|
from dataclasses import dataclass |
|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from einops import einsum, rearrange |
|
from jaxtyping import Float |
|
from torch import Tensor, nn |
|
|
|
from src.geometry.projection import get_world_rays |
|
from src.misc.sh_rotation import rotate_sh |
|
from .gaussians import build_covariance |
|
|
|
from ...types import Gaussians |
|
|
|
@dataclass |
|
class GaussianAdapterCfg: |
|
gaussian_scale_min: float |
|
gaussian_scale_max: float |
|
sh_degree: int |
|
|
|
|
|
class GaussianAdapter(nn.Module): |
|
cfg: GaussianAdapterCfg |
|
|
|
def __init__(self, cfg: GaussianAdapterCfg): |
|
super().__init__() |
|
self.cfg = cfg |
|
|
|
|
|
|
|
|
|
self.register_buffer( |
|
"sh_mask", |
|
torch.ones((self.d_sh,), dtype=torch.float32), |
|
persistent=False, |
|
) |
|
for degree in range(1, self.cfg.sh_degree + 1): |
|
self.sh_mask[degree**2 : (degree + 1) ** 2] = 0.1 * 0.25**degree |
|
|
|
def forward( |
|
self, |
|
extrinsics: Float[Tensor, "*#batch 4 4"], |
|
intrinsics: Float[Tensor, "*#batch 3 3"], |
|
coordinates: Float[Tensor, "*#batch 2"], |
|
depths: Float[Tensor, "*#batch"], |
|
opacities: Float[Tensor, "*#batch"], |
|
raw_gaussians: Float[Tensor, "*#batch _"], |
|
image_shape: tuple[int, int], |
|
eps: float = 1e-8, |
|
) -> Gaussians: |
|
device = extrinsics.device |
|
scales, rotations, sh = raw_gaussians.split((3, 4, 3 * self.d_sh), dim=-1) |
|
|
|
|
|
scale_min = self.cfg.gaussian_scale_min |
|
scale_max = self.cfg.gaussian_scale_max |
|
scales = scale_min + (scale_max - scale_min) * scales.sigmoid() |
|
h, w = image_shape |
|
pixel_size = 1 / torch.tensor((w, h), dtype=torch.float32, device=device) |
|
multiplier = self.get_scale_multiplier(intrinsics, pixel_size) |
|
scales = scales * depths[..., None] * multiplier[..., None] |
|
|
|
|
|
rotations = rotations / (rotations.norm(dim=-1, keepdim=True) + eps) |
|
|
|
sh = rearrange(sh, "... (xyz d_sh) -> ... xyz d_sh", xyz=3) |
|
sh = sh.broadcast_to((*opacities.shape, 3, self.d_sh)) * self.sh_mask |
|
|
|
|
|
covariances = build_covariance(scales, rotations) |
|
c2w_rotations = extrinsics[..., :3, :3] |
|
covariances = c2w_rotations @ covariances @ c2w_rotations.transpose(-1, -2) |
|
|
|
|
|
origins, directions = get_world_rays(coordinates, extrinsics, intrinsics) |
|
means = origins + directions * depths[..., None] |
|
|
|
return Gaussians( |
|
means=means, |
|
covariances=covariances, |
|
|
|
harmonics=sh, |
|
opacities=opacities, |
|
|
|
|
|
scales=scales, |
|
rotations=rotations.broadcast_to((*scales.shape[:-1], 4)), |
|
) |
|
|
|
def get_scale_multiplier( |
|
self, |
|
intrinsics: Float[Tensor, "*#batch 3 3"], |
|
pixel_size: Float[Tensor, "*#batch 2"], |
|
multiplier: float = 0.1, |
|
) -> Float[Tensor, " *batch"]: |
|
xy_multipliers = multiplier * einsum( |
|
intrinsics[..., :2, :2].inverse(), |
|
pixel_size, |
|
"... i j, j -> ... i", |
|
) |
|
return xy_multipliers.sum(dim=-1) |
|
|
|
@property |
|
def d_sh(self) -> int: |
|
return (self.cfg.sh_degree + 1) ** 2 |
|
|
|
@property |
|
def d_in(self) -> int: |
|
return 7 + 3 * self.d_sh |
|
|
|
|
|
class UnifiedGaussianAdapter(GaussianAdapter): |
|
def forward( |
|
self, |
|
means: Float[Tensor, "*#batch 3"], |
|
|
|
depths: Float[Tensor, "*#batch"], |
|
opacities: Float[Tensor, "*#batch"], |
|
raw_gaussians: Float[Tensor, "*#batch _"], |
|
eps: float = 1e-8, |
|
intrinsics: Optional[Float[Tensor, "*#batch 3 3"]] = None, |
|
coordinates: Optional[Float[Tensor, "*#batch 2"]] = None, |
|
) -> Gaussians: |
|
scales, rotations, sh = raw_gaussians.split((3, 4, 3 * self.d_sh), dim=-1) |
|
|
|
scales = 0.001 * F.softplus(scales) |
|
scales = scales.clamp_max(0.3) |
|
|
|
|
|
rotations = rotations / (rotations.norm(dim=-1, keepdim=True) + eps) |
|
|
|
sh = rearrange(sh, "... (xyz d_sh) -> ... xyz d_sh", xyz=3) |
|
sh = sh.broadcast_to((*opacities.shape, 3, self.d_sh)) * self.sh_mask |
|
|
|
covariances = build_covariance(scales, rotations) |
|
|
|
return Gaussians( |
|
means=means.float(), |
|
|
|
covariances=covariances.float(), |
|
harmonics=sh.float(), |
|
opacities=opacities.float(), |
|
scales=scales.float(), |
|
rotations=rotations.float(), |
|
) |
|
|
|
class Unet3dGaussianAdapter(GaussianAdapter): |
|
def forward( |
|
self, |
|
means: Float[Tensor, "*#batch 3"], |
|
depths: Float[Tensor, "*#batch"], |
|
opacities: Float[Tensor, "*#batch"], |
|
raw_gaussians: Float[Tensor, "*#batch _"], |
|
eps: float = 1e-8, |
|
intrinsics: Optional[Float[Tensor, "*#batch 3 3"]] = None, |
|
coordinates: Optional[Float[Tensor, "*#batch 2"]] = None, |
|
) -> Gaussians: |
|
scales, rotations, sh = raw_gaussians.split((3, 4, 3 * self.d_sh), dim=-1) |
|
|
|
scales = 0.001 * F.softplus(scales) |
|
scales = scales.clamp_max(0.3) |
|
|
|
|
|
rotations = rotations / (rotations.norm(dim=-1, keepdim=True) + eps) |
|
|
|
sh = rearrange(sh, "... (xyz d_sh) -> ... xyz d_sh", xyz=3) |
|
sh = sh.broadcast_to((*opacities.shape, 3, self.d_sh)) * self.sh_mask |
|
|
|
covariances = build_covariance(scales, rotations) |
|
|
|
return Gaussians( |
|
means=means, |
|
covariances=covariances, |
|
harmonics=sh, |
|
opacities=opacities, |
|
scales=scales, |
|
rotations=rotations, |
|
) |
|
|
|
|