|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from typing import Optional, Tuple, Union, List, Dict, Any |
|
|
|
from src.model.encoder.vggt.layers import PatchEmbed |
|
from src.model.encoder.vggt.layers.block import Block |
|
from src.model.encoder.vggt.layers.rope import RotaryPositionEmbedding2D, PositionGetter |
|
from src.model.encoder.vggt.layers.vision_transformer import vit_small, vit_base, vit_large, vit_giant2 |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
_RESNET_MEAN = [0.485, 0.456, 0.406] |
|
_RESNET_STD = [0.229, 0.224, 0.225] |
|
|
|
|
|
class Aggregator(nn.Module): |
|
""" |
|
The Aggregator applies alternating-attention over input frames, |
|
as described in VGGT: Visual Geometry Grounded Transformer. |
|
|
|
|
|
Args: |
|
img_size (int): Image size in pixels. |
|
patch_size (int): Size of each patch for PatchEmbed. |
|
embed_dim (int): Dimension of the token embeddings. |
|
depth (int): Number of blocks. |
|
num_heads (int): Number of attention heads. |
|
mlp_ratio (float): Ratio of MLP hidden dim to embedding dim. |
|
num_register_tokens (int): Number of register tokens. |
|
block_fn (nn.Module): The block type used for attention (Block by default). |
|
qkv_bias (bool): Whether to include bias in QKV projections. |
|
proj_bias (bool): Whether to include bias in the output projection. |
|
ffn_bias (bool): Whether to include bias in MLP layers. |
|
patch_embed (str): Type of patch embed. e.g., "conv" or "dinov2_vitl14_reg". |
|
aa_order (list[str]): The order of alternating attention, e.g. ["frame", "global"]. |
|
aa_block_size (int): How many blocks to group under each attention type before switching. If not necessary, set to 1. |
|
qk_norm (bool): Whether to apply QK normalization. |
|
rope_freq (int): Base frequency for rotary embedding. -1 to disable. |
|
init_values (float): Init scale for layer scale. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
img_size=518, |
|
patch_size=14, |
|
embed_dim=1024, |
|
depth=24, |
|
num_heads=16, |
|
mlp_ratio=4.0, |
|
num_register_tokens=4, |
|
block_fn=Block, |
|
qkv_bias=True, |
|
proj_bias=True, |
|
ffn_bias=True, |
|
patch_embed="dinov2_vitl14_reg", |
|
aa_order=["frame", "global"], |
|
aa_block_size=1, |
|
qk_norm=True, |
|
rope_freq=100, |
|
init_values=0.01, |
|
): |
|
super().__init__() |
|
self.use_checkpoint = True |
|
self.__build_patch_embed__(patch_embed, img_size, patch_size, num_register_tokens, embed_dim=embed_dim) |
|
|
|
|
|
self.rope = RotaryPositionEmbedding2D(frequency=rope_freq) if rope_freq > 0 else None |
|
self.position_getter = PositionGetter() if self.rope is not None else None |
|
|
|
self.frame_blocks = nn.ModuleList( |
|
[ |
|
block_fn( |
|
dim=embed_dim, |
|
num_heads=num_heads, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
proj_bias=proj_bias, |
|
ffn_bias=ffn_bias, |
|
init_values=init_values, |
|
qk_norm=qk_norm, |
|
rope=self.rope, |
|
) |
|
for _ in range(depth) |
|
] |
|
) |
|
|
|
self.global_blocks = nn.ModuleList( |
|
[ |
|
block_fn( |
|
dim=embed_dim, |
|
num_heads=num_heads, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
proj_bias=proj_bias, |
|
ffn_bias=ffn_bias, |
|
init_values=init_values, |
|
qk_norm=qk_norm, |
|
rope=self.rope, |
|
) |
|
for _ in range(depth) |
|
] |
|
) |
|
|
|
self.depth = depth |
|
self.aa_order = aa_order |
|
self.patch_size = patch_size |
|
self.aa_block_size = aa_block_size |
|
|
|
|
|
if self.depth % self.aa_block_size != 0: |
|
raise ValueError(f"depth ({depth}) must be divisible by aa_block_size ({aa_block_size})") |
|
|
|
self.aa_block_num = self.depth // self.aa_block_size |
|
|
|
|
|
|
|
self.camera_token = nn.Parameter(torch.randn(1, 2, 1, embed_dim)) |
|
self.register_token = nn.Parameter(torch.randn(1, 2, num_register_tokens, embed_dim)) |
|
|
|
|
|
self.patch_start_idx = 1 + num_register_tokens |
|
|
|
|
|
nn.init.normal_(self.camera_token, std=1e-6) |
|
nn.init.normal_(self.register_token, std=1e-6) |
|
|
|
|
|
for name, value in ( |
|
("_resnet_mean", _RESNET_MEAN), |
|
("_resnet_std", _RESNET_STD), |
|
): |
|
self.register_buffer( |
|
name, |
|
torch.FloatTensor(value).view(1, 1, 3, 1, 1), |
|
persistent=False, |
|
) |
|
|
|
def __build_patch_embed__( |
|
self, |
|
patch_embed, |
|
img_size, |
|
patch_size, |
|
num_register_tokens, |
|
interpolate_antialias=True, |
|
interpolate_offset=0.0, |
|
block_chunks=0, |
|
init_values=1.0, |
|
embed_dim=1024, |
|
): |
|
""" |
|
Build the patch embed layer. If 'conv', we use a |
|
simple PatchEmbed conv layer. Otherwise, we use a vision transformer. |
|
""" |
|
|
|
if "conv" in patch_embed: |
|
self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size, in_chans=3, embed_dim=embed_dim) |
|
else: |
|
vit_models = { |
|
"dinov2_vitl14_reg": vit_large, |
|
"dinov2_vitb14_reg": vit_base, |
|
"dinov2_vits14_reg": vit_small, |
|
"dinov2_vitg2_reg": vit_giant2, |
|
} |
|
|
|
self.patch_embed = vit_models[patch_embed]( |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
num_register_tokens=num_register_tokens, |
|
interpolate_antialias=interpolate_antialias, |
|
interpolate_offset=interpolate_offset, |
|
block_chunks=block_chunks, |
|
init_values=init_values, |
|
) |
|
|
|
|
|
if hasattr(self.patch_embed, "mask_token"): |
|
self.patch_embed.mask_token.requires_grad_(False) |
|
|
|
def forward( |
|
self, |
|
images: torch.Tensor, |
|
intermediate_layer_idx: Optional[List[int]] = None |
|
) -> Tuple[List[torch.Tensor], int]: |
|
""" |
|
Args: |
|
images (torch.Tensor): Input images with shape [B, S, 3, H, W], in range [0, 1]. |
|
B: batch size, S: sequence length, 3: RGB channels, H: height, W: width |
|
|
|
Returns: |
|
(list[torch.Tensor], int): |
|
The list of outputs from the attention blocks, |
|
and the patch_start_idx indicating where patch tokens begin. |
|
""" |
|
B, S, C_in, H, W = images.shape |
|
|
|
if C_in != 3: |
|
raise ValueError(f"Expected 3 input channels, got {C_in}") |
|
|
|
|
|
images = (images - self._resnet_mean) / self._resnet_std |
|
|
|
|
|
images = images.view(B * S, C_in, H, W) |
|
patch_tokens = self.patch_embed(images) |
|
|
|
if isinstance(patch_tokens, dict): |
|
patch_tokens = patch_tokens["x_norm_patchtokens"] |
|
|
|
_, P, C = patch_tokens.shape |
|
|
|
|
|
camera_token = slice_expand_and_flatten(self.camera_token, B, S) |
|
register_token = slice_expand_and_flatten(self.register_token, B, S) |
|
|
|
|
|
tokens = torch.cat([camera_token, register_token, patch_tokens], dim=1) |
|
|
|
pos = None |
|
if self.rope is not None: |
|
pos = self.position_getter(B * S, H // self.patch_size, W // self.patch_size, device=images.device) |
|
|
|
if self.patch_start_idx > 0: |
|
|
|
|
|
pos = pos + 1 |
|
pos_special = torch.zeros(B * S, self.patch_start_idx, 2).to(images.device).to(pos.dtype) |
|
pos = torch.cat([pos_special, pos], dim=1) |
|
|
|
|
|
_, P, C = tokens.shape |
|
|
|
frame_idx = 0 |
|
global_idx = 0 |
|
output_list = [] |
|
layer_idx = 0 |
|
|
|
|
|
if intermediate_layer_idx is not None: |
|
required_layers = set(intermediate_layer_idx) |
|
|
|
required_layers.add(self.depth - 1) |
|
|
|
for _ in range(self.aa_block_num): |
|
for attn_type in self.aa_order: |
|
if attn_type == "frame": |
|
tokens, frame_idx, frame_intermediates = self._process_frame_attention( |
|
tokens, B, S, P, C, frame_idx, pos=pos |
|
) |
|
elif attn_type == "global": |
|
tokens, global_idx, global_intermediates = self._process_global_attention( |
|
tokens, B, S, P, C, global_idx, pos=pos |
|
) |
|
else: |
|
raise ValueError(f"Unknown attention type: {attn_type}") |
|
|
|
if intermediate_layer_idx is not None: |
|
for i in range(len(frame_intermediates)): |
|
current_layer = layer_idx + i |
|
if current_layer in required_layers: |
|
|
|
concat_inter = torch.cat([frame_intermediates[i], global_intermediates[i]], dim=-1) |
|
output_list.append(concat_inter) |
|
layer_idx += self.aa_block_size |
|
|
|
else: |
|
for i in range(len(frame_intermediates)): |
|
|
|
concat_inter = torch.cat([frame_intermediates[i], global_intermediates[i]], dim=-1) |
|
output_list.append(concat_inter) |
|
|
|
del concat_inter |
|
del frame_intermediates |
|
del global_intermediates |
|
return output_list, self.patch_start_idx |
|
|
|
def _process_frame_attention(self, tokens, B, S, P, C, frame_idx, pos=None): |
|
""" |
|
Process frame attention blocks. We keep tokens in shape (B*S, P, C). |
|
""" |
|
|
|
if tokens.shape != (B * S, P, C): |
|
tokens = tokens.view(B, S, P, C).view(B * S, P, C) |
|
|
|
if pos is not None and pos.shape != (B * S, P, 2): |
|
pos = pos.view(B, S, P, 2).view(B * S, P, 2) |
|
|
|
intermediates = [] |
|
|
|
|
|
for _ in range(self.aa_block_size): |
|
if self.use_checkpoint: |
|
tokens = torch.utils.checkpoint.checkpoint( |
|
self.frame_blocks[frame_idx], |
|
tokens, |
|
pos, |
|
use_reentrant=False, |
|
) |
|
else: |
|
tokens = self.frame_blocks[frame_idx](tokens, pos=pos) |
|
frame_idx += 1 |
|
intermediates.append(tokens.view(B, S, P, C)) |
|
|
|
return tokens, frame_idx, intermediates |
|
|
|
def _process_global_attention(self, tokens, B, S, P, C, global_idx, pos=None): |
|
""" |
|
Process global attention blocks. We keep tokens in shape (B, S*P, C). |
|
""" |
|
if tokens.shape != (B, S * P, C): |
|
tokens = tokens.view(B, S, P, C).view(B, S * P, C) |
|
|
|
if pos is not None and pos.shape != (B, S * P, 2): |
|
pos = pos.view(B, S, P, 2).view(B, S * P, 2) |
|
|
|
intermediates = [] |
|
|
|
|
|
for _ in range(self.aa_block_size): |
|
if self.use_checkpoint: |
|
tokens = torch.utils.checkpoint.checkpoint( |
|
self.global_blocks[global_idx], |
|
tokens, |
|
pos, |
|
use_reentrant=False, |
|
) |
|
else: |
|
tokens = self.global_blocks[global_idx](tokens, pos=pos) |
|
global_idx += 1 |
|
intermediates.append(tokens.view(B, S, P, C)) |
|
|
|
return tokens, global_idx, intermediates |
|
|
|
|
|
def slice_expand_and_flatten(token_tensor, B, S): |
|
""" |
|
Processes specialized tokens with shape (1, 2, X, C) for multi-frame processing: |
|
1) Uses the first position (index=0) for the first frame only |
|
2) Uses the second position (index=1) for all remaining frames (S-1 frames) |
|
3) Expands both to match batch size B |
|
4) Concatenates to form (B, S, X, C) where each sequence has 1 first-position token |
|
followed by (S-1) second-position tokens |
|
5) Flattens to (B*S, X, C) for processing |
|
|
|
Returns: |
|
torch.Tensor: Processed tokens with shape (B*S, X, C) |
|
""" |
|
|
|
|
|
query = token_tensor[:, 0:1, ...].expand(B, 1, *token_tensor.shape[2:]) |
|
|
|
others = token_tensor[:, 1:, ...].expand(B, S - 1, *token_tensor.shape[2:]) |
|
|
|
combined = torch.cat([query, others], dim=1) |
|
|
|
|
|
combined = combined.view(B * S, *combined.shape[2:]) |
|
return combined |
|
|