|
from math import isqrt |
|
|
|
import torch |
|
from e3nn.o3 import matrix_to_angles, wigner_D |
|
from einops import einsum |
|
from jaxtyping import Float |
|
from torch import Tensor |
|
|
|
|
|
def rotate_sh( |
|
sh_coefficients: Float[Tensor, "*#batch n"], |
|
rotations: Float[Tensor, "*#batch 3 3"], |
|
) -> Float[Tensor, "*batch n"]: |
|
device = sh_coefficients.device |
|
dtype = sh_coefficients.dtype |
|
|
|
|
|
P = torch.tensor([[0, 0, 1], [1, 0, 0], [0, 1, 0]], |
|
dtype=sh_coefficients.dtype, device=sh_coefficients.device) |
|
inversed_P = torch.tensor([[0, 1, 0], [0, 0, 1], [1, 0, 0], ], |
|
dtype=sh_coefficients.dtype, device=sh_coefficients.device) |
|
permuted_rotation_matrix = inversed_P @ rotations @ P |
|
|
|
*_, n = sh_coefficients.shape |
|
alpha, beta, gamma = matrix_to_angles(permuted_rotation_matrix) |
|
result = [] |
|
for degree in range(isqrt(n)): |
|
with torch.device(device): |
|
sh_rotations = wigner_D(degree, alpha, -beta, gamma).type(dtype) |
|
sh_rotated = einsum( |
|
sh_rotations, |
|
sh_coefficients[..., degree**2 : (degree + 1) ** 2], |
|
"... i j, ... j -> ... i", |
|
) |
|
result.append(sh_rotated) |
|
|
|
return torch.cat(result, dim=-1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
from pathlib import Path |
|
|
|
import matplotlib.pyplot as plt |
|
from e3nn.o3 import spherical_harmonics |
|
from matplotlib import cm |
|
from scipy.spatial.transform.rotation import Rotation as R |
|
|
|
device = torch.device("cuda") |
|
|
|
|
|
degree = 4 |
|
coefficients = torch.rand((degree + 1) ** 2, dtype=torch.float32, device=device) |
|
|
|
def plot_sh(sh_coefficients, path: Path) -> None: |
|
phi = torch.linspace(0, torch.pi, 100, device=device) |
|
theta = torch.linspace(0, 2 * torch.pi, 100, device=device) |
|
phi, theta = torch.meshgrid(phi, theta, indexing="xy") |
|
x = torch.sin(phi) * torch.cos(theta) |
|
y = torch.sin(phi) * torch.sin(theta) |
|
z = torch.cos(phi) |
|
xyz = torch.stack([x, y, z], dim=-1) |
|
sh = spherical_harmonics(list(range(degree + 1)), xyz, True) |
|
result = einsum(sh, sh_coefficients, "... n, n -> ...") |
|
result = (result - result.min()) / (result.max() - result.min()) |
|
|
|
|
|
fig = plt.figure(figsize=plt.figaspect(1.0)) |
|
ax = fig.add_subplot(111, projection="3d") |
|
ax.plot_surface( |
|
x.cpu().numpy(), |
|
y.cpu().numpy(), |
|
z.cpu().numpy(), |
|
rstride=1, |
|
cstride=1, |
|
facecolors=cm.seismic(result.cpu().numpy()), |
|
) |
|
|
|
ax.set_axis_off() |
|
path.parent.mkdir(exist_ok=True, parents=True) |
|
plt.savefig(path) |
|
|
|
for i, angle in enumerate(torch.linspace(0, 2 * torch.pi, 30)): |
|
rotation = torch.tensor( |
|
R.from_euler("x", angle.item()).as_matrix(), device=device |
|
) |
|
plot_sh(rotate_sh(coefficients, rotation), Path(f"sh_rotation/{i:0>3}.png")) |
|
|
|
print("Done!") |
|
|