Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
| import math | |
| import types | |
| from copy import deepcopy | |
| from einops import rearrange | |
| from typing import List | |
| import numpy as np | |
| import torch | |
| import torch.cuda.amp as amp | |
| import torch.nn as nn | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.models.modeling_utils import ModelMixin | |
| from diffusers.loaders import PeftAdapterMixin | |
| from ...distributed.sequence_parallel import ( | |
| distributed_attention, | |
| gather_forward, | |
| get_rank, | |
| get_world_size, | |
| ) | |
| from ..model import ( | |
| Head, | |
| WanAttentionBlock, | |
| WanLayerNorm, | |
| WanRMSNorm, | |
| WanModel, | |
| WanSelfAttention, | |
| flash_attention, | |
| rope_params, | |
| sinusoidal_embedding_1d, | |
| rope_apply | |
| ) | |
| from .face_blocks import FaceEncoder, FaceAdapter | |
| from .motion_encoder import Generator | |
| class HeadAnimate(Head): | |
| def forward(self, x, e): | |
| """ | |
| Args: | |
| x(Tensor): Shape [B, L1, C] | |
| e(Tensor): Shape [B, L1, C] | |
| """ | |
| assert e.dtype == torch.float32 | |
| with amp.autocast(dtype=torch.float32): | |
| e = (self.modulation + e.unsqueeze(1)).chunk(2, dim=1) | |
| x = (self.head(self.norm(x) * (1 + e[1]) + e[0])) | |
| return x | |
| class WanAnimateSelfAttention(WanSelfAttention): | |
| def forward(self, x, seq_lens, grid_sizes, freqs): | |
| """ | |
| Args: | |
| x(Tensor): Shape [B, L, num_heads, C / num_heads] | |
| seq_lens(Tensor): Shape [B] | |
| grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W) | |
| freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2] | |
| """ | |
| b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim | |
| # query, key, value function | |
| def qkv_fn(x): | |
| q = self.norm_q(self.q(x)).view(b, s, n, d) | |
| k = self.norm_k(self.k(x)).view(b, s, n, d) | |
| v = self.v(x).view(b, s, n, d) | |
| return q, k, v | |
| q, k, v = qkv_fn(x) | |
| x = flash_attention( | |
| q=rope_apply(q, grid_sizes, freqs), | |
| k=rope_apply(k, grid_sizes, freqs), | |
| v=v, | |
| k_lens=seq_lens, | |
| window_size=self.window_size) | |
| # output | |
| x = x.flatten(2) | |
| x = self.o(x) | |
| return x | |
| class WanAnimateCrossAttention(WanSelfAttention): | |
| def __init__( | |
| self, | |
| dim, | |
| num_heads, | |
| window_size=(-1, -1), | |
| qk_norm=True, | |
| eps=1e-6, | |
| use_img_emb=True | |
| ): | |
| super().__init__( | |
| dim, | |
| num_heads, | |
| window_size, | |
| qk_norm, | |
| eps | |
| ) | |
| self.use_img_emb = use_img_emb | |
| if use_img_emb: | |
| self.k_img = nn.Linear(dim, dim) | |
| self.v_img = nn.Linear(dim, dim) | |
| self.norm_k_img = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() | |
| def forward(self, x, context, context_lens): | |
| """ | |
| x: [B, L1, C]. | |
| context: [B, L2, C]. | |
| context_lens: [B]. | |
| """ | |
| if self.use_img_emb: | |
| context_img = context[:, :257] | |
| context = context[:, 257:] | |
| else: | |
| context = context | |
| b, n, d = x.size(0), self.num_heads, self.head_dim | |
| # compute query, key, value | |
| q = self.norm_q(self.q(x)).view(b, -1, n, d) | |
| k = self.norm_k(self.k(context)).view(b, -1, n, d) | |
| v = self.v(context).view(b, -1, n, d) | |
| if self.use_img_emb: | |
| k_img = self.norm_k_img(self.k_img(context_img)).view(b, -1, n, d) | |
| v_img = self.v_img(context_img).view(b, -1, n, d) | |
| img_x = flash_attention(q, k_img, v_img, k_lens=None) | |
| # compute attention | |
| x = flash_attention(q, k, v, k_lens=context_lens) | |
| # output | |
| x = x.flatten(2) | |
| if self.use_img_emb: | |
| img_x = img_x.flatten(2) | |
| x = x + img_x | |
| x = self.o(x) | |
| return x | |
| class WanAnimateAttentionBlock(nn.Module): | |
| def __init__(self, | |
| dim, | |
| ffn_dim, | |
| num_heads, | |
| window_size=(-1, -1), | |
| qk_norm=True, | |
| cross_attn_norm=True, | |
| eps=1e-6, | |
| use_img_emb=True): | |
| super().__init__() | |
| self.dim = dim | |
| self.ffn_dim = ffn_dim | |
| self.num_heads = num_heads | |
| self.window_size = window_size | |
| self.qk_norm = qk_norm | |
| self.cross_attn_norm = cross_attn_norm | |
| self.eps = eps | |
| # layers | |
| self.norm1 = WanLayerNorm(dim, eps) | |
| self.self_attn = WanAnimateSelfAttention(dim, num_heads, window_size, qk_norm, eps) | |
| self.norm3 = WanLayerNorm( | |
| dim, eps, elementwise_affine=True | |
| ) if cross_attn_norm else nn.Identity() | |
| self.cross_attn = WanAnimateCrossAttention(dim, num_heads, (-1, -1), qk_norm, eps, use_img_emb=use_img_emb) | |
| self.norm2 = WanLayerNorm(dim, eps) | |
| self.ffn = nn.Sequential( | |
| nn.Linear(dim, ffn_dim), | |
| nn.GELU(approximate='tanh'), | |
| nn.Linear(ffn_dim, dim) | |
| ) | |
| # modulation | |
| self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim ** 0.5) | |
| def forward( | |
| self, | |
| x, | |
| e, | |
| seq_lens, | |
| grid_sizes, | |
| freqs, | |
| context, | |
| context_lens, | |
| ): | |
| """ | |
| Args: | |
| x(Tensor): Shape [B, L, C] | |
| e(Tensor): Shape [B, L1, 6, C] | |
| seq_lens(Tensor): Shape [B], length of each sequence in batch | |
| grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W) | |
| freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2] | |
| """ | |
| assert e.dtype == torch.float32 | |
| with amp.autocast(dtype=torch.float32): | |
| e = (self.modulation + e).chunk(6, dim=1) | |
| assert e[0].dtype == torch.float32 | |
| # self-attention | |
| y = self.self_attn( | |
| self.norm1(x).float() * (1 + e[1]) + e[0], seq_lens, grid_sizes, freqs | |
| ) | |
| with amp.autocast(dtype=torch.float32): | |
| x = x + y * e[2] | |
| # cross-attention & ffn function | |
| def cross_attn_ffn(x, context, context_lens, e): | |
| x = x + self.cross_attn(self.norm3(x), context, context_lens) | |
| y = self.ffn(self.norm2(x).float() * (1 + e[4]) + e[3]) | |
| with amp.autocast(dtype=torch.float32): | |
| x = x + y * e[5] | |
| return x | |
| x = cross_attn_ffn(x, context, context_lens, e) | |
| return x | |
| class MLPProj(torch.nn.Module): | |
| def __init__(self, in_dim, out_dim): | |
| super().__init__() | |
| self.proj = torch.nn.Sequential( | |
| torch.nn.LayerNorm(in_dim), | |
| torch.nn.Linear(in_dim, in_dim), | |
| torch.nn.GELU(), | |
| torch.nn.Linear(in_dim, out_dim), | |
| torch.nn.LayerNorm(out_dim), | |
| ) | |
| def forward(self, image_embeds): | |
| clip_extra_context_tokens = self.proj(image_embeds) | |
| return clip_extra_context_tokens | |
| class WanAnimateModel(ModelMixin, ConfigMixin, PeftAdapterMixin): | |
| _no_split_modules = ['WanAttentionBlock'] | |
| def __init__(self, | |
| patch_size=(1, 2, 2), | |
| text_len=512, | |
| in_dim=36, | |
| dim=5120, | |
| ffn_dim=13824, | |
| freq_dim=256, | |
| text_dim=4096, | |
| out_dim=16, | |
| num_heads=40, | |
| num_layers=40, | |
| window_size=(-1, -1), | |
| qk_norm=True, | |
| cross_attn_norm=True, | |
| eps=1e-6, | |
| motion_encoder_dim=512, | |
| use_context_parallel=False, | |
| use_img_emb=True): | |
| super().__init__() | |
| self.patch_size = patch_size | |
| self.text_len = text_len | |
| self.in_dim = in_dim | |
| self.dim = dim | |
| self.ffn_dim = ffn_dim | |
| self.freq_dim = freq_dim | |
| self.text_dim = text_dim | |
| self.out_dim = out_dim | |
| self.num_heads = num_heads | |
| self.num_layers = num_layers | |
| self.window_size = window_size | |
| self.qk_norm = qk_norm | |
| self.cross_attn_norm = cross_attn_norm | |
| self.eps = eps | |
| self.motion_encoder_dim = motion_encoder_dim | |
| self.use_context_parallel = use_context_parallel | |
| self.use_img_emb = use_img_emb | |
| # embeddings | |
| self.patch_embedding = nn.Conv3d( | |
| in_dim, dim, kernel_size=patch_size, stride=patch_size) | |
| self.pose_patch_embedding = nn.Conv3d( | |
| 16, dim, kernel_size=patch_size, stride=patch_size | |
| ) | |
| self.text_embedding = nn.Sequential( | |
| nn.Linear(text_dim, dim), nn.GELU(approximate='tanh'), | |
| nn.Linear(dim, dim)) | |
| self.time_embedding = nn.Sequential( | |
| nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim)) | |
| self.time_projection = nn.Sequential(nn.SiLU(), nn.Linear(dim, dim * 6)) | |
| # blocks | |
| self.blocks = nn.ModuleList([ | |
| WanAnimateAttentionBlock(dim, ffn_dim, num_heads, window_size, qk_norm, | |
| cross_attn_norm, eps, use_img_emb) for _ in range(num_layers) | |
| ]) | |
| # head | |
| self.head = HeadAnimate(dim, out_dim, patch_size, eps) | |
| # buffers (don't use register_buffer otherwise dtype will be changed in to()) | |
| assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0 | |
| d = dim // num_heads | |
| _freqs = torch.cat([ | |
| rope_params(1024, d - 4 * (d // 6)), | |
| rope_params(1024, 2 * (d // 6)), | |
| rope_params(1024, 2 * (d // 6)) | |
| ], dim=1) | |
| self.register_buffer("freqs", _freqs, persistent=False) | |
| self.img_emb = MLPProj(1280, dim) | |
| # initialize weights | |
| self.init_weights() | |
| self.motion_encoder = Generator(size=512, style_dim=512, motion_dim=20) | |
| self.face_adapter = FaceAdapter( | |
| heads_num=self.num_heads, | |
| hidden_dim=self.dim, | |
| num_adapter_layers=self.num_layers // 5, | |
| ) | |
| self.face_encoder = FaceEncoder( | |
| in_dim=motion_encoder_dim, | |
| hidden_dim=self.dim, | |
| num_heads=4, | |
| ) | |
| def after_patch_embedding(self, x: List[torch.Tensor], pose_latents, face_pixel_values): | |
| pose_latents = [self.pose_patch_embedding(u.unsqueeze(0)) for u in pose_latents] | |
| for x_, pose_latents_ in zip(x, pose_latents): | |
| x_[:, :, 1:] += pose_latents_ | |
| b,c,T,h,w = face_pixel_values.shape | |
| face_pixel_values = rearrange(face_pixel_values, "b c t h w -> (b t) c h w") | |
| encode_bs = 8 | |
| face_pixel_values_tmp = [] | |
| for i in range(math.ceil(face_pixel_values.shape[0]/encode_bs)): | |
| face_pixel_values_tmp.append(self.motion_encoder.get_motion(face_pixel_values[i*encode_bs:(i+1)*encode_bs])) | |
| motion_vec = torch.cat(face_pixel_values_tmp) | |
| motion_vec = rearrange(motion_vec, "(b t) c -> b t c", t=T) | |
| motion_vec = self.face_encoder(motion_vec) | |
| B, L, H, C = motion_vec.shape | |
| pad_face = torch.zeros(B, 1, H, C).type_as(motion_vec) | |
| motion_vec = torch.cat([pad_face, motion_vec], dim=1) | |
| return x, motion_vec | |
| def after_transformer_block(self, block_idx, x, motion_vec, motion_masks=None): | |
| if block_idx % 5 == 0: | |
| adapter_args = [x, motion_vec, motion_masks, self.use_context_parallel] | |
| residual_out = self.face_adapter.fuser_blocks[block_idx // 5](*adapter_args) | |
| x = residual_out + x | |
| return x | |
| def forward( | |
| self, | |
| x, | |
| t, | |
| clip_fea, | |
| context, | |
| seq_len, | |
| y=None, | |
| pose_latents=None, | |
| face_pixel_values=None | |
| ): | |
| # params | |
| freqs = self.freqs | |
| if y is not None: | |
| x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)] | |
| # embeddings | |
| x = [self.patch_embedding(u.unsqueeze(0)) for u in x] | |
| x, motion_vec = self.after_patch_embedding(x, pose_latents, face_pixel_values) | |
| grid_sizes = torch.stack( | |
| [torch.tensor(u.shape[2:], dtype=torch.long) for u in x]) | |
| x = [u.flatten(2).transpose(1, 2) for u in x] | |
| seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long) | |
| assert seq_lens.max() <= seq_len | |
| x = torch.cat([ | |
| torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], | |
| dim=1) for u in x | |
| ]) | |
| # time embeddings | |
| with amp.autocast(dtype=torch.float32): | |
| e = self.time_embedding( | |
| sinusoidal_embedding_1d(self.freq_dim, t).float() | |
| ) | |
| e0 = self.time_projection(e).unflatten(1, (6, self.dim)) | |
| assert e.dtype == torch.float32 and e0.dtype == torch.float32 | |
| # context | |
| context_lens = None | |
| context = self.text_embedding( | |
| torch.stack([ | |
| torch.cat( | |
| [u, u.new_zeros(self.text_len - u.size(0), u.size(1))]) | |
| for u in context | |
| ])) | |
| if self.use_img_emb: | |
| context_clip = self.img_emb(clip_fea) # bs x 257 x dim | |
| context = torch.concat([context_clip, context], dim=1) | |
| # arguments | |
| kwargs = dict( | |
| e=e0, | |
| seq_lens=seq_lens, | |
| grid_sizes=grid_sizes, | |
| freqs=freqs, | |
| context=context, | |
| context_lens=context_lens) | |
| if self.use_context_parallel: | |
| x = torch.chunk(x, get_world_size(), dim=1)[get_rank()] | |
| for idx, block in enumerate(self.blocks): | |
| x = block(x, **kwargs) | |
| x = self.after_transformer_block(idx, x, motion_vec) | |
| # head | |
| x = self.head(x, e) | |
| if self.use_context_parallel: | |
| x = gather_forward(x, dim=1) | |
| # unpatchify | |
| x = self.unpatchify(x, grid_sizes) | |
| return [u.float() for u in x] | |
| def unpatchify(self, x, grid_sizes): | |
| r""" | |
| Reconstruct video tensors from patch embeddings. | |
| Args: | |
| x (List[Tensor]): | |
| List of patchified features, each with shape [L, C_out * prod(patch_size)] | |
| grid_sizes (Tensor): | |
| Original spatial-temporal grid dimensions before patching, | |
| shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches) | |
| Returns: | |
| List[Tensor]: | |
| Reconstructed video tensors with shape [C_out, F, H / 8, W / 8] | |
| """ | |
| c = self.out_dim | |
| out = [] | |
| for u, v in zip(x, grid_sizes.tolist()): | |
| u = u[:math.prod(v)].view(*v, *self.patch_size, c) | |
| u = torch.einsum('fhwpqrc->cfphqwr', u) | |
| u = u.reshape(c, *[i * j for i, j in zip(v, self.patch_size)]) | |
| out.append(u) | |
| return out | |
| def init_weights(self): | |
| r""" | |
| Initialize model parameters using Xavier initialization. | |
| """ | |
| # basic init | |
| for m in self.modules(): | |
| if isinstance(m, nn.Linear): | |
| nn.init.xavier_uniform_(m.weight) | |
| if m.bias is not None: | |
| nn.init.zeros_(m.bias) | |
| # init embeddings | |
| nn.init.xavier_uniform_(self.patch_embedding.weight.flatten(1)) | |
| for m in self.text_embedding.modules(): | |
| if isinstance(m, nn.Linear): | |
| nn.init.normal_(m.weight, std=.02) | |
| for m in self.time_embedding.modules(): | |
| if isinstance(m, nn.Linear): | |
| nn.init.normal_(m.weight, std=.02) | |
| # init output layer | |
| nn.init.zeros_(self.head.head.weight) | |