([img, rend_img, img_side0, img_side1, img_side2, img_side3, img_side4])
|
202 |
+
|
203 |
+
return combined
|
204 |
+
|
205 |
+
def visualize_reconstruction_smpl_pyrender(img, vertices, camera, renderer, smpl_vertices, color='blue', focal_length=1000):
|
206 |
+
img = (img * 255).astype(np.uint8)
|
207 |
+
save_mesh_path = None
|
208 |
+
rend_color = color
|
209 |
+
|
210 |
+
# Render front view
|
211 |
+
rend_img = renderer(vertices,
|
212 |
+
img=img,
|
213 |
+
cam=camera,
|
214 |
+
color_type=rend_color,
|
215 |
+
mesh_filename=save_mesh_path)
|
216 |
+
|
217 |
+
rend_img_smpl = renderer(smpl_vertices,
|
218 |
+
img=img,
|
219 |
+
cam=camera,
|
220 |
+
color_type=rend_color,
|
221 |
+
mesh_filename=save_mesh_path)
|
222 |
+
|
223 |
+
combined = np.hstack([img, rend_img, rend_img_smpl])
|
224 |
+
|
225 |
+
return combined
|