|
import random |
|
from dataclasses import dataclass |
|
from typing import Callable |
|
|
|
import numpy as np |
|
import torch |
|
from lightning.pytorch import LightningDataModule |
|
from torch import Generator, nn |
|
from torch.utils.data import DataLoader, Dataset, IterableDataset |
|
|
|
from src.dataset import * |
|
from src.global_cfg import get_cfg |
|
|
|
|
|
from ..misc.step_tracker import StepTracker |
|
from ..misc.utils import get_world_size, get_rank |
|
from . import DatasetCfgWrapper, get_dataset |
|
from .types import DataShim, Stage |
|
from .data_sampler import BatchedRandomSampler, MixedBatchSampler, custom_collate_fn |
|
from .validation_wrapper import ValidationWrapper |
|
|
|
def get_data_shim(encoder: nn.Module) -> DataShim: |
|
"""Get functions that modify the batch. It's sometimes necessary to modify batches |
|
outside the data loader because GPU computations are required to modify the batch or |
|
because the modification depends on something outside the data loader. |
|
""" |
|
|
|
shims: list[DataShim] = [] |
|
if hasattr(encoder, "get_data_shim"): |
|
shims.append(encoder.get_data_shim()) |
|
|
|
def combined_shim(batch): |
|
for shim in shims: |
|
batch = shim(batch) |
|
return batch |
|
|
|
return combined_shim |
|
|
|
|
|
prob_mapping = {DatasetScannetpp: 0.5, |
|
DatasetDL3DV: 0.5, |
|
DatasetCo3d: 0.5} |
|
|
|
@dataclass |
|
class DataLoaderStageCfg: |
|
batch_size: int |
|
num_workers: int |
|
persistent_workers: bool |
|
seed: int | None |
|
|
|
|
|
@dataclass |
|
class DataLoaderCfg: |
|
train: DataLoaderStageCfg |
|
test: DataLoaderStageCfg |
|
val: DataLoaderStageCfg |
|
|
|
|
|
DatasetShim = Callable[[Dataset, Stage], Dataset] |
|
|
|
|
|
def worker_init_fn(worker_id: int) -> None: |
|
random.seed(int(torch.utils.data.get_worker_info().seed) % (2**32 - 1)) |
|
np.random.seed(int(torch.utils.data.get_worker_info().seed) % (2**32 - 1)) |
|
|
|
|
|
class DataModule(LightningDataModule): |
|
dataset_cfgs: list[DatasetCfgWrapper] |
|
data_loader_cfg: DataLoaderCfg |
|
step_tracker: StepTracker | None |
|
dataset_shim: DatasetShim |
|
global_rank: int |
|
|
|
def __init__( |
|
self, |
|
dataset_cfgs: list[DatasetCfgWrapper], |
|
data_loader_cfg: DataLoaderCfg, |
|
step_tracker: StepTracker | None = None, |
|
dataset_shim: DatasetShim = lambda dataset, _: dataset, |
|
global_rank: int = 0, |
|
) -> None: |
|
super().__init__() |
|
self.dataset_cfgs = dataset_cfgs |
|
self.data_loader_cfg = data_loader_cfg |
|
self.step_tracker = step_tracker |
|
self.dataset_shim = dataset_shim |
|
self.global_rank = global_rank |
|
|
|
def get_persistent(self, loader_cfg: DataLoaderStageCfg) -> bool | None: |
|
return None if loader_cfg.num_workers == 0 else loader_cfg.persistent_workers |
|
|
|
def get_generator(self, loader_cfg: DataLoaderStageCfg) -> torch.Generator | None: |
|
if loader_cfg.seed is None: |
|
return None |
|
generator = Generator() |
|
generator.manual_seed(loader_cfg.seed + self.global_rank) |
|
self.generator = generator |
|
return self.generator |
|
|
|
def train_dataloader(self): |
|
dataset, datasets_ls = get_dataset(self.dataset_cfgs, "train", self.step_tracker, self.dataset_shim) |
|
world_size = get_world_size() |
|
rank = get_rank() |
|
|
|
prob_ls = [prob_mapping[type(dataset)] for dataset in datasets_ls] |
|
|
|
|
|
if len(datasets_ls) > 1: |
|
prob = prob_ls |
|
context_num_views = [dataset.cfg.view_sampler.num_context_views for dataset in datasets_ls] |
|
else: |
|
prob = None |
|
dataset_key = next(iter(get_cfg()["dataset"])) |
|
dataset_cfg = get_cfg()["dataset"][dataset_key] |
|
context_num_views = dataset_cfg['view_sampler']['num_context_views'] |
|
|
|
sampler = MixedBatchSampler(datasets_ls, |
|
batch_size=self.data_loader_cfg.train.batch_size, |
|
num_context_views=context_num_views, |
|
world_size=world_size, |
|
rank=rank, |
|
prob=prob, |
|
generator=self.get_generator(self.data_loader_cfg.train)) |
|
sampler.set_epoch(0) |
|
self.train_loader = DataLoader( |
|
dataset, |
|
|
|
|
|
batch_sampler=sampler, |
|
num_workers=self.data_loader_cfg.train.num_workers, |
|
generator=self.generator, |
|
worker_init_fn=worker_init_fn, |
|
|
|
persistent_workers=self.get_persistent(self.data_loader_cfg.train), |
|
) |
|
|
|
|
|
if hasattr(self.train_loader, "dataset") and hasattr(self.train_loader.dataset, "set_epoch"): |
|
print("Training: Set Epoch in DataModule") |
|
self.train_loader.dataset.set_epoch(0) |
|
if hasattr(self.train_loader, "sampler") and hasattr(self.train_loader.sampler, "set_epoch"): |
|
print("Training: Set Epoch in DataModule") |
|
self.train_loader.sampler.set_epoch(0) |
|
|
|
return self.train_loader |
|
|
|
def val_dataloader(self): |
|
dataset, datasets_ls = get_dataset(self.dataset_cfgs, "val", self.step_tracker, self.dataset_shim) |
|
world_size = get_world_size() |
|
rank = get_rank() |
|
|
|
dataset_key = next(iter(get_cfg()["dataset"])) |
|
dataset_cfg = get_cfg()["dataset"][dataset_key] |
|
if len(datasets_ls) > 1: |
|
prob = [0.5] * len(datasets_ls) |
|
else: |
|
prob = None |
|
sampler = MixedBatchSampler(datasets_ls, |
|
batch_size=self.data_loader_cfg.train.batch_size, |
|
num_context_views=dataset_cfg['view_sampler']['num_context_views'], |
|
world_size=world_size, |
|
rank=rank, |
|
prob=prob, |
|
generator=self.get_generator(self.data_loader_cfg.train)) |
|
sampler.set_epoch(0) |
|
self.val_loader = DataLoader( |
|
dataset, |
|
self.data_loader_cfg.val.batch_size, |
|
num_workers=self.data_loader_cfg.val.num_workers, |
|
sampler=sampler, |
|
generator=self.get_generator(self.data_loader_cfg.val), |
|
worker_init_fn=worker_init_fn, |
|
persistent_workers=self.get_persistent(self.data_loader_cfg.val), |
|
) |
|
if hasattr(self.val_loader, "dataset") and hasattr(self.val_loader.dataset, "set_epoch"): |
|
print("Validation: Set Epoch in DataModule") |
|
self.val_loader.dataset.set_epoch(0) |
|
if hasattr(self.val_loader, "sampler") and hasattr(self.val_loader.sampler, "set_epoch"): |
|
print("Validation: Set Epoch in DataModule") |
|
self.val_loader.sampler.set_epoch(0) |
|
return self.val_loader |
|
|
|
def test_dataloader(self): |
|
dataset = get_dataset(self.dataset_cfgs, "test", self.step_tracker, self.dataset_shim) |
|
data_loader = DataLoader( |
|
dataset, |
|
self.data_loader_cfg.test.batch_size, |
|
num_workers=self.data_loader_cfg.test.num_workers, |
|
generator=self.get_generator(self.data_loader_cfg.test), |
|
worker_init_fn=worker_init_fn, |
|
persistent_workers=self.get_persistent(self.data_loader_cfg.test), |
|
) |
|
|
|
return data_loader |