Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	| # Copyright (c) | |
| # | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| # This implementation is inspired from | |
| # https://github.com/rosinality/vq-vae-2-pytorch/blob/master/vqvae.py and | |
| # https://github.com/clementchadebec/benchmark_VAE/blob/dfa0dcf6c79172df5d27769c09c860c42008baaa/src/pythae/models/vq_vae/vq_vae_utils.py#L81 | |
| # | |
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| # | |
| # This implementation is inspired from | |
| # https://github.com/lucidrains/vector-quantize-pytorch | |
| # which is released under MIT License. Hereafter, the original license: | |
| # MIT License | |
| # | |
| # Copyright (c) 2020 Phil Wang | |
| # | |
| # Permission is hereby granted, free of charge, to any person obtaining a copy | |
| # of this software and associated documentation files (the "Software"), to deal | |
| # in the Software without restriction, including without limitation the rights | |
| # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
| # copies of the Software, and to permit persons to whom the Software is | |
| # furnished to do so, subject to the following conditions: | |
| # | |
| # The above copyright notice and this permission notice shall be included in all | |
| # copies or substantial portions of the Software. | |
| # | |
| # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
| # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
| # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
| # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
| # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
| # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
| # SOFTWARE. | |
| """Core vector quantization implementation.""" | |
| import typing as tp | |
| from einops import rearrange | |
| import torch | |
| from torch import nn | |
| import torch.nn.functional as F | |
| import torch.distributed as dist | |
| from .distrib import broadcast_tensors, is_distributed | |
| from .ddp_utils import SyncFunction | |
| def default(val: tp.Any, d: tp.Any) -> tp.Any: | |
| return val if val is not None else d | |
| def ema_inplace(moving_avg, new, decay: float): | |
| moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay)) | |
| def laplace_smoothing(x, n_categories: int, epsilon: float = 1e-5): | |
| return (x + epsilon) / (x.sum() + n_categories * epsilon) | |
| def uniform_init(*shape: int): | |
| t = torch.empty(shape) | |
| nn.init.kaiming_uniform_(t) | |
| return t | |
| def sample_vectors(samples, num: int): | |
| num_samples, device = samples.shape[0], samples.device | |
| if num_samples >= num: | |
| indices = torch.randperm(num_samples, device=device)[:num] | |
| else: | |
| indices = torch.randint(0, num_samples, (num,), device=device) | |
| return samples[indices] | |
| def kmeans( | |
| samples, | |
| num_clusters: int, | |
| num_iters: int = 10, | |
| frames_to_use: int = 10_000, | |
| batch_size: int = 64, | |
| ): | |
| """ | |
| Memory-efficient K-means clustering. | |
| Args: | |
| samples (tensor): shape [N, D] | |
| num_clusters (int): number of centroids. | |
| num_iters (int): number of iterations. | |
| frames_to_use (int): subsample size from total samples. | |
| batch_size (int): batch size used in distance computation. | |
| Returns: | |
| means: [num_clusters, D] | |
| bins: [num_clusters] (number of points per cluster) | |
| """ | |
| N, D = samples.shape | |
| dtype, device = samples.dtype, samples.device | |
| if frames_to_use < N: | |
| indices = torch.randperm(N, device=device)[:frames_to_use] | |
| samples = samples[indices] | |
| means = sample_vectors(samples, num_clusters) | |
| for _ in range(num_iters): | |
| # Store cluster assignments | |
| all_assignments = [] | |
| for i in range(0, samples.shape[0], batch_size): | |
| batch = samples[i : i + batch_size] # [B, D] | |
| dists = torch.cdist(batch, means, p=2) # [B, C] | |
| assignments = dists.argmin(dim=1) # [B] | |
| all_assignments.append(assignments) | |
| buckets = torch.cat(all_assignments, dim=0) # [N] | |
| bins = torch.bincount(buckets, minlength=num_clusters) | |
| zero_mask = bins == 0 | |
| bins_min_clamped = bins.masked_fill(zero_mask, 1) | |
| # Compute new means | |
| new_means = torch.zeros_like(means) | |
| for i in range(num_clusters): | |
| mask = buckets == i | |
| if mask.any(): | |
| new_means[i] = samples[mask].mean(dim=0) | |
| means = torch.where(zero_mask[:, None], means, new_means) | |
| return means, bins | |
| class EuclideanCodebook(nn.Module): | |
| """Codebook with Euclidean distance. | |
| Args: | |
| dim (int): Dimension. | |
| codebook_size (int): Codebook size. | |
| kmeans_init (bool): Whether to use k-means to initialize the codebooks. | |
| If set to true, run the k-means algorithm on the first training batch and use | |
| the learned centroids as initialization. | |
| kmeans_iters (int): Number of iterations used for k-means algorithm at initialization. | |
| decay (float): Decay for exponential moving average over the codebooks. | |
| epsilon (float): Epsilon value for numerical stability. | |
| threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes | |
| that have an exponential moving average cluster size less than the specified threshold with | |
| randomly selected vector from the current batch. | |
| """ | |
| def __init__( | |
| self, | |
| dim: int, | |
| codebook_size: int, | |
| kmeans_init: int = False, | |
| kmeans_iters: int = 10, | |
| decay: float = 0.99, | |
| epsilon: float = 1e-5, | |
| threshold_ema_dead_code: int = 2, | |
| ): | |
| super().__init__() | |
| self.decay = decay | |
| init_fn: tp.Union[tp.Callable[..., torch.Tensor], tp.Any] = uniform_init if not kmeans_init else torch.zeros | |
| embed = init_fn(codebook_size, dim) | |
| self.codebook_size = codebook_size | |
| self.kmeans_iters = kmeans_iters | |
| self.epsilon = epsilon | |
| self.threshold_ema_dead_code = threshold_ema_dead_code | |
| # Flag variable to indicate whether the codebook is initialized | |
| self.register_buffer("inited", torch.Tensor([not kmeans_init])) | |
| # Runing EMA cluster size/count: N_i^t in eq. (6) in vqvae paper | |
| self.register_buffer("cluster_size", torch.zeros(codebook_size)) | |
| # Codebook | |
| self.register_buffer("embed", embed) | |
| # EMA codebook: eq. (7) in vqvae paper | |
| self.register_buffer("embed_avg", embed.clone()) | |
| def init_embed_(self, data): | |
| """Initialize codebook. | |
| Args: | |
| data (tensor): [B * T, D]. | |
| """ | |
| if self.inited: | |
| return | |
| ## NOTE (snippet added by Songxiang Liu): gather data from all gpus | |
| if dist.is_available() and dist.is_initialized(): | |
| # [B * T * world_size, D] | |
| data = SyncFunction.apply(data) | |
| embed, cluster_size = kmeans(data, self.codebook_size, self.kmeans_iters) | |
| self.embed.data.copy_(embed) | |
| self.embed_avg.data.copy_(embed.clone()) | |
| self.cluster_size.data.copy_(cluster_size) | |
| self.inited.data.copy_(torch.Tensor([True])) | |
| # Make sure all buffers across workers are in sync after initialization | |
| broadcast_tensors(self.buffers()) | |
| def replace_(self, samples, mask): | |
| modified_codebook = torch.where(mask[..., None], sample_vectors(samples, self.codebook_size), self.embed) | |
| self.embed.data.copy_(modified_codebook) | |
| def expire_codes_(self, batch_samples): | |
| if self.threshold_ema_dead_code == 0: | |
| return | |
| expired_codes = self.cluster_size < self.threshold_ema_dead_code | |
| if not torch.any(expired_codes): | |
| return | |
| ## NOTE (snippet added by Songxiang Liu): gather data from all gpus | |
| if is_distributed(): | |
| # [B * T * world_size, D] | |
| batch_samples = SyncFunction.apply(batch_samples) | |
| batch_samples = rearrange(batch_samples, "... d -> (...) d") | |
| self.replace_(batch_samples, mask=expired_codes) | |
| broadcast_tensors(self.buffers()) | |
| def preprocess(self, x): | |
| x = rearrange(x, "... d -> (...) d") | |
| return x | |
| def quantize(self, x): | |
| embed = self.embed.t() | |
| dist = -(x.pow(2).sum(1, keepdim=True) - 2 * x @ embed + embed.pow(2).sum(0, keepdim=True)) | |
| embed_ind = dist.max(dim=-1).indices | |
| return embed_ind | |
| def postprocess_emb(self, embed_ind, shape): | |
| return embed_ind.view(*shape[:-1]) | |
| def dequantize(self, embed_ind): | |
| quantize = F.embedding(embed_ind, self.embed) | |
| return quantize | |
| def encode(self, x): | |
| shape = x.shape | |
| # pre-process | |
| x = self.preprocess(x) # [B, T, D] -> [B*T, D] | |
| # quantize | |
| embed_ind = self.quantize(x) | |
| # post-process | |
| embed_ind = self.postprocess_emb(embed_ind, shape) | |
| return embed_ind | |
| def decode(self, embed_ind): | |
| quantize = self.dequantize(embed_ind) | |
| return quantize | |
| def forward(self, x): | |
| # shape: [B, T, D] | |
| shape, dtype = x.shape, x.dtype | |
| x = self.preprocess(x) # [B, T, D] -> [B*T, D] | |
| # Initialize codebook | |
| self.init_embed_(x) | |
| embed_ind = self.quantize(x) # [B*T,] | |
| embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype) # [B*T, cb-size] | |
| embed_ind = self.postprocess_emb(embed_ind, shape) # [B, T] | |
| quantize = self.dequantize(embed_ind) # [B, T, D] | |
| if self.training: | |
| ### Update codebook by EMA | |
| embed_onehot_sum = embed_onehot.sum(0) # [cb-size,] | |
| embed_sum = x.t() @ embed_onehot # [D, cb-size] | |
| if is_distributed(): | |
| dist.all_reduce(embed_onehot_sum) | |
| dist.all_reduce(embed_sum) | |
| # Update ema cluster count N_i^t, eq. (6) in vqvae paper | |
| self.cluster_size.data.mul_(self.decay).add_(embed_onehot_sum, alpha=1 - self.decay) | |
| # Update ema embed: eq. (7) in vqvae paper | |
| self.embed_avg.data.mul_(self.decay).add_(embed_sum.t(), alpha=1 - self.decay) | |
| # apply laplace smoothing | |
| n = self.cluster_size.sum() | |
| cluster_size = (self.cluster_size + self.epsilon) / (n + self.codebook_size * self.epsilon) * n | |
| # Update ema embed: eq. (8) in vqvae paper | |
| embed_normalized = self.embed_avg / cluster_size.unsqueeze(1) | |
| self.embed.data.copy_(embed_normalized) | |
| # We do the expiry of code at that point as buffers are in sync | |
| # and all the workers will take the same decision. | |
| self.expire_codes_(x) | |
| return quantize, embed_ind | |
| class VectorQuantization(nn.Module): | |
| """Vector quantization implementation. | |
| Currently supports only euclidean distance. | |
| Args: | |
| dim (int): Dimension | |
| codebook_size (int): Codebook size | |
| codebook_dim (int): Codebook dimension. If not defined, uses the specified dimension in dim. | |
| decay (float): Decay for exponential moving average over the codebooks. | |
| epsilon (float): Epsilon value for numerical stability. | |
| kmeans_init (bool): Whether to use kmeans to initialize the codebooks. | |
| kmeans_iters (int): Number of iterations used for kmeans initialization. | |
| threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes | |
| that have an exponential moving average cluster size less than the specified threshold with | |
| randomly selected vector from the current batch. | |
| commitment_weight (float): Weight for commitment loss. | |
| """ | |
| def __init__( | |
| self, | |
| dim: int, | |
| codebook_size: int, | |
| codebook_dim: tp.Optional[int] = None, | |
| decay: float = 0.99, | |
| epsilon: float = 1e-5, | |
| kmeans_init: bool = True, | |
| kmeans_iters: int = 50, | |
| threshold_ema_dead_code: int = 2, | |
| commitment_weight: float = 1.0, | |
| ): | |
| super().__init__() | |
| _codebook_dim: int = default(codebook_dim, dim) | |
| requires_projection = _codebook_dim != dim | |
| self.project_in = nn.Linear(dim, _codebook_dim) if requires_projection else nn.Identity() | |
| self.project_out = nn.Linear(_codebook_dim, dim) if requires_projection else nn.Identity() | |
| self.epsilon = epsilon | |
| self.commitment_weight = commitment_weight | |
| self._codebook = EuclideanCodebook( | |
| dim=_codebook_dim, | |
| codebook_size=codebook_size, | |
| kmeans_init=kmeans_init, | |
| kmeans_iters=kmeans_iters, | |
| decay=decay, | |
| epsilon=epsilon, | |
| threshold_ema_dead_code=threshold_ema_dead_code, | |
| ) | |
| self.codebook_size = codebook_size | |
| def codebook(self): | |
| return self._codebook.embed | |
| def encode(self, x): | |
| x = rearrange(x, "b d n -> b n d") | |
| x = self.project_in(x) | |
| embed_in = self._codebook.encode(x) | |
| return embed_in | |
| def decode(self, embed_ind): | |
| quantize = self._codebook.decode(embed_ind) | |
| quantize = self.project_out(quantize) | |
| quantize = rearrange(quantize, "b n d -> b d n") | |
| return quantize | |
| def forward(self, x): | |
| device = x.device | |
| x = x.transpose(1, 2).contiguous() # [b d n] -> [b n d] | |
| x = self.project_in(x) | |
| quantize, embed_ind = self._codebook(x) | |
| if self.training: | |
| quantize = x + (quantize - x).detach() | |
| loss = torch.tensor([0.0], device=device, requires_grad=self.training) | |
| if self.training: | |
| if self.commitment_weight > 0: | |
| commit_loss = F.mse_loss(quantize.detach(), x) | |
| loss = loss + commit_loss * self.commitment_weight | |
| quantize = self.project_out(quantize) | |
| quantize = quantize.transpose(1, 2).contiguous() # [b n d] -> [b d n] | |
| return quantize, embed_ind, loss | |
| class ResidualVectorQuantization(nn.Module): | |
| """Residual vector quantization implementation. | |
| Follows Algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf | |
| """ | |
| def __init__(self, *, num_quantizers, **kwargs): | |
| super().__init__() | |
| self.layers = nn.ModuleList([VectorQuantization(**kwargs) for _ in range(num_quantizers)]) | |
| def forward(self, x, n_q: tp.Optional[int] = None): | |
| quantized_out = 0.0 | |
| residual = x | |
| all_losses = [] | |
| all_indices = [] | |
| n_q = n_q or len(self.layers) | |
| for layer in self.layers[:n_q]: | |
| quantized, indices, loss = layer(residual) | |
| residual = residual - quantized | |
| quantized_out = quantized_out + quantized | |
| all_indices.append(indices) | |
| all_losses.append(loss) | |
| out_losses, out_indices = map(torch.stack, (all_losses, all_indices)) | |
| return quantized_out, out_indices, out_losses | |
| def encode(self, x: torch.Tensor, n_q: tp.Optional[int] = None) -> torch.Tensor: | |
| residual = x | |
| all_indices = [] | |
| n_q = n_q or len(self.layers) | |
| for layer in self.layers[:n_q]: | |
| indices = layer.encode(residual) | |
| quantized = layer.decode(indices) | |
| residual = residual - quantized | |
| all_indices.append(indices) | |
| out_indices = torch.stack(all_indices) | |
| return out_indices | |
| def decode(self, q_indices: torch.Tensor) -> torch.Tensor: | |
| quantized_out = torch.tensor(0.0, device=q_indices.device) | |
| for i, indices in enumerate(q_indices): | |
| layer = self.layers[i] | |
| quantized = layer.decode(indices) | |
| quantized_out = quantized_out + quantized | |
| return quantized_out | |
