Spaces:
Running
on
Zero
Running
on
Zero
Upload gradio_seesr_turbo.py
Browse files- gradio_seesr_turbo.py +207 -0
gradio_seesr_turbo.py
ADDED
|
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import sys
|
| 4 |
+
from typing import List
|
| 5 |
+
# sys.path.append(os.getcwd())
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
from PIL import Image
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
import torch.utils.checkpoint
|
| 12 |
+
from pytorch_lightning import seed_everything
|
| 13 |
+
from diffusers import AutoencoderKL, DDPMScheduler
|
| 14 |
+
from diffusers.utils import check_min_version
|
| 15 |
+
from diffusers.utils.import_utils import is_xformers_available
|
| 16 |
+
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor
|
| 17 |
+
|
| 18 |
+
from pipelines.pipeline_seesr import StableDiffusionControlNetPipeline
|
| 19 |
+
|
| 20 |
+
from utils.wavelet_color_fix import wavelet_color_fix, adain_color_fix
|
| 21 |
+
|
| 22 |
+
from ram.models.ram_lora import ram
|
| 23 |
+
from ram import inference_ram as inference
|
| 24 |
+
from torchvision import transforms
|
| 25 |
+
from models.controlnet import ControlNetModel
|
| 26 |
+
from models.unet_2d_condition import UNet2DConditionModel
|
| 27 |
+
|
| 28 |
+
tensor_transforms = transforms.Compose([
|
| 29 |
+
transforms.ToTensor(),
|
| 30 |
+
])
|
| 31 |
+
|
| 32 |
+
ram_transforms = transforms.Compose([
|
| 33 |
+
transforms.Resize((384, 384)),
|
| 34 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 35 |
+
])
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
# Load scheduler, tokenizer and models.
|
| 39 |
+
pretrained_model_path = 'preset/models/sd-turbo'
|
| 40 |
+
seesr_model_path = 'preset/models/seesr'
|
| 41 |
+
|
| 42 |
+
scheduler = DDPMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
|
| 43 |
+
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
|
| 44 |
+
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
|
| 45 |
+
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
|
| 46 |
+
feature_extractor = CLIPImageProcessor.from_pretrained(f"{pretrained_model_path}/feature_extractor")
|
| 47 |
+
unet = UNet2DConditionModel.from_pretrained_orig(seesr_model_path, subfolder="unet")
|
| 48 |
+
controlnet = ControlNetModel.from_pretrained(seesr_model_path, subfolder="controlnet")
|
| 49 |
+
|
| 50 |
+
# Freeze vae and text_encoder
|
| 51 |
+
vae.requires_grad_(False)
|
| 52 |
+
text_encoder.requires_grad_(False)
|
| 53 |
+
unet.requires_grad_(False)
|
| 54 |
+
controlnet.requires_grad_(False)
|
| 55 |
+
|
| 56 |
+
if is_xformers_available():
|
| 57 |
+
unet.enable_xformers_memory_efficient_attention()
|
| 58 |
+
controlnet.enable_xformers_memory_efficient_attention()
|
| 59 |
+
else:
|
| 60 |
+
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
| 61 |
+
|
| 62 |
+
# Get the validation pipeline
|
| 63 |
+
validation_pipeline = StableDiffusionControlNetPipeline(
|
| 64 |
+
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, feature_extractor=feature_extractor,
|
| 65 |
+
unet=unet, controlnet=controlnet, scheduler=scheduler, safety_checker=None, requires_safety_checker=False,
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
validation_pipeline._init_tiled_vae(encoder_tile_size=1024,
|
| 69 |
+
decoder_tile_size=224)
|
| 70 |
+
weight_dtype = torch.float16
|
| 71 |
+
device = "cuda"
|
| 72 |
+
|
| 73 |
+
# Move text_encode and vae to gpu and cast to weight_dtype
|
| 74 |
+
text_encoder.to(device, dtype=weight_dtype)
|
| 75 |
+
vae.to(device, dtype=weight_dtype)
|
| 76 |
+
unet.to(device, dtype=weight_dtype)
|
| 77 |
+
controlnet.to(device, dtype=weight_dtype)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
tag_model = ram(pretrained='preset/models/ram_swin_large_14m.pth',
|
| 81 |
+
pretrained_condition='preset/models/DAPE.pth',
|
| 82 |
+
image_size=384,
|
| 83 |
+
vit='swin_l')
|
| 84 |
+
tag_model.eval()
|
| 85 |
+
tag_model.to(device, dtype=weight_dtype)
|
| 86 |
+
|
| 87 |
+
@torch.no_grad()
|
| 88 |
+
def process(
|
| 89 |
+
input_image: Image.Image,
|
| 90 |
+
user_prompt: str,
|
| 91 |
+
positive_prompt: str,
|
| 92 |
+
negative_prompt: str,
|
| 93 |
+
num_inference_steps: int,
|
| 94 |
+
scale_factor: int,
|
| 95 |
+
cfg_scale: float,
|
| 96 |
+
seed: int,
|
| 97 |
+
latent_tiled_size: int,
|
| 98 |
+
latent_tiled_overlap: int,
|
| 99 |
+
sample_times: int
|
| 100 |
+
) -> List[np.ndarray]:
|
| 101 |
+
process_size = 512
|
| 102 |
+
resize_preproc = transforms.Compose([
|
| 103 |
+
transforms.Resize(process_size, interpolation=transforms.InterpolationMode.BILINEAR),
|
| 104 |
+
])
|
| 105 |
+
|
| 106 |
+
# with torch.no_grad():
|
| 107 |
+
seed_everything(seed)
|
| 108 |
+
generator = torch.Generator(device=device)
|
| 109 |
+
|
| 110 |
+
validation_prompt = ""
|
| 111 |
+
lq = tensor_transforms(input_image).unsqueeze(0).to(device).half()
|
| 112 |
+
lq = ram_transforms(lq)
|
| 113 |
+
res = inference(lq, tag_model)
|
| 114 |
+
ram_encoder_hidden_states = tag_model.generate_image_embeds(lq)
|
| 115 |
+
validation_prompt = f"{res[0]}, {positive_prompt},"
|
| 116 |
+
validation_prompt = validation_prompt if user_prompt=='' else f"{user_prompt}, {validation_prompt}"
|
| 117 |
+
|
| 118 |
+
ori_width, ori_height = input_image.size
|
| 119 |
+
resize_flag = False
|
| 120 |
+
|
| 121 |
+
rscale = scale_factor
|
| 122 |
+
input_image = input_image.resize((int(input_image.size[0] * rscale), int(input_image.size[1] * rscale)))
|
| 123 |
+
|
| 124 |
+
if min(input_image.size) < process_size:
|
| 125 |
+
input_image = resize_preproc(input_image)
|
| 126 |
+
|
| 127 |
+
input_image = input_image.resize((input_image.size[0] // 8 * 8, input_image.size[1] // 8 * 8))
|
| 128 |
+
width, height = input_image.size
|
| 129 |
+
resize_flag = True #
|
| 130 |
+
|
| 131 |
+
images = []
|
| 132 |
+
for _ in range(sample_times):
|
| 133 |
+
try:
|
| 134 |
+
with torch.autocast("cuda"):
|
| 135 |
+
image = validation_pipeline(
|
| 136 |
+
validation_prompt, input_image, negative_prompt=negative_prompt,
|
| 137 |
+
num_inference_steps=num_inference_steps, generator=generator,
|
| 138 |
+
height=height, width=width,
|
| 139 |
+
guidance_scale=cfg_scale, conditioning_scale=1,
|
| 140 |
+
start_point='lr', start_steps=999,ram_encoder_hidden_states=ram_encoder_hidden_states,
|
| 141 |
+
latent_tiled_size=latent_tiled_size, latent_tiled_overlap=latent_tiled_overlap
|
| 142 |
+
).images[0]
|
| 143 |
+
|
| 144 |
+
if True: # alpha<1.0:
|
| 145 |
+
image = wavelet_color_fix(image, input_image)
|
| 146 |
+
|
| 147 |
+
if resize_flag:
|
| 148 |
+
image = image.resize((ori_width * rscale, ori_height * rscale))
|
| 149 |
+
except Exception as e:
|
| 150 |
+
print(e)
|
| 151 |
+
image = Image.new(mode="RGB", size=(512, 512))
|
| 152 |
+
images.append(np.array(image))
|
| 153 |
+
return images
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
#
|
| 157 |
+
MARKDOWN = \
|
| 158 |
+
"""
|
| 159 |
+
## SeeSR: Towards Semantics-Aware Real-World Image Super-Resolution
|
| 160 |
+
|
| 161 |
+
[GitHub](https://github.com/cswry/SeeSR) | [Paper](https://arxiv.org/abs/2311.16518)
|
| 162 |
+
|
| 163 |
+
If SeeSR is helpful for you, please help star the GitHub Repo. Thanks!
|
| 164 |
+
"""
|
| 165 |
+
|
| 166 |
+
block = gr.Blocks().queue()
|
| 167 |
+
with block:
|
| 168 |
+
with gr.Row():
|
| 169 |
+
gr.Markdown(MARKDOWN)
|
| 170 |
+
with gr.Row():
|
| 171 |
+
with gr.Column():
|
| 172 |
+
input_image = gr.Image(source="upload", type="pil")
|
| 173 |
+
run_button = gr.Button(label="Run")
|
| 174 |
+
with gr.Accordion("Options", open=True):
|
| 175 |
+
user_prompt = gr.Textbox(label="User Prompt", value="")
|
| 176 |
+
positive_prompt = gr.Textbox(label="Positive Prompt", value="clean, high-resolution, 8k, best quality, masterpiece")
|
| 177 |
+
negative_prompt = gr.Textbox(
|
| 178 |
+
label="Negative Prompt",
|
| 179 |
+
value="dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality"
|
| 180 |
+
)
|
| 181 |
+
cfg_scale = gr.Slider(label="Classifier Free Guidance Scale (Set to 1.0 in sd-turbo)", minimum=1, maximum=1, value=1, step=0)
|
| 182 |
+
num_inference_steps = gr.Slider(label="Inference Steps", minimum=2, maximum=8, value=2, step=1)
|
| 183 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=231)
|
| 184 |
+
sample_times = gr.Slider(label="Sample Times", minimum=1, maximum=10, step=1, value=1)
|
| 185 |
+
latent_tiled_size = gr.Slider(label="Diffusion Tile Size", minimum=128, maximum=480, value=320, step=1)
|
| 186 |
+
latent_tiled_overlap = gr.Slider(label="Diffusion Tile Overlap", minimum=4, maximum=16, value=4, step=1)
|
| 187 |
+
scale_factor = gr.Number(label="SR Scale", value=4)
|
| 188 |
+
with gr.Column():
|
| 189 |
+
result_gallery = gr.Gallery(label="Output", show_label=False, elem_id="gallery").style(grid=2, height="auto")
|
| 190 |
+
|
| 191 |
+
inputs = [
|
| 192 |
+
input_image,
|
| 193 |
+
user_prompt,
|
| 194 |
+
positive_prompt,
|
| 195 |
+
negative_prompt,
|
| 196 |
+
num_inference_steps,
|
| 197 |
+
scale_factor,
|
| 198 |
+
cfg_scale,
|
| 199 |
+
seed,
|
| 200 |
+
latent_tiled_size,
|
| 201 |
+
latent_tiled_overlap,
|
| 202 |
+
sample_times,
|
| 203 |
+
]
|
| 204 |
+
run_button.click(fn=process, inputs=inputs, outputs=[result_gallery])
|
| 205 |
+
|
| 206 |
+
block.launch()
|
| 207 |
+
|