Spaces:
Running
on
Zero
Running
on
Zero
Upload 6 files
Browse files- cog.yaml +24 -0
- predict.py +202 -0
- requirements.txt +10 -0
- test_seesr.py +271 -0
- test_seesr_turbo.py +271 -0
- train_seesr.py +1093 -0
cog.yaml
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Configuration for Cog ⚙️
|
2 |
+
# Reference: https://github.com/replicate/cog/blob/main/docs/yaml.md
|
3 |
+
build:
|
4 |
+
gpu: true
|
5 |
+
python_version: "3.8"
|
6 |
+
python_packages:
|
7 |
+
- "accelerate==0.25.0"
|
8 |
+
- "diffusers==0.21.0"
|
9 |
+
- "torch==2.0.1"
|
10 |
+
- "pytorch_lightning==2.1.3"
|
11 |
+
- "transformers==4.25.0"
|
12 |
+
- "xformers"
|
13 |
+
- "loralib==0.1.2"
|
14 |
+
- "fairscale==0.4.13"
|
15 |
+
- "opencv-python==4.9.0.80"
|
16 |
+
- "chardet==5.2.0"
|
17 |
+
- "einops==0.7.0"
|
18 |
+
- "scipy==1.10.1"
|
19 |
+
- "timm==0.9.12"
|
20 |
+
|
21 |
+
run:
|
22 |
+
- curl -o /usr/local/bin/pget -L "https://github.com/replicate/pget/releases/download/v0.3.1/pget" && chmod +x /usr/local/bin/pget
|
23 |
+
# predict.py defines how predictions are run on your model
|
24 |
+
predict: "predict.py:Predictor"
|
predict.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Prediction interface for Cog ⚙️
|
2 |
+
# https://github.com/replicate/cog/blob/main/docs/python.md
|
3 |
+
from cog import BasePredictor, Input, Path
|
4 |
+
import os
|
5 |
+
import time
|
6 |
+
import subprocess
|
7 |
+
from typing import List
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
from PIL import Image
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.utils.checkpoint
|
14 |
+
from pytorch_lightning import seed_everything
|
15 |
+
from diffusers import AutoencoderKL, DDPMScheduler
|
16 |
+
from diffusers.utils.import_utils import is_xformers_available
|
17 |
+
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor
|
18 |
+
|
19 |
+
from pipelines.pipeline_seesr import StableDiffusionControlNetPipeline
|
20 |
+
|
21 |
+
from utils.wavelet_color_fix import wavelet_color_fix
|
22 |
+
|
23 |
+
from ram.models.ram_lora import ram
|
24 |
+
from ram import inference_ram as inference
|
25 |
+
from torchvision import transforms
|
26 |
+
from models.controlnet import ControlNetModel
|
27 |
+
from models.unet_2d_condition import UNet2DConditionModel
|
28 |
+
|
29 |
+
MODEL_URL = "https://weights.replicate.delivery/default/stabilityai/sd-2-1-base.tar"
|
30 |
+
|
31 |
+
tensor_transforms = transforms.Compose([
|
32 |
+
transforms.ToTensor(),
|
33 |
+
])
|
34 |
+
ram_transforms = transforms.Compose([
|
35 |
+
transforms.Resize((384, 384)),
|
36 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
37 |
+
])
|
38 |
+
device = "cuda"
|
39 |
+
|
40 |
+
def download_weights(url, dest):
|
41 |
+
start = time.time()
|
42 |
+
print("downloading url: ", url)
|
43 |
+
print("downloading to: ", dest)
|
44 |
+
subprocess.check_call(["pget", "-x", url, dest], close_fds=False)
|
45 |
+
print("downloading took: ", time.time() - start)
|
46 |
+
|
47 |
+
class Predictor(BasePredictor):
|
48 |
+
def setup(self) -> None:
|
49 |
+
"""Load the model into memory to make running multiple predictions efficient"""
|
50 |
+
# Load scheduler, tokenizer and models.
|
51 |
+
pretrained_model_path = 'preset/models/stable-diffusion-2-1-base'
|
52 |
+
seesr_model_path = 'preset/models/seesr'
|
53 |
+
|
54 |
+
# Download SD-2-1 weights
|
55 |
+
if not os.path.exists(pretrained_model_path):
|
56 |
+
download_weights(MODEL_URL, pretrained_model_path)
|
57 |
+
|
58 |
+
scheduler = DDPMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
|
59 |
+
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
|
60 |
+
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
|
61 |
+
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
|
62 |
+
feature_extractor = CLIPImageProcessor.from_pretrained(f"{pretrained_model_path}/feature_extractor")
|
63 |
+
unet = UNet2DConditionModel.from_pretrained(seesr_model_path, subfolder="unet")
|
64 |
+
controlnet = ControlNetModel.from_pretrained(seesr_model_path, subfolder="controlnet")
|
65 |
+
|
66 |
+
# Freeze vae and text_encoder
|
67 |
+
vae.requires_grad_(False)
|
68 |
+
text_encoder.requires_grad_(False)
|
69 |
+
unet.requires_grad_(False)
|
70 |
+
controlnet.requires_grad_(False)
|
71 |
+
|
72 |
+
if is_xformers_available():
|
73 |
+
unet.enable_xformers_memory_efficient_attention()
|
74 |
+
controlnet.enable_xformers_memory_efficient_attention()
|
75 |
+
else:
|
76 |
+
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
77 |
+
|
78 |
+
# Get the validation pipeline
|
79 |
+
validation_pipeline = StableDiffusionControlNetPipeline(
|
80 |
+
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, feature_extractor=feature_extractor,
|
81 |
+
unet=unet, controlnet=controlnet, scheduler=scheduler, safety_checker=None, requires_safety_checker=False,
|
82 |
+
)
|
83 |
+
validation_pipeline._init_tiled_vae(encoder_tile_size=1024,decoder_tile_size=224)
|
84 |
+
self.validation_pipeline = validation_pipeline
|
85 |
+
weight_dtype = torch.float16
|
86 |
+
|
87 |
+
# Move text_encode and vae to gpu and cast to weight_dtype
|
88 |
+
text_encoder.to(device, dtype=weight_dtype)
|
89 |
+
vae.to(device, dtype=weight_dtype)
|
90 |
+
unet.to(device, dtype=weight_dtype)
|
91 |
+
controlnet.to(device, dtype=weight_dtype)
|
92 |
+
tag_model = ram(pretrained='preset/models/ram_swin_large_14m.pth',
|
93 |
+
pretrained_condition='preset/models/DAPE.pth',
|
94 |
+
image_size=384,
|
95 |
+
vit='swin_l')
|
96 |
+
tag_model.eval()
|
97 |
+
self.tag_model = tag_model.to(device, dtype=weight_dtype)
|
98 |
+
|
99 |
+
|
100 |
+
# @torch.no_grad()
|
101 |
+
def process(
|
102 |
+
self,
|
103 |
+
input_image: Image.Image,
|
104 |
+
user_prompt: str,
|
105 |
+
positive_prompt: str,
|
106 |
+
negative_prompt: str,
|
107 |
+
num_inference_steps: int,
|
108 |
+
scale_factor: int,
|
109 |
+
cfg_scale: float,
|
110 |
+
seed: int,
|
111 |
+
latent_tiled_size: int,
|
112 |
+
latent_tiled_overlap: int,
|
113 |
+
sample_times: int
|
114 |
+
) -> List[np.ndarray]:
|
115 |
+
process_size = 512
|
116 |
+
resize_preproc = transforms.Compose([
|
117 |
+
transforms.Resize(process_size, interpolation=transforms.InterpolationMode.BILINEAR),
|
118 |
+
])
|
119 |
+
|
120 |
+
seed_everything(seed)
|
121 |
+
generator = torch.Generator(device=device)
|
122 |
+
|
123 |
+
validation_prompt = ""
|
124 |
+
lq = tensor_transforms(input_image).unsqueeze(0).to(device).half()
|
125 |
+
lq = ram_transforms(lq)
|
126 |
+
res = inference(lq, self.tag_model)
|
127 |
+
ram_encoder_hidden_states = self.tag_model.generate_image_embeds(lq)
|
128 |
+
validation_prompt = f"{res[0]}, {positive_prompt},"
|
129 |
+
validation_prompt = validation_prompt if user_prompt=='' else f"{user_prompt}, {validation_prompt}"
|
130 |
+
|
131 |
+
ori_width, ori_height = input_image.size
|
132 |
+
resize_flag = False
|
133 |
+
|
134 |
+
rscale = scale_factor
|
135 |
+
input_image = input_image.resize((int(input_image.size[0] * rscale), int(input_image.size[1] * rscale)))
|
136 |
+
|
137 |
+
if min(input_image.size) < process_size:
|
138 |
+
input_image = resize_preproc(input_image)
|
139 |
+
|
140 |
+
input_image = input_image.resize((input_image.size[0] // 8 * 8, input_image.size[1] // 8 * 8))
|
141 |
+
width, height = input_image.size
|
142 |
+
resize_flag = True
|
143 |
+
|
144 |
+
images = []
|
145 |
+
for _ in range(sample_times):
|
146 |
+
try:
|
147 |
+
with torch.autocast("cuda"):
|
148 |
+
image = self.validation_pipeline(
|
149 |
+
validation_prompt, input_image, negative_prompt=negative_prompt,
|
150 |
+
num_inference_steps=num_inference_steps, generator=generator,
|
151 |
+
height=height, width=width,
|
152 |
+
guidance_scale=cfg_scale, conditioning_scale=1,
|
153 |
+
start_point='lr', start_steps=999,ram_encoder_hidden_states=ram_encoder_hidden_states,
|
154 |
+
latent_tiled_size=latent_tiled_size, latent_tiled_overlap=latent_tiled_overlap
|
155 |
+
).images[0]
|
156 |
+
|
157 |
+
if True: # alpha<1.0:
|
158 |
+
image = wavelet_color_fix(image, input_image)
|
159 |
+
|
160 |
+
if resize_flag:
|
161 |
+
image = image.resize((ori_width * rscale, ori_height * rscale))
|
162 |
+
except Exception as e:
|
163 |
+
print(e)
|
164 |
+
image = Image.new(mode="RGB", size=(512, 512))
|
165 |
+
images.append(np.array(image))
|
166 |
+
return images
|
167 |
+
|
168 |
+
|
169 |
+
@torch.inference_mode()
|
170 |
+
def predict(
|
171 |
+
self,
|
172 |
+
image: Path = Input(description="Input image"),
|
173 |
+
user_prompt: str = Input(description="Prompt to condition on", default=""),
|
174 |
+
positive_prompt: str = Input(description="Prompt to add", default="clean, high-resolution, 8k"),
|
175 |
+
negative_prompt: str = Input(description="Prompt to remove", default="dotted, noise, blur, lowres, smooth"),
|
176 |
+
cfg_scale: float = Input(description="Guidance scale, set value to >1 to use", default=5.5, ge=0.1, le=10.0),
|
177 |
+
num_inference_steps: int = Input(description="Number of inference steps", default=50, ge=10, le=100),
|
178 |
+
sample_times: int = Input(description="Number of samples to generate", default=1, ge=1, le=10),
|
179 |
+
latent_tiled_size: int = Input(description="Size of latent tiles", default=320, ge=128, le=480),
|
180 |
+
latent_tiled_overlap: int = Input(description="Overlap of latent tiles", default=4, ge=4, le=16),
|
181 |
+
scale_factor: int = Input(description="Scale factor", default=4),
|
182 |
+
seed: int = Input(description="Seed", default=231, ge=0, le=2147483647),
|
183 |
+
) -> List[Path]:
|
184 |
+
"""Run a single prediction on the model"""
|
185 |
+
pil_image = Image.open(image).convert("RGB")
|
186 |
+
imgs = self.process(
|
187 |
+
pil_image, user_prompt, positive_prompt, negative_prompt, num_inference_steps,
|
188 |
+
scale_factor, cfg_scale, seed, latent_tiled_size, latent_tiled_overlap, sample_times)
|
189 |
+
|
190 |
+
# Clear output folder
|
191 |
+
os.system("rm -rf /tmp/output")
|
192 |
+
# Create output folder
|
193 |
+
os.system("mkdir /tmp/output")
|
194 |
+
# Save images to output folder
|
195 |
+
output_paths = []
|
196 |
+
for i, img in enumerate(imgs):
|
197 |
+
img = Image.fromarray(img)
|
198 |
+
output_path = f"/tmp/output/{i}.png"
|
199 |
+
img.save(output_path)
|
200 |
+
output_paths.append(Path(output_path))
|
201 |
+
|
202 |
+
return output_paths
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
diffusers==0.21.0
|
2 |
+
torch==2.0.1
|
3 |
+
pytorch_lightning
|
4 |
+
accelerate
|
5 |
+
transformers==4.25.0
|
6 |
+
xformers
|
7 |
+
loralib
|
8 |
+
fairscale
|
9 |
+
pydantic==1.10.11
|
10 |
+
gradio==3.24.0
|
test_seesr.py
ADDED
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
* SeeSR: Towards Semantics-Aware Real-World Image Super-Resolution
|
3 |
+
* Modified from diffusers by Rongyuan Wu
|
4 |
+
* 24/12/2023
|
5 |
+
'''
|
6 |
+
import os
|
7 |
+
import sys
|
8 |
+
sys.path.append(os.getcwd())
|
9 |
+
import cv2
|
10 |
+
import glob
|
11 |
+
import argparse
|
12 |
+
import numpy as np
|
13 |
+
from PIL import Image
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import torch.utils.checkpoint
|
17 |
+
|
18 |
+
from accelerate import Accelerator
|
19 |
+
from accelerate.logging import get_logger
|
20 |
+
from accelerate.utils import set_seed
|
21 |
+
from diffusers import AutoencoderKL, DDPMScheduler
|
22 |
+
from diffusers.utils import check_min_version
|
23 |
+
from diffusers.utils.import_utils import is_xformers_available
|
24 |
+
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor
|
25 |
+
|
26 |
+
from pipelines.pipeline_seesr import StableDiffusionControlNetPipeline
|
27 |
+
from utils.misc import load_dreambooth_lora
|
28 |
+
from utils.wavelet_color_fix import wavelet_color_fix, adain_color_fix
|
29 |
+
|
30 |
+
from ram.models.ram_lora import ram
|
31 |
+
from ram import inference_ram as inference
|
32 |
+
from ram import get_transform
|
33 |
+
|
34 |
+
from typing import Mapping, Any
|
35 |
+
from torchvision import transforms
|
36 |
+
import torch.nn as nn
|
37 |
+
import torch.nn.functional as F
|
38 |
+
from torchvision import transforms
|
39 |
+
|
40 |
+
logger = get_logger(__name__, log_level="INFO")
|
41 |
+
|
42 |
+
|
43 |
+
tensor_transforms = transforms.Compose([
|
44 |
+
transforms.ToTensor(),
|
45 |
+
])
|
46 |
+
|
47 |
+
ram_transforms = transforms.Compose([
|
48 |
+
transforms.Resize((384, 384)),
|
49 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
50 |
+
])
|
51 |
+
def load_state_dict_diffbirSwinIR(model: nn.Module, state_dict: Mapping[str, Any], strict: bool=False) -> None:
|
52 |
+
state_dict = state_dict.get("state_dict", state_dict)
|
53 |
+
|
54 |
+
is_model_key_starts_with_module = list(model.state_dict().keys())[0].startswith("module.")
|
55 |
+
is_state_dict_key_starts_with_module = list(state_dict.keys())[0].startswith("module.")
|
56 |
+
|
57 |
+
if (
|
58 |
+
is_model_key_starts_with_module and
|
59 |
+
(not is_state_dict_key_starts_with_module)
|
60 |
+
):
|
61 |
+
state_dict = {f"module.{key}": value for key, value in state_dict.items()}
|
62 |
+
if (
|
63 |
+
(not is_model_key_starts_with_module) and
|
64 |
+
is_state_dict_key_starts_with_module
|
65 |
+
):
|
66 |
+
state_dict = {key[len("module."):]: value for key, value in state_dict.items()}
|
67 |
+
|
68 |
+
model.load_state_dict(state_dict, strict=strict)
|
69 |
+
|
70 |
+
|
71 |
+
def load_seesr_pipeline(args, accelerator, enable_xformers_memory_efficient_attention):
|
72 |
+
|
73 |
+
from models.controlnet import ControlNetModel
|
74 |
+
from models.unet_2d_condition import UNet2DConditionModel
|
75 |
+
|
76 |
+
# Load scheduler, tokenizer and models.
|
77 |
+
|
78 |
+
scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_path, subfolder="scheduler")
|
79 |
+
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_path, subfolder="text_encoder")
|
80 |
+
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_path, subfolder="tokenizer")
|
81 |
+
vae = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="vae")
|
82 |
+
feature_extractor = CLIPImageProcessor.from_pretrained(f"{args.pretrained_model_path}/feature_extractor")
|
83 |
+
unet = UNet2DConditionModel.from_pretrained(args.seesr_model_path, subfolder="unet")
|
84 |
+
controlnet = ControlNetModel.from_pretrained(args.seesr_model_path, subfolder="controlnet")
|
85 |
+
|
86 |
+
# Freeze vae and text_encoder
|
87 |
+
vae.requires_grad_(False)
|
88 |
+
text_encoder.requires_grad_(False)
|
89 |
+
unet.requires_grad_(False)
|
90 |
+
controlnet.requires_grad_(False)
|
91 |
+
|
92 |
+
if enable_xformers_memory_efficient_attention:
|
93 |
+
if is_xformers_available():
|
94 |
+
unet.enable_xformers_memory_efficient_attention()
|
95 |
+
controlnet.enable_xformers_memory_efficient_attention()
|
96 |
+
else:
|
97 |
+
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
98 |
+
|
99 |
+
# Get the validation pipeline
|
100 |
+
validation_pipeline = StableDiffusionControlNetPipeline(
|
101 |
+
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, feature_extractor=feature_extractor,
|
102 |
+
unet=unet, controlnet=controlnet, scheduler=scheduler, safety_checker=None, requires_safety_checker=False,
|
103 |
+
)
|
104 |
+
|
105 |
+
validation_pipeline._init_tiled_vae(encoder_tile_size=args.vae_encoder_tiled_size, decoder_tile_size=args.vae_decoder_tiled_size)
|
106 |
+
|
107 |
+
# For mixed precision training we cast the text_encoder and vae weights to half-precision
|
108 |
+
# as these models are only used for inference, keeping weights in full precision is not required.
|
109 |
+
weight_dtype = torch.float32
|
110 |
+
if accelerator.mixed_precision == "fp16":
|
111 |
+
weight_dtype = torch.float16
|
112 |
+
elif accelerator.mixed_precision == "bf16":
|
113 |
+
weight_dtype = torch.bfloat16
|
114 |
+
|
115 |
+
# Move text_encode and vae to gpu and cast to weight_dtype
|
116 |
+
text_encoder.to(accelerator.device, dtype=weight_dtype)
|
117 |
+
vae.to(accelerator.device, dtype=weight_dtype)
|
118 |
+
unet.to(accelerator.device, dtype=weight_dtype)
|
119 |
+
controlnet.to(accelerator.device, dtype=weight_dtype)
|
120 |
+
|
121 |
+
return validation_pipeline
|
122 |
+
|
123 |
+
def load_tag_model(args, device='cuda'):
|
124 |
+
|
125 |
+
model = ram(pretrained='preset/models/ram_swin_large_14m.pth',
|
126 |
+
pretrained_condition=args.ram_ft_path,
|
127 |
+
image_size=384,
|
128 |
+
vit='swin_l')
|
129 |
+
model.eval()
|
130 |
+
model.to(device)
|
131 |
+
|
132 |
+
return model
|
133 |
+
|
134 |
+
def get_validation_prompt(args, image, model, device='cuda'):
|
135 |
+
validation_prompt = ""
|
136 |
+
|
137 |
+
lq = tensor_transforms(image).unsqueeze(0).to(device)
|
138 |
+
lq = ram_transforms(lq)
|
139 |
+
res = inference(lq, model)
|
140 |
+
ram_encoder_hidden_states = model.generate_image_embeds(lq)
|
141 |
+
|
142 |
+
validation_prompt = f"{res[0]}, {args.prompt},"
|
143 |
+
|
144 |
+
return validation_prompt, ram_encoder_hidden_states
|
145 |
+
|
146 |
+
def main(args, enable_xformers_memory_efficient_attention=True,):
|
147 |
+
txt_path = os.path.join(args.output_dir, 'txt')
|
148 |
+
os.makedirs(txt_path, exist_ok=True)
|
149 |
+
|
150 |
+
accelerator = Accelerator(
|
151 |
+
mixed_precision=args.mixed_precision,
|
152 |
+
)
|
153 |
+
|
154 |
+
# If passed along, set the training seed now.
|
155 |
+
if args.seed is not None:
|
156 |
+
set_seed(args.seed)
|
157 |
+
|
158 |
+
# Handle the output folder creation
|
159 |
+
if accelerator.is_main_process:
|
160 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
161 |
+
|
162 |
+
# We need to initialize the trackers we use, and also store our configuration.
|
163 |
+
# The trackers initializes automatically on the main process.
|
164 |
+
if accelerator.is_main_process:
|
165 |
+
accelerator.init_trackers("SeeSR")
|
166 |
+
|
167 |
+
pipeline = load_seesr_pipeline(args, accelerator, enable_xformers_memory_efficient_attention)
|
168 |
+
model = load_tag_model(args, accelerator.device)
|
169 |
+
|
170 |
+
if accelerator.is_main_process:
|
171 |
+
generator = torch.Generator(device=accelerator.device)
|
172 |
+
if args.seed is not None:
|
173 |
+
generator.manual_seed(args.seed)
|
174 |
+
|
175 |
+
if os.path.isdir(args.image_path):
|
176 |
+
image_names = sorted(glob.glob(f'{args.image_path}/*.*'))
|
177 |
+
else:
|
178 |
+
image_names = [args.image_path]
|
179 |
+
|
180 |
+
for image_idx, image_name in enumerate(image_names[:]):
|
181 |
+
print(f'================== process {image_idx} imgs... ===================')
|
182 |
+
validation_image = Image.open(image_name).convert("RGB")
|
183 |
+
|
184 |
+
validation_prompt, ram_encoder_hidden_states = get_validation_prompt(args, validation_image, model)
|
185 |
+
validation_prompt += args.added_prompt # clean, extremely detailed, best quality, sharp, clean
|
186 |
+
negative_prompt = args.negative_prompt #dirty, messy, low quality, frames, deformed,
|
187 |
+
|
188 |
+
if args.save_prompts:
|
189 |
+
txt_save_path = f"{txt_path}/{os.path.basename(image_name).split('.')[0]}.txt"
|
190 |
+
file = open(txt_save_path, "w")
|
191 |
+
file.write(validation_prompt)
|
192 |
+
file.close()
|
193 |
+
print(f'{validation_prompt}')
|
194 |
+
|
195 |
+
ori_width, ori_height = validation_image.size
|
196 |
+
resize_flag = False
|
197 |
+
rscale = args.upscale
|
198 |
+
if ori_width < args.process_size//rscale or ori_height < args.process_size//rscale:
|
199 |
+
scale = (args.process_size//rscale)/min(ori_width, ori_height)
|
200 |
+
tmp_image = validation_image.resize((int(scale*ori_width), int(scale*ori_height)))
|
201 |
+
|
202 |
+
validation_image = tmp_image
|
203 |
+
resize_flag = True
|
204 |
+
|
205 |
+
validation_image = validation_image.resize((validation_image.size[0]*rscale, validation_image.size[1]*rscale))
|
206 |
+
validation_image = validation_image.resize((validation_image.size[0]//8*8, validation_image.size[1]//8*8))
|
207 |
+
width, height = validation_image.size
|
208 |
+
resize_flag = True #
|
209 |
+
|
210 |
+
print(f'input size: {height}x{width}')
|
211 |
+
|
212 |
+
for sample_idx in range(args.sample_times):
|
213 |
+
os.makedirs(f'{args.output_dir}/sample{str(sample_idx).zfill(2)}/', exist_ok=True)
|
214 |
+
|
215 |
+
for sample_idx in range(args.sample_times):
|
216 |
+
with torch.autocast("cuda"):
|
217 |
+
image = pipeline(
|
218 |
+
validation_prompt, validation_image, num_inference_steps=args.num_inference_steps, generator=generator, height=height, width=width,
|
219 |
+
guidance_scale=args.guidance_scale, negative_prompt=negative_prompt, conditioning_scale=args.conditioning_scale,
|
220 |
+
start_point=args.start_point, ram_encoder_hidden_states=ram_encoder_hidden_states,
|
221 |
+
latent_tiled_size=args.latent_tiled_size, latent_tiled_overlap=args.latent_tiled_overlap,
|
222 |
+
args=args,
|
223 |
+
).images[0]
|
224 |
+
|
225 |
+
if args.align_method == 'nofix':
|
226 |
+
image = image
|
227 |
+
else:
|
228 |
+
if args.align_method == 'wavelet':
|
229 |
+
image = wavelet_color_fix(image, validation_image)
|
230 |
+
elif args.align_method == 'adain':
|
231 |
+
image = adain_color_fix(image, validation_image)
|
232 |
+
|
233 |
+
if resize_flag:
|
234 |
+
image = image.resize((ori_width*rscale, ori_height*rscale))
|
235 |
+
|
236 |
+
name, ext = os.path.splitext(os.path.basename(image_name))
|
237 |
+
|
238 |
+
image.save(f'{args.output_dir}/sample{str(sample_idx).zfill(2)}/{name}.png')
|
239 |
+
|
240 |
+
if __name__ == "__main__":
|
241 |
+
parser = argparse.ArgumentParser()
|
242 |
+
parser.add_argument("--seesr_model_path", type=str, default=None)
|
243 |
+
parser.add_argument("--ram_ft_path", type=str, default=None)
|
244 |
+
parser.add_argument("--pretrained_model_path", type=str, default=None)
|
245 |
+
parser.add_argument("--prompt", type=str, default="") # user can add self-prompt to improve the results
|
246 |
+
parser.add_argument("--added_prompt", type=str, default="clean, high-resolution, 8k")
|
247 |
+
parser.add_argument("--negative_prompt", type=str, default="dotted, noise, blur, lowres, smooth")
|
248 |
+
parser.add_argument("--image_path", type=str, default=None)
|
249 |
+
parser.add_argument("--output_dir", type=str, default=None)
|
250 |
+
parser.add_argument("--mixed_precision", type=str, default="fp16") # no/fp16/bf16
|
251 |
+
parser.add_argument("--guidance_scale", type=float, default=5.5)
|
252 |
+
parser.add_argument("--conditioning_scale", type=float, default=1.0)
|
253 |
+
parser.add_argument("--blending_alpha", type=float, default=1.0)
|
254 |
+
parser.add_argument("--num_inference_steps", type=int, default=50)
|
255 |
+
parser.add_argument("--process_size", type=int, default=512)
|
256 |
+
parser.add_argument("--vae_decoder_tiled_size", type=int, default=224) # latent size, for 24G
|
257 |
+
parser.add_argument("--vae_encoder_tiled_size", type=int, default=1024) # image size, for 13G
|
258 |
+
parser.add_argument("--latent_tiled_size", type=int, default=96)
|
259 |
+
parser.add_argument("--latent_tiled_overlap", type=int, default=32)
|
260 |
+
parser.add_argument("--upscale", type=int, default=4)
|
261 |
+
parser.add_argument("--seed", type=int, default=None)
|
262 |
+
parser.add_argument("--sample_times", type=int, default=1)
|
263 |
+
parser.add_argument("--align_method", type=str, choices=['wavelet', 'adain', 'nofix'], default='adain')
|
264 |
+
parser.add_argument("--start_steps", type=int, default=999) # defaults set to 999.
|
265 |
+
parser.add_argument("--start_point", type=str, choices=['lr', 'noise'], default='lr') # LR Embedding Strategy, choose 'lr latent + 999 steps noise' as diffusion start point.
|
266 |
+
parser.add_argument("--save_prompts", action='store_true')
|
267 |
+
args = parser.parse_args()
|
268 |
+
main(args)
|
269 |
+
|
270 |
+
|
271 |
+
|
test_seesr_turbo.py
ADDED
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
* SeeSR: Towards Semantics-Aware Real-World Image Super-Resolution
|
3 |
+
* Modified from diffusers by Rongyuan Wu
|
4 |
+
* 24/12/2023
|
5 |
+
'''
|
6 |
+
import os
|
7 |
+
import sys
|
8 |
+
sys.path.append(os.getcwd())
|
9 |
+
import cv2
|
10 |
+
import glob
|
11 |
+
import argparse
|
12 |
+
import numpy as np
|
13 |
+
from PIL import Image
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import torch.utils.checkpoint
|
17 |
+
|
18 |
+
from accelerate import Accelerator
|
19 |
+
from accelerate.logging import get_logger
|
20 |
+
from accelerate.utils import set_seed
|
21 |
+
from diffusers import AutoencoderKL, DDPMScheduler
|
22 |
+
from diffusers.utils import check_min_version
|
23 |
+
from diffusers.utils.import_utils import is_xformers_available
|
24 |
+
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor
|
25 |
+
|
26 |
+
from pipelines.pipeline_seesr import StableDiffusionControlNetPipeline
|
27 |
+
from utils.misc import load_dreambooth_lora
|
28 |
+
from utils.wavelet_color_fix import wavelet_color_fix, adain_color_fix
|
29 |
+
|
30 |
+
from ram.models.ram_lora import ram
|
31 |
+
from ram import inference_ram as inference
|
32 |
+
from ram import get_transform
|
33 |
+
|
34 |
+
from typing import Mapping, Any
|
35 |
+
from torchvision import transforms
|
36 |
+
import torch.nn as nn
|
37 |
+
import torch.nn.functional as F
|
38 |
+
from torchvision import transforms
|
39 |
+
|
40 |
+
logger = get_logger(__name__, log_level="INFO")
|
41 |
+
|
42 |
+
|
43 |
+
tensor_transforms = transforms.Compose([
|
44 |
+
transforms.ToTensor(),
|
45 |
+
])
|
46 |
+
|
47 |
+
ram_transforms = transforms.Compose([
|
48 |
+
transforms.Resize((384, 384)),
|
49 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
50 |
+
])
|
51 |
+
def load_state_dict_diffbirSwinIR(model: nn.Module, state_dict: Mapping[str, Any], strict: bool=False) -> None:
|
52 |
+
state_dict = state_dict.get("state_dict", state_dict)
|
53 |
+
|
54 |
+
is_model_key_starts_with_module = list(model.state_dict().keys())[0].startswith("module.")
|
55 |
+
is_state_dict_key_starts_with_module = list(state_dict.keys())[0].startswith("module.")
|
56 |
+
|
57 |
+
if (
|
58 |
+
is_model_key_starts_with_module and
|
59 |
+
(not is_state_dict_key_starts_with_module)
|
60 |
+
):
|
61 |
+
state_dict = {f"module.{key}": value for key, value in state_dict.items()}
|
62 |
+
if (
|
63 |
+
(not is_model_key_starts_with_module) and
|
64 |
+
is_state_dict_key_starts_with_module
|
65 |
+
):
|
66 |
+
state_dict = {key[len("module."):]: value for key, value in state_dict.items()}
|
67 |
+
|
68 |
+
model.load_state_dict(state_dict, strict=strict)
|
69 |
+
|
70 |
+
|
71 |
+
def load_seesr_pipeline(args, accelerator, enable_xformers_memory_efficient_attention):
|
72 |
+
|
73 |
+
from models.controlnet import ControlNetModel
|
74 |
+
from models.unet_2d_condition import UNet2DConditionModel
|
75 |
+
|
76 |
+
# Load scheduler, tokenizer and models.
|
77 |
+
|
78 |
+
scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_path, subfolder="scheduler")
|
79 |
+
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_path, subfolder="text_encoder")
|
80 |
+
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_path, subfolder="tokenizer")
|
81 |
+
vae = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="vae")
|
82 |
+
feature_extractor = CLIPImageProcessor.from_pretrained(f"{args.pretrained_model_path}/feature_extractor")
|
83 |
+
unet = UNet2DConditionModel.from_pretrained_orig(args.pretrained_model_path, args.seesr_model_path, subfolder="unet", use_image_cross_attention=True)
|
84 |
+
controlnet = ControlNetModel.from_pretrained(args.seesr_model_path, subfolder="controlnet")
|
85 |
+
|
86 |
+
# Freeze vae and text_encoder
|
87 |
+
vae.requires_grad_(False)
|
88 |
+
text_encoder.requires_grad_(False)
|
89 |
+
unet.requires_grad_(False)
|
90 |
+
controlnet.requires_grad_(False)
|
91 |
+
|
92 |
+
if enable_xformers_memory_efficient_attention:
|
93 |
+
if is_xformers_available():
|
94 |
+
unet.enable_xformers_memory_efficient_attention()
|
95 |
+
controlnet.enable_xformers_memory_efficient_attention()
|
96 |
+
else:
|
97 |
+
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
98 |
+
|
99 |
+
# Get the validation pipeline
|
100 |
+
validation_pipeline = StableDiffusionControlNetPipeline(
|
101 |
+
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, feature_extractor=feature_extractor,
|
102 |
+
unet=unet, controlnet=controlnet, scheduler=scheduler, safety_checker=None, requires_safety_checker=False,
|
103 |
+
)
|
104 |
+
|
105 |
+
validation_pipeline._init_tiled_vae(encoder_tile_size=args.vae_encoder_tiled_size, decoder_tile_size=args.vae_decoder_tiled_size)
|
106 |
+
|
107 |
+
# For mixed precision training we cast the text_encoder and vae weights to half-precision
|
108 |
+
# as these models are only used for inference, keeping weights in full precision is not required.
|
109 |
+
weight_dtype = torch.float32
|
110 |
+
if accelerator.mixed_precision == "fp16":
|
111 |
+
weight_dtype = torch.float16
|
112 |
+
elif accelerator.mixed_precision == "bf16":
|
113 |
+
weight_dtype = torch.bfloat16
|
114 |
+
|
115 |
+
# Move text_encode and vae to gpu and cast to weight_dtype
|
116 |
+
text_encoder.to(accelerator.device, dtype=weight_dtype)
|
117 |
+
vae.to(accelerator.device, dtype=weight_dtype)
|
118 |
+
unet.to(accelerator.device, dtype=weight_dtype)
|
119 |
+
controlnet.to(accelerator.device, dtype=weight_dtype)
|
120 |
+
|
121 |
+
return validation_pipeline
|
122 |
+
|
123 |
+
def load_tag_model(args, device='cuda'):
|
124 |
+
|
125 |
+
model = ram(pretrained='preset/models/ram_swin_large_14m.pth',
|
126 |
+
pretrained_condition=args.ram_ft_path,
|
127 |
+
image_size=384,
|
128 |
+
vit='swin_l')
|
129 |
+
model.eval()
|
130 |
+
model.to(device)
|
131 |
+
|
132 |
+
return model
|
133 |
+
|
134 |
+
def get_validation_prompt(args, image, model, device='cuda'):
|
135 |
+
validation_prompt = ""
|
136 |
+
|
137 |
+
lq = tensor_transforms(image).unsqueeze(0).to(device)
|
138 |
+
lq = ram_transforms(lq)
|
139 |
+
res = inference(lq, model)
|
140 |
+
ram_encoder_hidden_states = model.generate_image_embeds(lq)
|
141 |
+
|
142 |
+
validation_prompt = f"{res[0]}, {args.prompt},"
|
143 |
+
|
144 |
+
return validation_prompt, ram_encoder_hidden_states
|
145 |
+
|
146 |
+
def main(args, enable_xformers_memory_efficient_attention=True,):
|
147 |
+
txt_path = os.path.join(args.output_dir, 'txt')
|
148 |
+
os.makedirs(txt_path, exist_ok=True)
|
149 |
+
|
150 |
+
accelerator = Accelerator(
|
151 |
+
mixed_precision=args.mixed_precision,
|
152 |
+
)
|
153 |
+
|
154 |
+
# If passed along, set the training seed now.
|
155 |
+
if args.seed is not None:
|
156 |
+
set_seed(args.seed)
|
157 |
+
|
158 |
+
# Handle the output folder creation
|
159 |
+
if accelerator.is_main_process:
|
160 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
161 |
+
|
162 |
+
# We need to initialize the trackers we use, and also store our configuration.
|
163 |
+
# The trackers initializes automatically on the main process.
|
164 |
+
if accelerator.is_main_process:
|
165 |
+
accelerator.init_trackers("SeeSR")
|
166 |
+
|
167 |
+
pipeline = load_seesr_pipeline(args, accelerator, enable_xformers_memory_efficient_attention)
|
168 |
+
model = load_tag_model(args, accelerator.device)
|
169 |
+
|
170 |
+
if accelerator.is_main_process:
|
171 |
+
generator = torch.Generator(device=accelerator.device)
|
172 |
+
if args.seed is not None:
|
173 |
+
generator.manual_seed(args.seed)
|
174 |
+
|
175 |
+
if os.path.isdir(args.image_path):
|
176 |
+
image_names = sorted(glob.glob(f'{args.image_path}/*.*'))
|
177 |
+
else:
|
178 |
+
image_names = [args.image_path]
|
179 |
+
|
180 |
+
for image_idx, image_name in enumerate(image_names[:]):
|
181 |
+
print(f'================== process {image_idx} imgs... ===================')
|
182 |
+
validation_image = Image.open(image_name).convert("RGB")
|
183 |
+
|
184 |
+
validation_prompt, ram_encoder_hidden_states = get_validation_prompt(args, validation_image, model)
|
185 |
+
validation_prompt += args.added_prompt # clean, extremely detailed, best quality, sharp, clean
|
186 |
+
negative_prompt = args.negative_prompt #dirty, messy, low quality, frames, deformed,
|
187 |
+
|
188 |
+
if args.save_prompts:
|
189 |
+
txt_save_path = f"{txt_path}/{os.path.basename(image_name).split('.')[0]}.txt"
|
190 |
+
file = open(txt_save_path, "w")
|
191 |
+
file.write(validation_prompt)
|
192 |
+
file.close()
|
193 |
+
print(f'{validation_prompt}')
|
194 |
+
|
195 |
+
ori_width, ori_height = validation_image.size
|
196 |
+
resize_flag = False
|
197 |
+
rscale = args.upscale
|
198 |
+
if ori_width < args.process_size//rscale or ori_height < args.process_size//rscale:
|
199 |
+
scale = (args.process_size//rscale)/min(ori_width, ori_height)
|
200 |
+
tmp_image = validation_image.resize((int(scale*ori_width), int(scale*ori_height)))
|
201 |
+
|
202 |
+
validation_image = tmp_image
|
203 |
+
resize_flag = True
|
204 |
+
|
205 |
+
validation_image = validation_image.resize((validation_image.size[0]*rscale, validation_image.size[1]*rscale))
|
206 |
+
validation_image = validation_image.resize((validation_image.size[0]//8*8, validation_image.size[1]//8*8))
|
207 |
+
width, height = validation_image.size
|
208 |
+
resize_flag = True #
|
209 |
+
|
210 |
+
print(f'input size: {height}x{width}')
|
211 |
+
|
212 |
+
for sample_idx in range(args.sample_times):
|
213 |
+
os.makedirs(f'{args.output_dir}/sample{str(sample_idx).zfill(2)}/', exist_ok=True)
|
214 |
+
|
215 |
+
for sample_idx in range(args.sample_times):
|
216 |
+
with torch.autocast("cuda"):
|
217 |
+
image = pipeline(
|
218 |
+
validation_prompt, validation_image, num_inference_steps=args.num_inference_steps, generator=generator, height=height, width=width,
|
219 |
+
guidance_scale=args.guidance_scale, negative_prompt=negative_prompt, conditioning_scale=args.conditioning_scale,
|
220 |
+
start_point=args.start_point, ram_encoder_hidden_states=ram_encoder_hidden_states,
|
221 |
+
latent_tiled_size=args.latent_tiled_size, latent_tiled_overlap=args.latent_tiled_overlap,
|
222 |
+
args=args,
|
223 |
+
).images[0]
|
224 |
+
|
225 |
+
if args.align_method == 'nofix':
|
226 |
+
image = image
|
227 |
+
else:
|
228 |
+
if args.align_method == 'wavelet':
|
229 |
+
image = wavelet_color_fix(image, validation_image)
|
230 |
+
elif args.align_method == 'adain':
|
231 |
+
image = adain_color_fix(image, validation_image)
|
232 |
+
|
233 |
+
if resize_flag:
|
234 |
+
image = image.resize((ori_width*rscale, ori_height*rscale))
|
235 |
+
|
236 |
+
name, ext = os.path.splitext(os.path.basename(image_name))
|
237 |
+
|
238 |
+
image.save(f'{args.output_dir}/sample{str(sample_idx).zfill(2)}/{name}.png')
|
239 |
+
|
240 |
+
if __name__ == "__main__":
|
241 |
+
parser = argparse.ArgumentParser()
|
242 |
+
parser.add_argument("--seesr_model_path", type=str, default=None)
|
243 |
+
parser.add_argument("--ram_ft_path", type=str, default=None)
|
244 |
+
parser.add_argument("--pretrained_model_path", type=str, default=None)
|
245 |
+
parser.add_argument("--prompt", type=str, default="") # user can add self-prompt to improve the results
|
246 |
+
parser.add_argument("--added_prompt", type=str, default="clean, high-resolution, 8k")
|
247 |
+
parser.add_argument("--negative_prompt", type=str, default="dotted, noise, blur, lowres, smooth")
|
248 |
+
parser.add_argument("--image_path", type=str, default=None)
|
249 |
+
parser.add_argument("--output_dir", type=str, default=None)
|
250 |
+
parser.add_argument("--mixed_precision", type=str, default="fp16") # no/fp16/bf16
|
251 |
+
parser.add_argument("--guidance_scale", type=float, default=1.0)
|
252 |
+
parser.add_argument("--conditioning_scale", type=float, default=1.0)
|
253 |
+
parser.add_argument("--blending_alpha", type=float, default=1.0)
|
254 |
+
parser.add_argument("--num_inference_steps", type=int, default=2)
|
255 |
+
parser.add_argument("--process_size", type=int, default=512)
|
256 |
+
parser.add_argument("--vae_decoder_tiled_size", type=int, default=224) # latent size, for 24G
|
257 |
+
parser.add_argument("--vae_encoder_tiled_size", type=int, default=1024) # image size, for 13G
|
258 |
+
parser.add_argument("--latent_tiled_size", type=int, default=96)
|
259 |
+
parser.add_argument("--latent_tiled_overlap", type=int, default=32)
|
260 |
+
parser.add_argument("--upscale", type=int, default=4)
|
261 |
+
parser.add_argument("--seed", type=int, default=None)
|
262 |
+
parser.add_argument("--sample_times", type=int, default=1)
|
263 |
+
parser.add_argument("--align_method", type=str, choices=['wavelet', 'adain', 'nofix'], default='adain')
|
264 |
+
parser.add_argument("--start_steps", type=int, default=999) # defaults set to 999.
|
265 |
+
parser.add_argument("--start_point", type=str, choices=['lr', 'noise'], default='lr') # LR Embedding Strategy, choose 'lr latent + 999 steps noise' as diffusion start point.
|
266 |
+
parser.add_argument("--save_prompts", action='store_true')
|
267 |
+
args = parser.parse_args()
|
268 |
+
main(args)
|
269 |
+
|
270 |
+
|
271 |
+
|
train_seesr.py
ADDED
@@ -0,0 +1,1093 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
* SeeSR: Towards Semantics-Aware Real-World Image Super-Resolution
|
3 |
+
* Modified from diffusers by Rongyuan Wu
|
4 |
+
* 24/12/2023
|
5 |
+
'''
|
6 |
+
|
7 |
+
import argparse
|
8 |
+
import logging
|
9 |
+
import math
|
10 |
+
import os
|
11 |
+
import random
|
12 |
+
import shutil
|
13 |
+
from pathlib import Path
|
14 |
+
|
15 |
+
import accelerate
|
16 |
+
import numpy as np
|
17 |
+
import torch
|
18 |
+
import torch.nn.functional as F
|
19 |
+
import torch.utils.checkpoint
|
20 |
+
import transformers
|
21 |
+
from accelerate import Accelerator
|
22 |
+
from accelerate.logging import get_logger
|
23 |
+
from accelerate.utils import ProjectConfiguration, set_seed
|
24 |
+
from datasets import load_dataset # ''datasets'' is a library
|
25 |
+
from huggingface_hub import create_repo, upload_folder
|
26 |
+
from packaging import version
|
27 |
+
from PIL import Image
|
28 |
+
from torchvision import transforms
|
29 |
+
from tqdm.auto import tqdm
|
30 |
+
from transformers import AutoTokenizer, PretrainedConfig
|
31 |
+
|
32 |
+
import diffusers
|
33 |
+
from diffusers import (
|
34 |
+
AutoencoderKL,
|
35 |
+
DDPMScheduler,
|
36 |
+
StableDiffusionControlNetPipeline,
|
37 |
+
UniPCMultistepScheduler,
|
38 |
+
)
|
39 |
+
from models.controlnet import ControlNetModel
|
40 |
+
from models.unet_2d_condition import UNet2DConditionModel
|
41 |
+
from diffusers.optimization import get_scheduler
|
42 |
+
from diffusers.utils import check_min_version, is_wandb_available
|
43 |
+
from diffusers.utils.import_utils import is_xformers_available
|
44 |
+
|
45 |
+
from dataloaders.paired_dataset import PairedCaptionDataset
|
46 |
+
|
47 |
+
from typing import Mapping, Any
|
48 |
+
from torchvision import transforms
|
49 |
+
import torch.nn as nn
|
50 |
+
import torch.nn.functional as F
|
51 |
+
|
52 |
+
if is_wandb_available():
|
53 |
+
import wandb
|
54 |
+
|
55 |
+
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
56 |
+
check_min_version("0.21.0.dev0")
|
57 |
+
|
58 |
+
logger = get_logger(__name__)
|
59 |
+
|
60 |
+
from torchvision import transforms
|
61 |
+
tensor_transforms = transforms.Compose([
|
62 |
+
transforms.ToTensor(),
|
63 |
+
])
|
64 |
+
ram_transforms = transforms.Compose([
|
65 |
+
transforms.Resize((384, 384)),
|
66 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
67 |
+
])
|
68 |
+
|
69 |
+
def image_grid(imgs, rows, cols):
|
70 |
+
assert len(imgs) == rows * cols
|
71 |
+
|
72 |
+
w, h = imgs[0].size
|
73 |
+
grid = Image.new("RGB", size=(cols * w, rows * h))
|
74 |
+
|
75 |
+
for i, img in enumerate(imgs):
|
76 |
+
grid.paste(img, box=(i % cols * w, i // cols * h))
|
77 |
+
return grid
|
78 |
+
|
79 |
+
|
80 |
+
def log_validation(vae, text_encoder, tokenizer, unet, controlnet, args, accelerator, weight_dtype, step):
|
81 |
+
logger.info("Running validation... ")
|
82 |
+
|
83 |
+
controlnet = accelerator.unwrap_model(controlnet)
|
84 |
+
|
85 |
+
pipeline = StableDiffusionControlNetPipeline.from_pretrained(
|
86 |
+
args.pretrained_model_name_or_path,
|
87 |
+
vae=vae,
|
88 |
+
text_encoder=text_encoder,
|
89 |
+
tokenizer=tokenizer,
|
90 |
+
unet=unet,
|
91 |
+
controlnet=controlnet,
|
92 |
+
safety_checker=None,
|
93 |
+
revision=args.revision,
|
94 |
+
torch_dtype=weight_dtype,
|
95 |
+
)
|
96 |
+
pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config)
|
97 |
+
pipeline = pipeline.to(accelerator.device)
|
98 |
+
pipeline.set_progress_bar_config(disable=True)
|
99 |
+
|
100 |
+
if args.enable_xformers_memory_efficient_attention:
|
101 |
+
pipeline.enable_xformers_memory_efficient_attention()
|
102 |
+
|
103 |
+
if args.seed is None:
|
104 |
+
generator = None
|
105 |
+
else:
|
106 |
+
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)
|
107 |
+
|
108 |
+
if len(args.validation_image) == len(args.validation_prompt):
|
109 |
+
validation_images = args.validation_image
|
110 |
+
validation_prompts = args.validation_prompt
|
111 |
+
elif len(args.validation_image) == 1:
|
112 |
+
validation_images = args.validation_image * len(args.validation_prompt)
|
113 |
+
validation_prompts = args.validation_prompt
|
114 |
+
elif len(args.validation_prompt) == 1:
|
115 |
+
validation_images = args.validation_image
|
116 |
+
validation_prompts = args.validation_prompt * len(args.validation_image)
|
117 |
+
else:
|
118 |
+
raise ValueError(
|
119 |
+
"number of `args.validation_image` and `args.validation_prompt` should be checked in `parse_args`"
|
120 |
+
)
|
121 |
+
|
122 |
+
image_logs = []
|
123 |
+
|
124 |
+
for validation_prompt, validation_image in zip(validation_prompts, validation_images):
|
125 |
+
validation_image = Image.open(validation_image).convert("RGB")
|
126 |
+
|
127 |
+
images = []
|
128 |
+
|
129 |
+
for _ in range(args.num_validation_images):
|
130 |
+
with torch.autocast("cuda"):
|
131 |
+
image = pipeline(
|
132 |
+
validation_prompt, validation_image, num_inference_steps=20, generator=generator
|
133 |
+
).images[0]
|
134 |
+
|
135 |
+
images.append(image)
|
136 |
+
|
137 |
+
image_logs.append(
|
138 |
+
{"validation_image": validation_image, "images": images, "validation_prompt": validation_prompt}
|
139 |
+
)
|
140 |
+
|
141 |
+
for tracker in accelerator.trackers:
|
142 |
+
if tracker.name == "tensorboard":
|
143 |
+
for log in image_logs:
|
144 |
+
images = log["images"]
|
145 |
+
validation_prompt = log["validation_prompt"]
|
146 |
+
validation_image = log["validation_image"]
|
147 |
+
|
148 |
+
formatted_images = []
|
149 |
+
|
150 |
+
formatted_images.append(np.asarray(validation_image))
|
151 |
+
|
152 |
+
for image in images:
|
153 |
+
formatted_images.append(np.asarray(image))
|
154 |
+
|
155 |
+
formatted_images = np.stack(formatted_images)
|
156 |
+
|
157 |
+
tracker.writer.add_images(validation_prompt, formatted_images, step, dataformats="NHWC")
|
158 |
+
elif tracker.name == "wandb":
|
159 |
+
formatted_images = []
|
160 |
+
|
161 |
+
for log in image_logs:
|
162 |
+
images = log["images"]
|
163 |
+
validation_prompt = log["validation_prompt"]
|
164 |
+
validation_image = log["validation_image"]
|
165 |
+
|
166 |
+
formatted_images.append(wandb.Image(validation_image, caption="Controlnet conditioning"))
|
167 |
+
|
168 |
+
for image in images:
|
169 |
+
image = wandb.Image(image, caption=validation_prompt)
|
170 |
+
formatted_images.append(image)
|
171 |
+
|
172 |
+
tracker.log({"validation": formatted_images})
|
173 |
+
else:
|
174 |
+
logger.warn(f"image logging not implemented for {tracker.name}")
|
175 |
+
|
176 |
+
return image_logs
|
177 |
+
|
178 |
+
|
179 |
+
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
|
180 |
+
text_encoder_config = PretrainedConfig.from_pretrained(
|
181 |
+
pretrained_model_name_or_path,
|
182 |
+
subfolder="text_encoder",
|
183 |
+
revision=revision,
|
184 |
+
)
|
185 |
+
model_class = text_encoder_config.architectures[0]
|
186 |
+
|
187 |
+
if model_class == "CLIPTextModel":
|
188 |
+
from transformers import CLIPTextModel
|
189 |
+
|
190 |
+
return CLIPTextModel
|
191 |
+
elif model_class == "RobertaSeriesModelWithTransformation":
|
192 |
+
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation
|
193 |
+
|
194 |
+
return RobertaSeriesModelWithTransformation
|
195 |
+
else:
|
196 |
+
raise ValueError(f"{model_class} is not supported.")
|
197 |
+
|
198 |
+
|
199 |
+
def save_model_card(repo_id: str, image_logs=None, base_model=str, repo_folder=None):
|
200 |
+
img_str = ""
|
201 |
+
if image_logs is not None:
|
202 |
+
img_str = "You can find some example images below.\n"
|
203 |
+
for i, log in enumerate(image_logs):
|
204 |
+
images = log["images"]
|
205 |
+
validation_prompt = log["validation_prompt"]
|
206 |
+
validation_image = log["validation_image"]
|
207 |
+
validation_image.save(os.path.join(repo_folder, "image_control.png"))
|
208 |
+
img_str += f"prompt: {validation_prompt}\n"
|
209 |
+
images = [validation_image] + images
|
210 |
+
image_grid(images, 1, len(images)).save(os.path.join(repo_folder, f"images_{i}.png"))
|
211 |
+
img_str += f"\n"
|
212 |
+
|
213 |
+
yaml = f"""
|
214 |
+
---
|
215 |
+
license: creativeml-openrail-m
|
216 |
+
base_model: {base_model}
|
217 |
+
tags:
|
218 |
+
- stable-diffusion
|
219 |
+
- stable-diffusion-diffusers
|
220 |
+
- text-to-image
|
221 |
+
- diffusers
|
222 |
+
- controlnet
|
223 |
+
inference: true
|
224 |
+
---
|
225 |
+
"""
|
226 |
+
model_card = f"""
|
227 |
+
# controlnet-{repo_id}
|
228 |
+
|
229 |
+
These are controlnet weights trained on {base_model} with new type of conditioning.
|
230 |
+
{img_str}
|
231 |
+
"""
|
232 |
+
with open(os.path.join(repo_folder, "README.md"), "w") as f:
|
233 |
+
f.write(yaml + model_card)
|
234 |
+
|
235 |
+
|
236 |
+
def parse_args(input_args=None):
|
237 |
+
parser = argparse.ArgumentParser(description="Simple example of a ControlNet training script.")
|
238 |
+
parser.add_argument(
|
239 |
+
"--pretrained_model_name_or_path",
|
240 |
+
type=str,
|
241 |
+
default="/home/notebook/data/group/LowLevelLLM/models/diffusion_models/stable-diffusion-2-base",
|
242 |
+
# required=True,
|
243 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
244 |
+
)
|
245 |
+
parser.add_argument(
|
246 |
+
"--controlnet_model_name_or_path",
|
247 |
+
type=str,
|
248 |
+
default=None,
|
249 |
+
help="Path to pretrained controlnet model or model identifier from huggingface.co/models."
|
250 |
+
" If not specified controlnet weights are initialized from unet.",
|
251 |
+
)
|
252 |
+
parser.add_argument(
|
253 |
+
"--unet_model_name_or_path",
|
254 |
+
type=str,
|
255 |
+
default=None,
|
256 |
+
help="Path to pretrained unet model or model identifier from huggingface.co/models."
|
257 |
+
" If not specified controlnet weights are initialized from unet.",
|
258 |
+
)
|
259 |
+
parser.add_argument(
|
260 |
+
"--revision",
|
261 |
+
type=str,
|
262 |
+
default=None,
|
263 |
+
required=False,
|
264 |
+
help=(
|
265 |
+
"Revision of pretrained model identifier from huggingface.co/models. Trainable model components should be"
|
266 |
+
" float32 precision."
|
267 |
+
),
|
268 |
+
)
|
269 |
+
parser.add_argument(
|
270 |
+
"--tokenizer_name",
|
271 |
+
type=str,
|
272 |
+
default=None,
|
273 |
+
help="Pretrained tokenizer name or path if not the same as model_name",
|
274 |
+
)
|
275 |
+
parser.add_argument(
|
276 |
+
"--output_dir",
|
277 |
+
type=str,
|
278 |
+
default="./experience/test",
|
279 |
+
help="The output directory where the model predictions and checkpoints will be written.",
|
280 |
+
)
|
281 |
+
parser.add_argument(
|
282 |
+
"--cache_dir",
|
283 |
+
type=str,
|
284 |
+
default=None,
|
285 |
+
help="The directory where the downloaded models and datasets will be stored.",
|
286 |
+
)
|
287 |
+
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
288 |
+
parser.add_argument(
|
289 |
+
"--resolution",
|
290 |
+
type=int,
|
291 |
+
default=512,
|
292 |
+
help=(
|
293 |
+
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
294 |
+
" resolution"
|
295 |
+
),
|
296 |
+
)
|
297 |
+
parser.add_argument(
|
298 |
+
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
|
299 |
+
)
|
300 |
+
parser.add_argument("--num_train_epochs", type=int, default=1000)
|
301 |
+
parser.add_argument(
|
302 |
+
"--max_train_steps",
|
303 |
+
type=int,
|
304 |
+
default=None,
|
305 |
+
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
306 |
+
)
|
307 |
+
parser.add_argument(
|
308 |
+
"--checkpointing_steps",
|
309 |
+
type=int,
|
310 |
+
default=500,
|
311 |
+
help=(
|
312 |
+
"Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. "
|
313 |
+
"In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference."
|
314 |
+
"Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components."
|
315 |
+
"See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step"
|
316 |
+
"instructions."
|
317 |
+
),
|
318 |
+
)
|
319 |
+
parser.add_argument(
|
320 |
+
"--checkpoints_total_limit",
|
321 |
+
type=int,
|
322 |
+
default=None,
|
323 |
+
help=("Max number of checkpoints to store."),
|
324 |
+
)
|
325 |
+
parser.add_argument(
|
326 |
+
"--resume_from_checkpoint",
|
327 |
+
type=str,
|
328 |
+
default=None,
|
329 |
+
help=(
|
330 |
+
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
|
331 |
+
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
|
332 |
+
),
|
333 |
+
)
|
334 |
+
parser.add_argument(
|
335 |
+
"--gradient_accumulation_steps",
|
336 |
+
type=int,
|
337 |
+
default=1,
|
338 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
339 |
+
)
|
340 |
+
parser.add_argument(
|
341 |
+
"--gradient_checkpointing",
|
342 |
+
action="store_true",
|
343 |
+
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
|
344 |
+
)
|
345 |
+
parser.add_argument(
|
346 |
+
"--learning_rate",
|
347 |
+
type=float,
|
348 |
+
default=5e-5,
|
349 |
+
help="Initial learning rate (after the potential warmup period) to use.",
|
350 |
+
)
|
351 |
+
parser.add_argument(
|
352 |
+
"--scale_lr",
|
353 |
+
action="store_true",
|
354 |
+
default=False,
|
355 |
+
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
356 |
+
)
|
357 |
+
parser.add_argument(
|
358 |
+
"--lr_scheduler",
|
359 |
+
type=str,
|
360 |
+
default="constant",
|
361 |
+
help=(
|
362 |
+
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
363 |
+
' "constant", "constant_with_warmup"]'
|
364 |
+
),
|
365 |
+
)
|
366 |
+
parser.add_argument(
|
367 |
+
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
368 |
+
)
|
369 |
+
parser.add_argument(
|
370 |
+
"--lr_num_cycles",
|
371 |
+
type=int,
|
372 |
+
default=1,
|
373 |
+
help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
|
374 |
+
)
|
375 |
+
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
|
376 |
+
parser.add_argument(
|
377 |
+
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
|
378 |
+
)
|
379 |
+
parser.add_argument(
|
380 |
+
"--dataloader_num_workers",
|
381 |
+
type=int,
|
382 |
+
default=0,
|
383 |
+
help=(
|
384 |
+
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
|
385 |
+
),
|
386 |
+
)
|
387 |
+
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
388 |
+
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
389 |
+
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
390 |
+
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
391 |
+
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
392 |
+
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
393 |
+
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
|
394 |
+
parser.add_argument(
|
395 |
+
"--hub_model_id",
|
396 |
+
type=str,
|
397 |
+
default=None,
|
398 |
+
help="The name of the repository to keep in sync with the local `output_dir`.",
|
399 |
+
)
|
400 |
+
parser.add_argument(
|
401 |
+
"--logging_dir",
|
402 |
+
type=str,
|
403 |
+
default="logs",
|
404 |
+
help=(
|
405 |
+
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
406 |
+
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
407 |
+
),
|
408 |
+
)
|
409 |
+
parser.add_argument(
|
410 |
+
"--allow_tf32",
|
411 |
+
action="store_true",
|
412 |
+
help=(
|
413 |
+
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
|
414 |
+
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
|
415 |
+
),
|
416 |
+
)
|
417 |
+
parser.add_argument(
|
418 |
+
"--report_to",
|
419 |
+
type=str,
|
420 |
+
default="tensorboard",
|
421 |
+
help=(
|
422 |
+
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
|
423 |
+
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
|
424 |
+
),
|
425 |
+
)
|
426 |
+
parser.add_argument(
|
427 |
+
"--mixed_precision",
|
428 |
+
type=str,
|
429 |
+
default="fp16",
|
430 |
+
choices=["no", "fp16", "bf16"],
|
431 |
+
help=(
|
432 |
+
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
433 |
+
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
|
434 |
+
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
|
435 |
+
),
|
436 |
+
)
|
437 |
+
parser.add_argument(
|
438 |
+
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
|
439 |
+
)
|
440 |
+
parser.add_argument(
|
441 |
+
"--set_grads_to_none",
|
442 |
+
action="store_true",
|
443 |
+
help=(
|
444 |
+
"Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain"
|
445 |
+
" behaviors, so disable this argument if it causes any problems. More info:"
|
446 |
+
" https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html"
|
447 |
+
),
|
448 |
+
)
|
449 |
+
parser.add_argument(
|
450 |
+
"--dataset_name",
|
451 |
+
type=str,
|
452 |
+
default=None,
|
453 |
+
help=(
|
454 |
+
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
|
455 |
+
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
|
456 |
+
" or to a folder containing files that 🤗 Datasets can understand."
|
457 |
+
),
|
458 |
+
)
|
459 |
+
parser.add_argument(
|
460 |
+
"--dataset_config_name",
|
461 |
+
type=str,
|
462 |
+
default=None,
|
463 |
+
help="The config of the Dataset, leave as None if there's only one config.",
|
464 |
+
)
|
465 |
+
parser.add_argument(
|
466 |
+
"--train_data_dir",
|
467 |
+
type=str,
|
468 |
+
default='NOTHING',
|
469 |
+
help=(
|
470 |
+
"A folder containing the training data. Folder contents must follow the structure described in"
|
471 |
+
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
|
472 |
+
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
|
473 |
+
),
|
474 |
+
)
|
475 |
+
parser.add_argument(
|
476 |
+
"--image_column", type=str, default="image", help="The column of the dataset containing the target image."
|
477 |
+
)
|
478 |
+
parser.add_argument(
|
479 |
+
"--conditioning_image_column",
|
480 |
+
type=str,
|
481 |
+
default="conditioning_image",
|
482 |
+
help="The column of the dataset containing the controlnet conditioning image.",
|
483 |
+
)
|
484 |
+
parser.add_argument(
|
485 |
+
"--caption_column",
|
486 |
+
type=str,
|
487 |
+
default="text",
|
488 |
+
help="The column of the dataset containing a caption or a list of captions.",
|
489 |
+
)
|
490 |
+
parser.add_argument(
|
491 |
+
"--max_train_samples",
|
492 |
+
type=int,
|
493 |
+
default=None,
|
494 |
+
help=(
|
495 |
+
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
496 |
+
"value if set."
|
497 |
+
),
|
498 |
+
)
|
499 |
+
parser.add_argument(
|
500 |
+
"--proportion_empty_prompts",
|
501 |
+
type=float,
|
502 |
+
default=0,
|
503 |
+
help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).",
|
504 |
+
)
|
505 |
+
parser.add_argument(
|
506 |
+
"--validation_prompt",
|
507 |
+
type=str,
|
508 |
+
default=[""],
|
509 |
+
nargs="+",
|
510 |
+
help=(
|
511 |
+
"A set of prompts evaluated every `--validation_steps` and logged to `--report_to`."
|
512 |
+
" Provide either a matching number of `--validation_image`s, a single `--validation_image`"
|
513 |
+
" to be used with all prompts, or a single prompt that will be used with all `--validation_image`s."
|
514 |
+
),
|
515 |
+
)
|
516 |
+
parser.add_argument(
|
517 |
+
"--validation_image",
|
518 |
+
type=str,
|
519 |
+
default=[""],
|
520 |
+
nargs="+",
|
521 |
+
help=(
|
522 |
+
"A set of paths to the controlnet conditioning image be evaluated every `--validation_steps`"
|
523 |
+
" and logged to `--report_to`. Provide either a matching number of `--validation_prompt`s, a"
|
524 |
+
" a single `--validation_prompt` to be used with all `--validation_image`s, or a single"
|
525 |
+
" `--validation_image` that will be used with all `--validation_prompt`s."
|
526 |
+
),
|
527 |
+
)
|
528 |
+
parser.add_argument(
|
529 |
+
"--num_validation_images",
|
530 |
+
type=int,
|
531 |
+
default=4,
|
532 |
+
help="Number of images to be generated for each `--validation_image`, `--validation_prompt` pair",
|
533 |
+
)
|
534 |
+
parser.add_argument(
|
535 |
+
"--validation_steps",
|
536 |
+
type=int,
|
537 |
+
default=1,
|
538 |
+
help=(
|
539 |
+
"Run validation every X steps. Validation consists of running the prompt"
|
540 |
+
" `args.validation_prompt` multiple times: `args.num_validation_images`"
|
541 |
+
" and logging the images."
|
542 |
+
),
|
543 |
+
)
|
544 |
+
parser.add_argument(
|
545 |
+
"--tracker_project_name",
|
546 |
+
type=str,
|
547 |
+
default="SeeSR",
|
548 |
+
help=(
|
549 |
+
"The `project_name` argument passed to Accelerator.init_trackers for"
|
550 |
+
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
|
551 |
+
),
|
552 |
+
)
|
553 |
+
|
554 |
+
parser.add_argument("--root_folders", type=str , default='' )
|
555 |
+
parser.add_argument("--null_text_ratio", type=float, default=0.5)
|
556 |
+
parser.add_argument("--ram_ft_path", type=str, default=None)
|
557 |
+
parser.add_argument('--trainable_modules', nargs='*', type=str, default=["image_attentions"])
|
558 |
+
|
559 |
+
|
560 |
+
|
561 |
+
|
562 |
+
if input_args is not None:
|
563 |
+
args = parser.parse_args(input_args)
|
564 |
+
else:
|
565 |
+
args = parser.parse_args()
|
566 |
+
|
567 |
+
if args.dataset_name is None and args.train_data_dir is None:
|
568 |
+
raise ValueError("Specify either `--dataset_name` or `--train_data_dir`")
|
569 |
+
|
570 |
+
if args.dataset_name is not None and args.train_data_dir is not None:
|
571 |
+
raise ValueError("Specify only one of `--dataset_name` or `--train_data_dir`")
|
572 |
+
|
573 |
+
if args.proportion_empty_prompts < 0 or args.proportion_empty_prompts > 1:
|
574 |
+
raise ValueError("`--proportion_empty_prompts` must be in the range [0, 1].")
|
575 |
+
|
576 |
+
if args.validation_prompt is not None and args.validation_image is None:
|
577 |
+
raise ValueError("`--validation_image` must be set if `--validation_prompt` is set")
|
578 |
+
|
579 |
+
if args.validation_prompt is None and args.validation_image is not None:
|
580 |
+
raise ValueError("`--validation_prompt` must be set if `--validation_image` is set")
|
581 |
+
|
582 |
+
if (
|
583 |
+
args.validation_image is not None
|
584 |
+
and args.validation_prompt is not None
|
585 |
+
and len(args.validation_image) != 1
|
586 |
+
and len(args.validation_prompt) != 1
|
587 |
+
and len(args.validation_image) != len(args.validation_prompt)
|
588 |
+
):
|
589 |
+
raise ValueError(
|
590 |
+
"Must provide either 1 `--validation_image`, 1 `--validation_prompt`,"
|
591 |
+
" or the same number of `--validation_prompt`s and `--validation_image`s"
|
592 |
+
)
|
593 |
+
|
594 |
+
if args.resolution % 8 != 0:
|
595 |
+
raise ValueError(
|
596 |
+
"`--resolution` must be divisible by 8 for consistently sized encoded images between the VAE and the controlnet encoder."
|
597 |
+
)
|
598 |
+
|
599 |
+
return args
|
600 |
+
|
601 |
+
|
602 |
+
# def main(args):
|
603 |
+
args = parse_args()
|
604 |
+
logging_dir = Path(args.output_dir, args.logging_dir)
|
605 |
+
|
606 |
+
|
607 |
+
from accelerate import DistributedDataParallelKwargs
|
608 |
+
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
|
609 |
+
|
610 |
+
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
|
611 |
+
|
612 |
+
accelerator = Accelerator(
|
613 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
614 |
+
mixed_precision=args.mixed_precision,
|
615 |
+
log_with=args.report_to,
|
616 |
+
project_config=accelerator_project_config,
|
617 |
+
kwargs_handlers=[ddp_kwargs]
|
618 |
+
)
|
619 |
+
|
620 |
+
# Make one log on every process with the configuration for debugging.
|
621 |
+
logging.basicConfig(
|
622 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
623 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
624 |
+
level=logging.INFO,
|
625 |
+
)
|
626 |
+
logger.info(accelerator.state, main_process_only=False)
|
627 |
+
if accelerator.is_local_main_process:
|
628 |
+
transformers.utils.logging.set_verbosity_warning()
|
629 |
+
diffusers.utils.logging.set_verbosity_info()
|
630 |
+
else:
|
631 |
+
transformers.utils.logging.set_verbosity_error()
|
632 |
+
diffusers.utils.logging.set_verbosity_error()
|
633 |
+
|
634 |
+
# If passed along, set the training seed now.
|
635 |
+
if args.seed is not None:
|
636 |
+
set_seed(args.seed)
|
637 |
+
|
638 |
+
# Handle the repository creation
|
639 |
+
if accelerator.is_main_process:
|
640 |
+
if args.output_dir is not None:
|
641 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
642 |
+
|
643 |
+
if args.push_to_hub:
|
644 |
+
repo_id = create_repo(
|
645 |
+
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
|
646 |
+
).repo_id
|
647 |
+
|
648 |
+
# Load the tokenizer
|
649 |
+
if args.tokenizer_name:
|
650 |
+
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False)
|
651 |
+
elif args.pretrained_model_name_or_path:
|
652 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
653 |
+
args.pretrained_model_name_or_path,
|
654 |
+
subfolder="tokenizer",
|
655 |
+
revision=args.revision,
|
656 |
+
use_fast=False,
|
657 |
+
)
|
658 |
+
|
659 |
+
# import correct text encoder class
|
660 |
+
text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision)
|
661 |
+
|
662 |
+
# Load scheduler and models
|
663 |
+
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
|
664 |
+
text_encoder = text_encoder_cls.from_pretrained(
|
665 |
+
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
|
666 |
+
)
|
667 |
+
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision)
|
668 |
+
# unet = UNet2DConditionModel.from_pretrained(
|
669 |
+
# args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
|
670 |
+
# )
|
671 |
+
if args.unet_model_name_or_path:
|
672 |
+
# resume from self-train
|
673 |
+
logger.info("Loading unet weights from self-train")
|
674 |
+
unet = UNet2DConditionModel.from_pretrained_orig(
|
675 |
+
args.pretrained_model_name_or_path, args.unet_model_name_or_path, subfolder="unet", revision=args.revision, use_image_cross_attention=True
|
676 |
+
)
|
677 |
+
else:
|
678 |
+
# resume from pretrained SD
|
679 |
+
logger.info("Loading unet weights from SD")
|
680 |
+
unet = UNet2DConditionModel.from_pretrained(
|
681 |
+
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, use_image_cross_attention=True
|
682 |
+
)
|
683 |
+
print(f'===== if use ram encoder? {unet.config.use_image_cross_attention}')
|
684 |
+
|
685 |
+
if args.controlnet_model_name_or_path:
|
686 |
+
# resume from self-train
|
687 |
+
logger.info("Loading existing controlnet weights")
|
688 |
+
controlnet = ControlNetModel.from_pretrained(args.controlnet_model_name_or_path, subfolder="controlnet")
|
689 |
+
|
690 |
+
else:
|
691 |
+
logger.info("Initializing controlnet weights from unet")
|
692 |
+
controlnet = ControlNetModel.from_unet(unet, use_image_cross_attention=True)
|
693 |
+
|
694 |
+
|
695 |
+
# `accelerate` 0.16.0 will have better support for customized saving
|
696 |
+
if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
|
697 |
+
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
|
698 |
+
def save_model_hook(models, weights, output_dir):
|
699 |
+
i = len(weights) - 1
|
700 |
+
|
701 |
+
# while len(weights) > 0:
|
702 |
+
# weights.pop()
|
703 |
+
# model = models[i]
|
704 |
+
|
705 |
+
# sub_dir = "controlnet"
|
706 |
+
# model.save_pretrained(os.path.join(output_dir, sub_dir))
|
707 |
+
|
708 |
+
# i -= 1
|
709 |
+
assert len(models) == 2 and len(weights) == 2
|
710 |
+
for i, model in enumerate(models):
|
711 |
+
sub_dir = "unet" if isinstance(model, UNet2DConditionModel) else "controlnet"
|
712 |
+
model.save_pretrained(os.path.join(output_dir, sub_dir))
|
713 |
+
# make sure to pop weight so that corresponding model is not saved again
|
714 |
+
weights.pop()
|
715 |
+
|
716 |
+
def load_model_hook(models, input_dir):
|
717 |
+
# while len(models) > 0:
|
718 |
+
# # pop models so that they are not loaded again
|
719 |
+
# model = models.pop()
|
720 |
+
|
721 |
+
# # load diffusers style into model
|
722 |
+
# load_model = ControlNetModel.from_pretrained(input_dir, subfolder="controlnet")
|
723 |
+
# model.register_to_config(**load_model.config)
|
724 |
+
|
725 |
+
# model.load_state_dict(load_model.state_dict())
|
726 |
+
# del load_model
|
727 |
+
assert len(models) == 2
|
728 |
+
for i in range(len(models)):
|
729 |
+
# pop models so that they are not loaded again
|
730 |
+
model = models.pop()
|
731 |
+
|
732 |
+
# load diffusers style into model
|
733 |
+
if not isinstance(model, UNet2DConditionModel):
|
734 |
+
load_model = ControlNetModel.from_pretrained(input_dir, subfolder="controlnet") # , low_cpu_mem_usage=False, ignore_mismatched_sizes=True
|
735 |
+
else:
|
736 |
+
load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet") # , low_cpu_mem_usage=False, ignore_mismatched_sizes=True
|
737 |
+
|
738 |
+
model.register_to_config(**load_model.config)
|
739 |
+
|
740 |
+
model.load_state_dict(load_model.state_dict())
|
741 |
+
del load_model
|
742 |
+
|
743 |
+
accelerator.register_save_state_pre_hook(save_model_hook)
|
744 |
+
accelerator.register_load_state_pre_hook(load_model_hook)
|
745 |
+
|
746 |
+
vae.requires_grad_(False)
|
747 |
+
unet.requires_grad_(False)
|
748 |
+
text_encoder.requires_grad_(False)
|
749 |
+
controlnet.train()
|
750 |
+
|
751 |
+
## release the cross-attention part in the unet.
|
752 |
+
for name, module in unet.named_modules():
|
753 |
+
if name.endswith(tuple(args.trainable_modules)):
|
754 |
+
print(f'{name} in <unet> will be optimized.' )
|
755 |
+
for params in module.parameters():
|
756 |
+
params.requires_grad = True
|
757 |
+
|
758 |
+
## init the RAM or DAPE model
|
759 |
+
from ram.models.ram_lora import ram
|
760 |
+
from ram import get_transform
|
761 |
+
if args.ram_ft_path is None:
|
762 |
+
print("======== USE Original RAM ========")
|
763 |
+
else:
|
764 |
+
print("==============")
|
765 |
+
print(f"USE FT RAM FROM: {args.ram_ft_path}")
|
766 |
+
print("==============")
|
767 |
+
|
768 |
+
RAM = ram(pretrained='preset/models/ram_swin_large_14m.pth',
|
769 |
+
pretrained_condition=args.ram_ft_path,
|
770 |
+
image_size=384,
|
771 |
+
vit='swin_l')
|
772 |
+
RAM.eval()
|
773 |
+
|
774 |
+
if args.enable_xformers_memory_efficient_attention:
|
775 |
+
if is_xformers_available():
|
776 |
+
import xformers
|
777 |
+
|
778 |
+
xformers_version = version.parse(xformers.__version__)
|
779 |
+
if xformers_version == version.parse("0.0.16"):
|
780 |
+
logger.warn(
|
781 |
+
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
|
782 |
+
)
|
783 |
+
unet.enable_xformers_memory_efficient_attention()
|
784 |
+
controlnet.enable_xformers_memory_efficient_attention()
|
785 |
+
else:
|
786 |
+
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
787 |
+
|
788 |
+
if args.gradient_checkpointing:
|
789 |
+
unet.enable_gradient_checkpointing()
|
790 |
+
controlnet.enable_gradient_checkpointing()
|
791 |
+
|
792 |
+
# Check that all trainable models are in full precision
|
793 |
+
low_precision_error_string = (
|
794 |
+
" Please make sure to always have all model weights in full float32 precision when starting training - even if"
|
795 |
+
" doing mixed precision training, copy of the weights should still be float32."
|
796 |
+
)
|
797 |
+
|
798 |
+
if accelerator.unwrap_model(controlnet).dtype != torch.float32:
|
799 |
+
raise ValueError(
|
800 |
+
f"Controlnet loaded as datatype {accelerator.unwrap_model(controlnet).dtype}. {low_precision_error_string}"
|
801 |
+
)
|
802 |
+
if accelerator.unwrap_model(unet).dtype != torch.float32:
|
803 |
+
raise ValueError(
|
804 |
+
f"Unet loaded as datatype {accelerator.unwrap_model(unet).dtype}. {low_precision_error_string}"
|
805 |
+
)
|
806 |
+
|
807 |
+
|
808 |
+
# Enable TF32 for faster training on Ampere GPUs,
|
809 |
+
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
|
810 |
+
if args.allow_tf32:
|
811 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
812 |
+
|
813 |
+
if args.scale_lr:
|
814 |
+
args.learning_rate = (
|
815 |
+
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
|
816 |
+
)
|
817 |
+
|
818 |
+
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
|
819 |
+
if args.use_8bit_adam:
|
820 |
+
try:
|
821 |
+
import bitsandbytes as bnb
|
822 |
+
except ImportError:
|
823 |
+
raise ImportError(
|
824 |
+
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
|
825 |
+
)
|
826 |
+
|
827 |
+
optimizer_class = bnb.optim.AdamW8bit
|
828 |
+
else:
|
829 |
+
optimizer_class = torch.optim.AdamW
|
830 |
+
|
831 |
+
# Optimizer creation
|
832 |
+
print(f'=================Optimize ControlNet and Unet ======================')
|
833 |
+
params_to_optimize = list(controlnet.parameters()) + list(unet.parameters())
|
834 |
+
|
835 |
+
|
836 |
+
print(f'start to load optimizer...')
|
837 |
+
|
838 |
+
optimizer = optimizer_class(
|
839 |
+
params_to_optimize,
|
840 |
+
lr=args.learning_rate,
|
841 |
+
betas=(args.adam_beta1, args.adam_beta2),
|
842 |
+
weight_decay=args.adam_weight_decay,
|
843 |
+
eps=args.adam_epsilon,
|
844 |
+
)
|
845 |
+
|
846 |
+
train_dataset = PairedCaptionDataset(root_folders=args.root_folders,
|
847 |
+
tokenizer=tokenizer,
|
848 |
+
null_text_ratio=args.null_text_ratio,
|
849 |
+
)
|
850 |
+
|
851 |
+
train_dataloader = torch.utils.data.DataLoader(
|
852 |
+
train_dataset,
|
853 |
+
num_workers=args.dataloader_num_workers,
|
854 |
+
batch_size=args.train_batch_size,
|
855 |
+
shuffle=False
|
856 |
+
)
|
857 |
+
|
858 |
+
|
859 |
+
# Scheduler and math around the number of training steps.
|
860 |
+
overrode_max_train_steps = False
|
861 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
862 |
+
if args.max_train_steps is None:
|
863 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
864 |
+
overrode_max_train_steps = True
|
865 |
+
|
866 |
+
lr_scheduler = get_scheduler(
|
867 |
+
args.lr_scheduler,
|
868 |
+
optimizer=optimizer,
|
869 |
+
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
|
870 |
+
num_training_steps=args.max_train_steps * accelerator.num_processes,
|
871 |
+
num_cycles=args.lr_num_cycles,
|
872 |
+
power=args.lr_power,
|
873 |
+
)
|
874 |
+
|
875 |
+
# Prepare everything with our `accelerator`.
|
876 |
+
controlnet, unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
877 |
+
controlnet, unet, optimizer, train_dataloader, lr_scheduler
|
878 |
+
)
|
879 |
+
|
880 |
+
# For mixed precision training we cast the text_encoder and vae weights to half-precision
|
881 |
+
# as these models are only used for inference, keeping weights in full precision is not required.
|
882 |
+
weight_dtype = torch.float32
|
883 |
+
if accelerator.mixed_precision == "fp16":
|
884 |
+
weight_dtype = torch.float16
|
885 |
+
elif accelerator.mixed_precision == "bf16":
|
886 |
+
weight_dtype = torch.bfloat16
|
887 |
+
|
888 |
+
# Move vae, unet and text_encoder to device and cast to weight_dtype
|
889 |
+
vae.to(accelerator.device, dtype=weight_dtype)
|
890 |
+
text_encoder.to(accelerator.device, dtype=weight_dtype)
|
891 |
+
RAM.to(accelerator.device, dtype=weight_dtype)
|
892 |
+
|
893 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
894 |
+
if overrode_max_train_steps:
|
895 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
896 |
+
# Afterwards we recalculate our number of training epochs
|
897 |
+
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
898 |
+
|
899 |
+
|
900 |
+
# We need to initialize the trackers we use, and also store our configuration.
|
901 |
+
# The trackers initializes automatically on the main process.
|
902 |
+
if accelerator.is_main_process:
|
903 |
+
tracker_config = dict(vars(args))
|
904 |
+
|
905 |
+
# tensorboard cannot handle list types for config
|
906 |
+
tracker_config.pop("validation_prompt")
|
907 |
+
tracker_config.pop("validation_image")
|
908 |
+
tracker_config.pop("trainable_modules")
|
909 |
+
|
910 |
+
accelerator.init_trackers(args.tracker_project_name, config=tracker_config)
|
911 |
+
|
912 |
+
# Train!
|
913 |
+
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
914 |
+
|
915 |
+
logger.info("***** Running training *****")
|
916 |
+
# if not isinstance(train_dataset, WebImageDataset):
|
917 |
+
# logger.info(f" Num examples = {len(train_dataset)}")
|
918 |
+
# logger.info(f" Num batches each epoch = {len(train_dataloader)}")
|
919 |
+
|
920 |
+
|
921 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
922 |
+
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
|
923 |
+
|
924 |
+
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
925 |
+
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
|
926 |
+
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
927 |
+
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
928 |
+
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
929 |
+
global_step = 0
|
930 |
+
first_epoch = 0
|
931 |
+
|
932 |
+
# Potentially load in the weights and states from a previous save
|
933 |
+
if args.resume_from_checkpoint:
|
934 |
+
if args.resume_from_checkpoint != "latest":
|
935 |
+
path = os.path.basename(args.resume_from_checkpoint)
|
936 |
+
else:
|
937 |
+
# Get the most recent checkpoint
|
938 |
+
dirs = os.listdir(args.output_dir)
|
939 |
+
dirs = [d for d in dirs if d.startswith("checkpoint")]
|
940 |
+
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
|
941 |
+
path = dirs[-1] if len(dirs) > 0 else None
|
942 |
+
|
943 |
+
if path is None:
|
944 |
+
accelerator.print(
|
945 |
+
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
|
946 |
+
)
|
947 |
+
args.resume_from_checkpoint = None
|
948 |
+
initial_global_step = 0
|
949 |
+
else:
|
950 |
+
accelerator.print(f"Resuming from checkpoint {path}")
|
951 |
+
accelerator.load_state(os.path.join(args.output_dir, path))
|
952 |
+
global_step = int(path.split("-")[1])
|
953 |
+
|
954 |
+
initial_global_step = global_step
|
955 |
+
first_epoch = global_step // num_update_steps_per_epoch
|
956 |
+
else:
|
957 |
+
initial_global_step = 0
|
958 |
+
|
959 |
+
progress_bar = tqdm(
|
960 |
+
range(0, args.max_train_steps),
|
961 |
+
initial=initial_global_step,
|
962 |
+
desc="Steps",
|
963 |
+
# Only show the progress bar once on each machine.
|
964 |
+
disable=not accelerator.is_local_main_process,
|
965 |
+
)
|
966 |
+
|
967 |
+
|
968 |
+
for epoch in range(first_epoch, args.num_train_epochs):
|
969 |
+
for step, batch in enumerate(train_dataloader):
|
970 |
+
# with accelerator.accumulate(controlnet):
|
971 |
+
with accelerator.accumulate(controlnet), accelerator.accumulate(unet):
|
972 |
+
pixel_values = batch["pixel_values"].to(accelerator.device, dtype=weight_dtype)
|
973 |
+
# Convert images to latent space
|
974 |
+
latents = vae.encode(pixel_values).latent_dist.sample()
|
975 |
+
latents = latents * vae.config.scaling_factor
|
976 |
+
|
977 |
+
# Sample noise that we'll add to the latents
|
978 |
+
noise = torch.randn_like(latents)
|
979 |
+
bsz = latents.shape[0]
|
980 |
+
# Sample a random timestep for each image
|
981 |
+
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
|
982 |
+
timesteps = timesteps.long()
|
983 |
+
|
984 |
+
# Add noise to the latents according to the noise magnitude at each timestep
|
985 |
+
# (this is the forward diffusion process)
|
986 |
+
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
987 |
+
|
988 |
+
# # Get the text embedding for conditioning
|
989 |
+
encoder_hidden_states = text_encoder(batch["input_ids"].to(accelerator.device))[0]
|
990 |
+
|
991 |
+
controlnet_image = batch["conditioning_pixel_values"].to(accelerator.device, dtype=weight_dtype)
|
992 |
+
|
993 |
+
# extract soft semantic label
|
994 |
+
with torch.no_grad():
|
995 |
+
ram_image = batch["ram_values"].to(accelerator.device, dtype=weight_dtype)
|
996 |
+
ram_encoder_hidden_states = RAM.generate_image_embeds(ram_image)
|
997 |
+
|
998 |
+
down_block_res_samples, mid_block_res_sample = controlnet(
|
999 |
+
noisy_latents,
|
1000 |
+
timesteps,
|
1001 |
+
encoder_hidden_states=encoder_hidden_states,
|
1002 |
+
controlnet_cond=controlnet_image,
|
1003 |
+
return_dict=False,
|
1004 |
+
image_encoder_hidden_states=ram_encoder_hidden_states,
|
1005 |
+
)
|
1006 |
+
|
1007 |
+
# Predict the noise residual
|
1008 |
+
model_pred = unet(
|
1009 |
+
noisy_latents,
|
1010 |
+
timesteps,
|
1011 |
+
encoder_hidden_states=encoder_hidden_states,
|
1012 |
+
down_block_additional_residuals=[
|
1013 |
+
sample.to(dtype=weight_dtype) for sample in down_block_res_samples
|
1014 |
+
],
|
1015 |
+
mid_block_additional_residual=mid_block_res_sample.to(dtype=weight_dtype),
|
1016 |
+
image_encoder_hidden_states=ram_encoder_hidden_states,
|
1017 |
+
).sample
|
1018 |
+
|
1019 |
+
# Get the target for loss depending on the prediction type
|
1020 |
+
if noise_scheduler.config.prediction_type == "epsilon":
|
1021 |
+
target = noise
|
1022 |
+
elif noise_scheduler.config.prediction_type == "v_prediction":
|
1023 |
+
target = noise_scheduler.get_velocity(latents, noise, timesteps)
|
1024 |
+
else:
|
1025 |
+
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
|
1026 |
+
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
|
1027 |
+
|
1028 |
+
accelerator.backward(loss)
|
1029 |
+
if accelerator.sync_gradients:
|
1030 |
+
# params_to_clip = controlnet.parameters()
|
1031 |
+
params_to_clip = list(controlnet.parameters()) + list(unet.parameters())
|
1032 |
+
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
|
1033 |
+
optimizer.step()
|
1034 |
+
lr_scheduler.step()
|
1035 |
+
optimizer.zero_grad(set_to_none=args.set_grads_to_none)
|
1036 |
+
|
1037 |
+
# Checks if the accelerator has performed an optimization step behind the scenes
|
1038 |
+
if accelerator.sync_gradients:
|
1039 |
+
progress_bar.update(1)
|
1040 |
+
global_step += 1
|
1041 |
+
|
1042 |
+
if accelerator.is_main_process:
|
1043 |
+
if global_step % args.checkpointing_steps == 0:
|
1044 |
+
|
1045 |
+
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
|
1046 |
+
accelerator.save_state(save_path)
|
1047 |
+
logger.info(f"Saved state to {save_path}")
|
1048 |
+
|
1049 |
+
# if args.validation_prompt is not None and global_step % args.validation_steps == 0:
|
1050 |
+
if False:
|
1051 |
+
image_logs = log_validation(
|
1052 |
+
vae,
|
1053 |
+
text_encoder,
|
1054 |
+
tokenizer,
|
1055 |
+
unet,
|
1056 |
+
controlnet,
|
1057 |
+
args,
|
1058 |
+
accelerator,
|
1059 |
+
weight_dtype,
|
1060 |
+
global_step,
|
1061 |
+
)
|
1062 |
+
|
1063 |
+
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
|
1064 |
+
progress_bar.set_postfix(**logs)
|
1065 |
+
accelerator.log(logs, step=global_step)
|
1066 |
+
|
1067 |
+
if global_step >= args.max_train_steps:
|
1068 |
+
break
|
1069 |
+
|
1070 |
+
# Create the pipeline using using the trained modules and save it.
|
1071 |
+
accelerator.wait_for_everyone()
|
1072 |
+
if accelerator.is_main_process:
|
1073 |
+
controlnet = accelerator.unwrap_model(controlnet)
|
1074 |
+
controlnet.save_pretrained(args.output_dir)
|
1075 |
+
|
1076 |
+
unet = accelerator.unwrap_model(unet)
|
1077 |
+
unet.save_pretrained(args.output_dir)
|
1078 |
+
|
1079 |
+
if args.push_to_hub:
|
1080 |
+
save_model_card(
|
1081 |
+
repo_id,
|
1082 |
+
image_logs=image_logs,
|
1083 |
+
base_model=args.pretrained_model_name_or_path,
|
1084 |
+
repo_folder=args.output_dir,
|
1085 |
+
)
|
1086 |
+
upload_folder(
|
1087 |
+
repo_id=repo_id,
|
1088 |
+
folder_path=args.output_dir,
|
1089 |
+
commit_message="End of training",
|
1090 |
+
ignore_patterns=["step_*", "epoch_*"],
|
1091 |
+
)
|
1092 |
+
|
1093 |
+
accelerator.end_training()
|