imabackstabber
test mmdet pipeline
6a7b0a9
raw
history blame
5.23 kB
import os
import sys
import os.path as osp
from pathlib import Path
import cv2
import gradio as gr
import torch
import math
import spaces
try:
import mmpose
except:
os.system('pip install /home/user/app/main/transformer_utils')
os.system('cp -rf /home/user/app/assets/conversions.py /home/user/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torchgeometry/core/conversions.py')
DEFAULT_MODEL='postometro' # for config
OUT_FOLDER = '/home/user/app/demo_out'
os.makedirs(OUT_FOLDER, exist_ok=True)
@spaces.GPU(enable_queue=True)
def infer(image_input, in_threshold=0.5, num_people="Single person", render_mesh=False):
num_gpus = 1 if torch.cuda.is_available() else -1
# dismiss cuda information
# print("!!! torch.cuda.is_available: ", torch.cuda.is_available())
# print("!!! torch.cuda.device_count: ", torch.cuda.device_count())
# print("CUDA version: ", torch.version.cuda)
# index = torch.cuda.current_device()
# print("CUDA current_device: ", index)
# print("CUDA device_name: ", torch.cuda.get_device_name(index))
from main.inference import Inferer
inferer = Inferer(DEFAULT_MODEL, num_gpus, OUT_FOLDER)
os.system(f'rm -rf {OUT_FOLDER}/*')
multi_person = False if (num_people == "Single person") else True
vis_img, num_bbox, mmdet_box = inferer.infer(image_input, in_threshold, 0, multi_person, not(render_mesh))
# cap = cv2.VideoCapture(video_input)
# fps = math.ceil(cap.get(5))
# width = int(cap.get(3))
# height = int(cap.get(4))
# fourcc = cv2.VideoWriter_fourcc(*'mp4v')
# video_path = osp.join(OUT_FOLDER, f'out.m4v')
# final_video_path = osp.join(OUT_FOLDER, f'out.mp4')
# video_output = cv2.VideoWriter(video_path, fourcc, fps, (width, height))
# success = 1
# frame = 0
# while success:
# success, original_img = cap.read()
# if not success:
# break
# frame += 1
# img, mesh_paths, smplx_paths = inferer.infer(original_img, in_threshold, frame, multi_person, not(render_mesh))
# video_output.write(img)
# yield img, None, None, None
# cap.release()
# video_output.release()
# cv2.destroyAllWindows()
# os.system(f'ffmpeg -i {video_path} -c copy {final_video_path}')
# #Compress mesh and smplx files
# save_path_mesh = os.path.join(OUT_FOLDER, 'mesh')
# save_mesh_file = os.path.join(OUT_FOLDER, 'mesh.zip')
# os.makedirs(save_path_mesh, exist_ok= True)
# save_path_smplx = os.path.join(OUT_FOLDER, 'smplx')
# save_smplx_file = os.path.join(OUT_FOLDER, 'smplx.zip')
# os.makedirs(save_path_smplx, exist_ok= True)
# os.system(f'zip -r {save_mesh_file} {save_path_mesh}')
# os.system(f'zip -r {save_smplx_file} {save_path_smplx}')
# yield img, video_path, save_mesh_file, save_smplx_file
return vis_img, "bbox num: {}, bbox meta: {}".format(num_bbox, mmdet_box)
TITLE = '''<h1 align="center">PostoMETRO: Pose Token Enhanced Mesh Transformer for Robust 3D Human Mesh Recovery</h1>'''
DESCRIPTION = '''
<b>Official Gradio demo</b> for <b>PostoMETRO: Pose Token Enhanced Mesh Transformer for Robust 3D Human Mesh Recovery</b>.<br>
<p>
Note: You can drop a image at the panel (or select one of the examples)
to obtain the 3D parametric reconstructions of the detected humans.
</p>
'''
with gr.Blocks(title="PostoMETRO", css=".gradio-container") as demo:
gr.Markdown(TITLE)
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
image_input = gr.Image(label="Input image", elem_classes="Image")
threshold = gr.Slider(0, 1.0, value=0.2, label='BBox detection threshold',
info="PostoMETRO will take in cropped bboxes as input to produce human mesh. A small threshold will prevent redundant bboxes and vice versa.")
num_people = gr.Radio(
choices=["Single person", "Multiple people"],
value="Single person",
label="Number of people",
info="Choose how many people are there in the video. Choose 'single person' for faster inference.",
interactive=True,
scale=1,)
mesh_as_vertices = gr.Checkbox(
label="Render as mesh",
info="By default, the estimated SMPL parameters are rendered as vertices for faster visualization. Check this option if you want to visualize meshes instead.",
interactive=True,
scale=1,)
send_button = gr.Button("Infer")
with gr.Column():
processed_frames = gr.Image(label="Rendered Results")
debug_textbox = gr.Textbox(label="Debug information")
# example_images = gr.Examples([])
send_button.click(fn=infer, inputs=[image_input, threshold, num_people, mesh_as_vertices], outputs=[processed_frames, debug_textbox])
# with gr.Row():
example_images = gr.Examples([
['/home/user/app/assets/01.jpg'],
['/home/user/app/assets/02.jpg'],
['/home/user/app/assets/03.jpg'],
['/home/user/app/assets/04.jpg'],
],
inputs=[image_input, 0.2])
#demo.queue()
demo.queue().launch(debug=True)