imabackstabber
refine layout
db8354d
raw
history blame
4.05 kB
import os
import sys
import os.path as osp
from pathlib import Path
import cv2
import gradio as gr
import torch
import math
import spaces
try:
import mmpose
except:
os.system('pip install /home/user/app/main/transformer_utils')
os.system('cp -rf /home/user/app/assets/conversions.py /home/user/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torchgeometry/core/conversions.py')
DEFAULT_MODEL='postometro' # for config
OUT_FOLDER = '/home/user/app/demo_out'
os.makedirs(OUT_FOLDER, exist_ok=True)
@spaces.GPU(enable_queue=True)
def infer(image_input, in_threshold=0.5, num_people="Single person", render_mesh=False):
num_gpus = 1 if torch.cuda.is_available() else -1
# dismiss cuda information
# print("!!! torch.cuda.is_available: ", torch.cuda.is_available())
# print("!!! torch.cuda.device_count: ", torch.cuda.device_count())
# print("CUDA version: ", torch.version.cuda)
# index = torch.cuda.current_device()
# print("CUDA current_device: ", index)
# print("CUDA device_name: ", torch.cuda.get_device_name(index))
from main.inference import Inferer
inferer = Inferer(DEFAULT_MODEL, num_gpus, OUT_FOLDER)
os.system(f'rm -rf {OUT_FOLDER}/*')
multi_person = False if (num_people == "Single person") else True
vis_img, bbox_img, num_bbox, mmdet_box = inferer.infer(image_input, in_threshold, multi_person, not(render_mesh))
return vis_img, bbox_img, "bbox num: {}\nbbox meta: {}".format(num_bbox, mmdet_box)
TITLE = '''<h1 align="center">PostoMETRO: Pose Token Enhanced Mesh Transformer for Robust 3D Human Mesh Recovery</h1>'''
DESCRIPTION = '''
<b>Official Gradio demo</b> for <b>PostoMETRO: Pose Token Enhanced Mesh Transformer for Robust 3D Human Mesh Recovery</b>.<br>
<p>
Note: You can drop a image at the panel (or select one of the examples)
to obtain the 3D parametric reconstructions of the detected humans.
</p>
<p>
Check out <a href="https://arxiv.org/abs/2403.12473"><b>our paper on arxiv page</b>!
</p>
'''
with gr.Blocks(title="PostoMETRO", css=".gradio-container") as demo:
gr.Markdown(TITLE)
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
image_input = gr.Image(label="Input image", elem_classes="Image")
threshold = gr.Slider(0, 1.0, value=0.2, label='BBox detection threshold',
info="PostoMETRO will take in cropped bboxes as input to produce human mesh. A small threshold will prevent redundant bboxes and vice versa.")
num_people = gr.Radio(
choices=["Single person", "Multiple people"],
value="Multiple people",
label="Number of people",
info="Choose how many people are there in the image. Default to 'Multiple people' for better visualization.",
interactive=True,
scale=1,)
mesh_as_vertices = gr.Checkbox(
label="Render as mesh",
value=True,
info="Default to render mesh for better visualization. For faster inference, one can choose to not check the box.",
interactive=True,
scale=1,)
send_button = gr.Button("Infer")
with gr.Column():
processed_frames = gr.Image(label="Rendered Results")
bbox_frames = gr.Image(label="Bbox Results")
debug_textbox = gr.Textbox(label="Debug information")
# example_images = gr.Examples([])
send_button.click(fn=infer, inputs=[image_input, threshold, num_people, mesh_as_vertices], outputs=[processed_frames, bbox_frames, debug_textbox])
# with gr.Row():
example_images = gr.Examples([
['/home/user/app/assets/01.jpg'],
['/home/user/app/assets/02.jpg'],
['/home/user/app/assets/03.jpg'],
['/home/user/app/assets/04.jpg'],
['/home/user/app/assets/05.jpg'],
['/home/user/app/assets/06.jpg'],
],
inputs=[image_input, 0.2])
#demo.queue()
demo.queue().launch(debug=True)