|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import numpy as np |
|
import torch.nn.functional as F |
|
|
|
|
|
def quat_to_mat(quaternions: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Quaternion Order: XYZW or say ijkr, scalar-last |
|
|
|
Convert rotations given as quaternions to rotation matrices. |
|
Args: |
|
quaternions: quaternions with real part last, |
|
as tensor of shape (..., 4). |
|
|
|
Returns: |
|
Rotation matrices as tensor of shape (..., 3, 3). |
|
""" |
|
i, j, k, r = torch.unbind(quaternions, -1) |
|
|
|
two_s = 2.0 / (quaternions * quaternions).sum(-1) |
|
|
|
o = torch.stack( |
|
( |
|
1 - two_s * (j * j + k * k), |
|
two_s * (i * j - k * r), |
|
two_s * (i * k + j * r), |
|
two_s * (i * j + k * r), |
|
1 - two_s * (i * i + k * k), |
|
two_s * (j * k - i * r), |
|
two_s * (i * k - j * r), |
|
two_s * (j * k + i * r), |
|
1 - two_s * (i * i + j * j), |
|
), |
|
-1, |
|
) |
|
return o.reshape(quaternions.shape[:-1] + (3, 3)) |
|
|
|
|
|
def mat_to_quat(matrix: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Convert rotations given as rotation matrices to quaternions. |
|
|
|
Args: |
|
matrix: Rotation matrices as tensor of shape (..., 3, 3). |
|
|
|
Returns: |
|
quaternions with real part last, as tensor of shape (..., 4). |
|
Quaternion Order: XYZW or say ijkr, scalar-last |
|
""" |
|
if matrix.size(-1) != 3 or matrix.size(-2) != 3: |
|
raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.") |
|
|
|
batch_dim = matrix.shape[:-2] |
|
m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind(matrix.reshape(batch_dim + (9,)), dim=-1) |
|
|
|
q_abs = _sqrt_positive_part( |
|
torch.stack( |
|
[ |
|
1.0 + m00 + m11 + m22, |
|
1.0 + m00 - m11 - m22, |
|
1.0 - m00 + m11 - m22, |
|
1.0 - m00 - m11 + m22, |
|
], |
|
dim=-1, |
|
) |
|
) |
|
|
|
|
|
quat_by_rijk = torch.stack( |
|
[ |
|
|
|
|
|
torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1), |
|
|
|
|
|
torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1), |
|
|
|
|
|
torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1), |
|
|
|
|
|
torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1), |
|
], |
|
dim=-2, |
|
) |
|
|
|
|
|
|
|
flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device) |
|
quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr)) |
|
|
|
|
|
|
|
out = quat_candidates[F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, :].reshape(batch_dim + (4,)) |
|
|
|
|
|
out = out[..., [1, 2, 3, 0]] |
|
|
|
out = standardize_quaternion(out) |
|
|
|
return out |
|
|
|
|
|
def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Returns torch.sqrt(torch.max(0, x)) |
|
but with a zero subgradient where x is 0. |
|
""" |
|
ret = torch.zeros_like(x) |
|
positive_mask = x > 0 |
|
if torch.is_grad_enabled(): |
|
ret[positive_mask] = torch.sqrt(x[positive_mask]) |
|
else: |
|
ret = torch.where(positive_mask, torch.sqrt(x), ret) |
|
return ret |
|
|
|
|
|
def standardize_quaternion(quaternions: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Convert a unit quaternion to a standard form: one in which the real |
|
part is non negative. |
|
|
|
Args: |
|
quaternions: Quaternions with real part last, |
|
as tensor of shape (..., 4). |
|
|
|
Returns: |
|
Standardized quaternions as tensor of shape (..., 4). |
|
""" |
|
return torch.where(quaternions[..., 3:4] < 0, -quaternions, quaternions) |
|
|