Spaces:
Sleeping
Sleeping
Upload scripts/prompt_engine.py with huggingface_hub
Browse files- scripts/prompt_engine.py +104 -0
scripts/prompt_engine.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
sys.path.append(sys.path[0].replace('scripts', ''))
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
from config.data_paths import VECTORDB_PATH
|
8 |
+
|
9 |
+
from typing import Sequence, List, Tuple
|
10 |
+
import faiss
|
11 |
+
from sentence_transformers import SentenceTransformer
|
12 |
+
|
13 |
+
|
14 |
+
class Vectorizer:
|
15 |
+
def __init__(self, model_name: str) -> None:
|
16 |
+
"""
|
17 |
+
Initialize the vectorizer with a pre-trained embedding model.
|
18 |
+
Args:
|
19 |
+
model_name: The name of the pre-trained embedding model (compatible with sentence-transformers).
|
20 |
+
"""
|
21 |
+
self.model = SentenceTransformer(model_name)
|
22 |
+
|
23 |
+
def transform(self, prompts: Sequence[str], build_index=False) -> np.ndarray:
|
24 |
+
"""
|
25 |
+
Transform texts into numerical vectors using the specified model.
|
26 |
+
Args:
|
27 |
+
prompts: The sequence of raw corpus prompts.
|
28 |
+
Returns:
|
29 |
+
Vectorized prompts as a numpy array.
|
30 |
+
"""
|
31 |
+
embeddings = self.model.encode(prompts, show_progress_bar=True)
|
32 |
+
embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True) # normalize embeddings
|
33 |
+
if build_index:
|
34 |
+
# self.embeddings=embeddings
|
35 |
+
if os.path.isfile(os.path.join(VECTORDB_PATH, 'prompts_index.faiss')):
|
36 |
+
print('Embeddings already stored in vector db')
|
37 |
+
else:
|
38 |
+
index = self._build_index(embeddings)
|
39 |
+
faiss.write_index(index, os.path.join(VECTORDB_PATH, 'prompts_index.faiss'))
|
40 |
+
else:
|
41 |
+
return embeddings
|
42 |
+
|
43 |
+
def _build_index(self, embeddings: np.ndarray) -> faiss.IndexFlatIP:
|
44 |
+
"""
|
45 |
+
Build and return a FAISS index for the given embeddings.
|
46 |
+
Args:
|
47 |
+
embeddings: A numpy array of prompt embeddings.
|
48 |
+
Returns:
|
49 |
+
FAISS index for efficient similarity search.
|
50 |
+
"""
|
51 |
+
index = faiss.IndexFlatIP(embeddings.shape[1]) # Cosine similarity (IP on normalized vectors)
|
52 |
+
index.add(embeddings)
|
53 |
+
return index
|
54 |
+
|
55 |
+
def cosine_similarity(query_vector: np.ndarray, corpus_vectors: np.ndarray) -> np.ndarray:
|
56 |
+
"""
|
57 |
+
Calculate cosine similarity between prompt vectors.
|
58 |
+
Args:
|
59 |
+
query_vector: Vectorized prompt query of shape (1, D).
|
60 |
+
corpus_vectors: Vectorized prompt corpus of shape (N, D).
|
61 |
+
Returns:
|
62 |
+
A vector of shape (N,) with values in range [-1, 1] where 1 is maximum similarity.
|
63 |
+
"""
|
64 |
+
return np.dot(corpus_vectors, query_vector.T).flatten()
|
65 |
+
|
66 |
+
class PromptSearchEngine:
|
67 |
+
def __init__(self, corpus: str, model_name: str = 'all-MiniLM-L6-v2', use_index=False) -> None:
|
68 |
+
"""
|
69 |
+
Initialize search engine by vectorizing prompt corpus.
|
70 |
+
Vectorized prompt corpus should be used to find the top n most similar prompts.
|
71 |
+
Args:
|
72 |
+
corpus: Path to the parquet dataset with raw prompts.
|
73 |
+
model_name: The name of the pre-trained embedding model.
|
74 |
+
"""
|
75 |
+
self.use_index=use_index
|
76 |
+
self.prompts=pd.read_parquet(corpus)['prompt'].to_list()
|
77 |
+
self.prompts=self.prompts# if use_index else np.random.choice(self.prompts, 1000, replace=False)
|
78 |
+
self.vectorizer = Vectorizer(model_name)
|
79 |
+
self.embeddings = self.vectorizer.transform(self.prompts,
|
80 |
+
build_index=use_index) # build index initially for faster retrieval
|
81 |
+
if use_index:
|
82 |
+
self.index = faiss.read_index(os.path.join(VECTORDB_PATH, 'prompts_index.faiss'))
|
83 |
+
|
84 |
+
def most_similar(self, query: str, n: int = 5) -> List[Tuple[float, str]]:
|
85 |
+
"""
|
86 |
+
Return top n most similar prompts from the corpus.
|
87 |
+
Input query prompt is vectorized using the Vectorizer. After that, use the cosine_similarity
|
88 |
+
function to get the top n most similar prompts from the corpus.
|
89 |
+
Args:
|
90 |
+
query: The raw query prompt input from the user.
|
91 |
+
n: The number of similar prompts to return from the corpus.
|
92 |
+
Returns:
|
93 |
+
The list of top n most similar prompts from the corpus along with similarity scores.
|
94 |
+
Note that returned prompts are verbatim.
|
95 |
+
"""
|
96 |
+
query_vector = self.vectorizer.transform([query])
|
97 |
+
if self.use_index:
|
98 |
+
distances, indices = self.index.search(query_vector, n)
|
99 |
+
results = [{'prompt': self.prompts[idx], 'score': distances[0][i]} for i, idx in enumerate(indices[0])]
|
100 |
+
return results
|
101 |
+
else:
|
102 |
+
similarities = cosine_similarity(query_vector, self.embeddings)
|
103 |
+
top_indices = np.argsort(-similarities)[:n] # Sort in descending order
|
104 |
+
return [{'prompt': self.prompts[i], 'score': similarities[i]} for i in top_indices]
|