|
import gradio as gr |
|
import fitz |
|
import os |
|
import requests |
|
from huggingface_hub import HfApi |
|
import base64 |
|
from io import BytesIO |
|
import urllib.parse |
|
|
|
|
|
|
|
HF_TOKEN = os.getenv("HF_WRITE") |
|
HF_READ = os.getenv("HF_READ") |
|
|
|
|
|
if HF_TOKEN is None: |
|
raise ValueError("HF_TOKEN environment variable not set. Please set the secret in your Hugging Face Space.") |
|
|
|
|
|
repo_id = "alexkueck/kkg_suche" |
|
repo_type = "space" |
|
save_dir = "kkg_dokumente" |
|
|
|
|
|
api = HfApi() |
|
|
|
def upload_pdf(file): |
|
if file is None: |
|
return None, "Keine Datei hochgeladen." |
|
|
|
|
|
filename = os.path.basename(file.name) |
|
|
|
|
|
upload_path = f"kkg_dokumente/{filename}" |
|
api.upload_file( |
|
path_or_fileobj=file.name, |
|
path_in_repo=upload_path, |
|
repo_id=repo_id, |
|
repo_type=repo_type, |
|
token=HF_TOKEN |
|
) |
|
return f"PDF '{filename}' erfolgreich hochgeladen." |
|
|
|
|
|
def list_pdfs(): |
|
if not os.path.exists(save_dir): |
|
return [] |
|
return [f for f in os.listdir(save_dir) if f.endswith('.pdf')] |
|
|
|
def display_pdf(selected_pdf, hf_token): |
|
save_dir = "kkg_dokumente" |
|
pdf_path = os.path.join(save_dir, selected_pdf) |
|
|
|
|
|
repo_id = "alexkueck/kkg_suche" |
|
encoded_pdf_name = urllib.parse.quote(selected_pdf) |
|
pdf_url = f"https://huggingface.co/spaces/{repo_id}/resolve/main/kkg_dokumente/{encoded_pdf_name}" |
|
|
|
|
|
headers = {"Authorization": f"Bearer {HF_READ}"} |
|
response = requests.get(pdf_url, headers=headers) |
|
if response.status_code == 200: |
|
with open(pdf_path, 'wb') as f: |
|
f.write(response.content) |
|
else: |
|
return [], f"Fehler beim Herunterladen der PDF-Datei von {pdf_url}" |
|
|
|
|
|
document = fitz.open(pdf_path) |
|
images = [] |
|
|
|
for page_number in range(len(document)): |
|
page = document.load_page(page_number) |
|
pix = page.get_pixmap() |
|
img_data = pix.tobytes("png") |
|
|
|
|
|
buffered = BytesIO() |
|
buffered.write(img_data) |
|
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") |
|
img_str = f"data:image/png;base64,{img_str}" |
|
images.append(img_str) |
|
|
|
status = f"PDF '{selected_pdf}' erfolgreich geladen und verarbeitet." |
|
|
|
return images, status |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Tab("Upload PDF"): |
|
upload_pdf_file = gr.File(label="PDF-Datei hochladen") |
|
upload_status = gr.Textbox(label="Status") |
|
upload_button = gr.Button("Upload") |
|
upload_button.click(upload_pdf, inputs=upload_pdf_file, outputs=upload_status) |
|
|
|
with gr.Tab("PDF Auswahl und Anzeige"): |
|
pdf_dropdown = gr.Dropdown(label="Wählen Sie eine PDF-Datei", choices=list_pdfs()) |
|
refresh_button = gr.Button("Liste aktualisieren") |
|
pdf_images = gr.Gallery(label="PDF-Seiten als Bilder") |
|
display_status = gr.Textbox(label="Status") |
|
display_button = gr.Button("Anzeigen") |
|
|
|
refresh_button.click(lambda: pdf_dropdown.update(choices=list_pdfs())) |
|
display_button.click(display_pdf, inputs=pdf_dropdown, outputs=[pdf_images, display_status]) |
|
|
|
demo.launch(share=True) |
|
|
|
|
|
|
|
|
|
|
|
""" |
|
import gradio as gr |
|
import os |
|
from huggingface_hub import HfApi |
|
import time |
|
|
|
# Zugriff auf das Secret als Umgebungsvariable |
|
HF_TOKEN = os.getenv("HF_WRITE") |
|
|
|
# Überprüfen, ob das Secret geladen wurde |
|
if HF_TOKEN is None: |
|
raise ValueError("HF_TOKEN environment variable not set. Please set the secret in your Hugging Face Space.") |
|
|
|
# Repository-Name und Typ |
|
repo_id = "alexkueck/kkg_suche" |
|
repo_type = "space" |
|
|
|
# HfApi-Instanz erstellen |
|
api = HfApi() |
|
|
|
def upload_and_display_pdf(file): |
|
if file is None: |
|
return None, "Keine Datei hochgeladen." |
|
|
|
# Extrahieren des Dateinamens aus dem vollen Pfad |
|
filename = os.path.basename(file.name) |
|
|
|
# Datei zum Hugging Face Space hochladen |
|
upload_path = f"kkg_dokumente/{filename}" |
|
api.upload_file( |
|
path_or_fileobj=file.name, |
|
path_in_repo=upload_path, |
|
repo_id=repo_id, |
|
repo_type=repo_type, |
|
token=HF_TOKEN |
|
) |
|
|
|
# Kurze Verzögerung, um sicherzustellen, dass die Datei verfügbar ist |
|
time.sleep(2) |
|
|
|
# URL zur hochgeladenen PDF-Datei erstellen |
|
pdf_url = f"https://huggingface.co/spaces/{repo_id}/resolve/main/{upload_path}" |
|
|
|
# HTML mit eingebettetem PDF erstellen |
|
html_content = f |
|
<div style="width:100%; height:600px;"> |
|
<object data="{pdf_url}" type="application/pdf" width="100%" height="100%"> |
|
<p>Es sieht so aus, als ob Ihr Browser keine eingebetteten PDFs unterstützt. |
|
Sie können stattdessen <a href="{pdf_url}">hier klicken, um die PDF-Datei herunterzuladen</a>.</p> |
|
</object> |
|
</div> |
|
|
|
|
|
return html_content, f"Datei '{filename}' erfolgreich hochgeladen und im Space gespeichert." |
|
|
|
# Gradio Interface erstellen |
|
iface = gr.Interface( |
|
fn=upload_and_display_pdf, |
|
inputs=gr.File(label="PDF-Datei hochladen"), |
|
outputs=[ |
|
gr.HTML(label="PDF-Anzeige"), |
|
gr.Textbox(label="Status") |
|
], |
|
title="PDF Upload und Anzeige", |
|
description="Laden Sie eine PDF-Datei hoch. Sie wird im 'kkg_dokumente' Ordner des Spaces gespeichert und hier angezeigt." |
|
) |
|
|
|
# App starten |
|
iface.launch() |
|
""" |
|
|
|
|
|
|
|
|
|
""" |
|
import gradio as gr |
|
import os |
|
import fitz # PyMuPDF |
|
import tempfile |
|
from huggingface_hub import HfApi |
|
import shutil |
|
|
|
# Zugriff auf das Secret als Umgebungsvariable |
|
HF_TOKEN = os.getenv("HF_WRITE") |
|
|
|
# Überprüfen, ob das Secret geladen wurde |
|
if HF_TOKEN is None: |
|
raise ValueError("HF_TOKEN environment variable not set. Please set the secret in your Hugging Face Space.") |
|
|
|
# Repository-Name |
|
repo_id = "alexkueck/kkg_suche" |
|
repo_type = "space" |
|
|
|
# HfApi-Instanz erstellen |
|
api = HfApi() |
|
|
|
|
|
|
|
def upload_and_display_pdf(file): |
|
if file is None: |
|
return None, "Keine Datei hochgeladen." |
|
|
|
# Extrahieren des Dateinamens aus dem vollen Pfad |
|
filename = os.path.basename(file.name) |
|
|
|
# Datei zum Hugging Face Space hochladen |
|
upload_path = f"kkg_dokumente/{filename}" |
|
api.upload_file( |
|
path_or_fileobj=file.name, |
|
path_in_repo=upload_path, |
|
repo_id=repo_id, |
|
repo_type=repo_type, |
|
token=HF_TOKEN |
|
) |
|
|
|
# PDF in HTML umwandeln |
|
doc = fitz.open(file.name) |
|
html_content = "" |
|
for page in doc: |
|
html_content += page.get_text("html") |
|
doc.close() |
|
|
|
# Temporäre HTML-Datei erstellen |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".html", mode="w", encoding="utf-8") as temp_file: |
|
temp_file.write(html_content) |
|
temp_html_path = temp_file.name |
|
|
|
return temp_html_path, f"Datei '{filename}' erfolgreich hochgeladen und im Repository gespeichert." |
|
|
|
# Gradio Interface erstellen |
|
iface = gr.Interface( |
|
fn=upload_and_display_pdf, |
|
inputs=gr.File(label="PDF-Datei hochladen"), |
|
outputs=[ |
|
gr.HTML(label="PDF-Inhalt"), |
|
gr.Textbox(label="Status") |
|
], |
|
title="PDF Upload und Anzeige", |
|
description="Laden Sie eine PDF-Datei hoch. Sie wird im 'kkg_dokumente' Ordner des Repositories gespeichert und hier angezeigt." |
|
) |
|
|
|
# App starten |
|
iface.launch() |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
# Zugriff auf das Secret als Umgebungsvariable |
|
HF_TOKEN = os.getenv("HF_WRITE") |
|
|
|
# Überprüfen, ob das Secret geladen wurde |
|
if HF_TOKEN is None: |
|
raise ValueError("HF_TOKEN environment variable not set. Please set the secret in your Hugging Face Space.") |
|
|
|
# Repository-Name |
|
repo_id = "alexkueck/kkg_suche" |
|
|
|
# Absoluter Pfad zum Verzeichnis mit den Dokumenten |
|
DOCS_DIR = "kkg_dokumente" |
|
|
|
# Funktion zum Extrahieren des Textes aus einer PDF-Datei |
|
def extract_text_from_pdf(pdf_path): |
|
doc = fitz.open(pdf_path) |
|
text = [] |
|
for page in doc: |
|
text.append(page.get_text()) |
|
return text |
|
|
|
# Dynamische Erstellung der Dokumentenliste und Extraktion der Texte |
|
documents = [] |
|
for file_name in os.listdir(DOCS_DIR): |
|
if file_name.endswith(".pdf"): |
|
pdf_path = os.path.join(DOCS_DIR, file_name) |
|
pages_text = extract_text_from_pdf(pdf_path) |
|
documents.append({"file": file_name, "pages": pages_text}) |
|
|
|
# TF-IDF Vectorizer vorbereiten |
|
vectorizer = TfidfVectorizer() |
|
tfidf_matrix = vectorizer.fit_transform([page for doc in documents for page in doc['pages']]) |
|
|
|
def display_document(doc_name): |
|
if isinstance(doc_name, list): |
|
doc_name = doc_name[0] # Nehmen Sie das erste Element, falls eine Liste übergeben wurde |
|
|
|
file_path = os.path.join(DOCS_DIR, doc_name) |
|
|
|
if not os.path.exists(file_path): |
|
return f"<p>Fehler: Datei nicht gefunden - {file_path}</p>" |
|
|
|
# Generieren Sie die URL für das PDF |
|
file_url = f"file://{file_path}" |
|
|
|
return f'<iframe src="{file_url}" width="100%" height="600px"></iframe>' |
|
|
|
def search_documents(query): |
|
if not query: |
|
return [doc['file'] for doc in documents], "", [] |
|
|
|
query_vector = vectorizer.transform([query]) |
|
cosine_similarities = cosine_similarity(query_vector, tfidf_matrix).flatten() |
|
related_docs_indices = cosine_similarities.argsort()[::-1] |
|
|
|
results = [] |
|
relevant_text = "" |
|
relevant_pdfs = [] |
|
num_pages_per_doc = [len(doc['pages']) for doc in documents] |
|
cumulative_pages = [sum(num_pages_per_doc[:i+1]) for i in range(len(num_pages_per_doc))] |
|
|
|
for i in related_docs_indices: |
|
if cosine_similarities[i] > 0: |
|
doc_index = next(idx for idx, cumulative in enumerate(cumulative_pages) if i < cumulative) |
|
page_index = i if doc_index == 0 else i - cumulative_pages[doc_index-1] |
|
doc = documents[doc_index] |
|
results.append(doc['file']) |
|
page_content = doc['pages'][page_index] |
|
index = page_content.lower().find(query.lower()) |
|
if index != -1: |
|
start = max(0, index - 100) |
|
end = min(len(page_content), index + 100) |
|
relevant_text += f"Aus {doc['file']} (Seite {page_index + 1}):\n...{page_content[start:end]}...\n\n" |
|
relevant_pdfs.append((doc['file'], page_index)) |
|
|
|
return results, relevant_text, relevant_pdfs |
|
|
|
def update_display(doc_name): |
|
return display_document(doc_name) |
|
|
|
def search_and_update(query): |
|
results, rel_text, relevant_pdfs = search_documents(query) |
|
|
|
pdf_html = "" |
|
for pdf, page in relevant_pdfs: |
|
pdf_path = os.path.join(DOCS_DIR, pdf) |
|
|
|
if not os.path.exists(pdf_path): |
|
pdf_html += f"<p>Fehler: Datei nicht gefunden - {pdf_path}</p>" |
|
else: |
|
file_url = f"file://{pdf_path}" |
|
pdf_html += f"<h3>{pdf} - Seite {page+1}</h3>" |
|
pdf_html += f'<iframe src="{file_url}#page={page+1}" width="100%" height="600px"></iframe>' |
|
|
|
return gr.update(choices=results, value=results[0] if results else None), rel_text, pdf_html |
|
|
|
def upload_file(file): |
|
local_file_path = file.name |
|
target_path_in_space = f"kkg_dokumente/{file.orig_name}" |
|
|
|
api = HfApi() |
|
api.upload_file( |
|
path_or_fileobj=local_file_path, |
|
path_in_repo=target_path_in_space, |
|
repo_id=repo_id, |
|
token=HF_TOKEN, |
|
repo_type="space" |
|
) |
|
|
|
return file.name |
|
|
|
# Initialisieren der Gradio-Oberfläche |
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Dokumentensuche und -anzeige") |
|
|
|
query_input = gr.Textbox(label="Suchbegriff (leer lassen für alle Dokumente)") |
|
file_input = gr.File(label="Dokument hochladen", file_types=[".pdf"], type="file") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
doc_dropdown = gr.Dropdown(choices=[doc['file'] for doc in documents], label="Dokumente", allow_custom_value=True) |
|
doc_display = gr.HTML(label="Dokumentvorschau") |
|
with gr.Column(scale=1): |
|
relevant_text = gr.Textbox(label="Relevanter Text", lines=10) |
|
pdf_display = gr.HTML() |
|
|
|
query_input.submit(search_and_update, inputs=[query_input], outputs=[doc_dropdown, relevant_text, pdf_display]) |
|
doc_dropdown.change(update_display, inputs=[doc_dropdown], outputs=[doc_display]) |
|
file_input.upload(upload_file, inputs=file_input, outputs=[doc_dropdown]) |
|
|
|
demo.launch() |
|
""" |
|
|
|
|
|
|
|
|
|
""" |
|
|
|
import gradio as gr |
|
import os |
|
import fitz # PyMuPDF |
|
from sklearn.feature_extraction.text import TfidfVectorizer |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
|
|
# Absoluter Pfad zum Verzeichnis mit den Dokumenten |
|
DOCS_DIR = os.path.abspath("kkg_dokumente") |
|
|
|
# Funktion zum Extrahieren des Textes aus einer PDF-Datei |
|
def extract_text_from_pdf(pdf_path): |
|
doc = fitz.open(pdf_path) |
|
text = [] |
|
for page in doc: |
|
text.append(page.get_text()) |
|
return text |
|
|
|
# Dynamische Erstellung der Dokumentenliste und Extraktion der Texte |
|
documents = [] |
|
for file_name in os.listdir(DOCS_DIR): |
|
if file_name.endswith(".pdf"): |
|
pdf_path = os.path.join(DOCS_DIR, file_name) |
|
pages_text = extract_text_from_pdf(pdf_path) |
|
documents.append({"file": file_name, "pages": pages_text}) |
|
|
|
# TF-IDF Vectorizer vorbereiten |
|
vectorizer = TfidfVectorizer() |
|
tfidf_matrix = vectorizer.fit_transform([page for doc in documents for page in doc['pages']]) |
|
|
|
def display_document(doc_name): |
|
if isinstance(doc_name, list): |
|
doc_name = doc_name[0] # Nehmen Sie das erste Element, falls eine Liste übergeben wurde |
|
|
|
file_path = os.path.join(DOCS_DIR, doc_name) |
|
|
|
if not os.path.exists(file_path): |
|
return f"<p>Fehler: Datei nicht gefunden - {file_path}</p>" |
|
|
|
# Generieren Sie die URL für das PDF |
|
file_url = f"file://{file_path}" |
|
|
|
return f'<iframe src="{file_url}" width="100%" height="600px"></iframe>' |
|
|
|
def search_documents(query): |
|
if not query: |
|
return [doc['file'] for doc in documents], "", [] |
|
|
|
query_vector = vectorizer.transform([query]) |
|
cosine_similarities = cosine_similarity(query_vector, tfidf_matrix).flatten() |
|
related_docs_indices = cosine_similarities.argsort()[::-1] |
|
|
|
results = [] |
|
relevant_text = "" |
|
relevant_pdfs = [] |
|
num_pages_per_doc = [len(doc['pages']) for doc in documents] |
|
cumulative_pages = [sum(num_pages_per_doc[:i+1]) for i in range(len(num_pages_per_doc))] |
|
|
|
for i in related_docs_indices: |
|
if cosine_similarities[i] > 0: |
|
doc_index = next(idx for idx, cumulative in enumerate(cumulative_pages) if i < cumulative) |
|
page_index = i if doc_index == 0 else i - cumulative_pages[doc_index-1] |
|
doc = documents[doc_index] |
|
results.append(doc['file']) |
|
page_content = doc['pages'][page_index] |
|
index = page_content.lower().find(query.lower()) |
|
if index != -1: |
|
start = max(0, index - 100) |
|
end = min(len(page_content), index + 100) |
|
relevant_text += f"Aus {doc['file']} (Seite {page_index + 1}):\n...{page_content[start:end]}...\n\n" |
|
relevant_pdfs.append((doc['file'], page_index)) |
|
|
|
return results, relevant_text, relevant_pdfs |
|
|
|
def update_display(doc_name): |
|
return display_document(doc_name) |
|
|
|
def search_and_update(query): |
|
results, rel_text, relevant_pdfs = search_documents(query) |
|
|
|
pdf_html = "" |
|
for pdf, page in relevant_pdfs: |
|
pdf_path = os.path.join(DOCS_DIR, pdf) |
|
|
|
if not os.path.exists(pdf_path): |
|
pdf_html += f"<p>Fehler: Datei nicht gefunden - {pdf_path}</p>" |
|
else: |
|
file_url = f"file://{pdf_path}" |
|
pdf_html += f"<h3>{pdf} - Seite {page+1}</h3>" |
|
pdf_html += f'<iframe src="{file_url}#page={page+1}" width="100%" height="600px"></iframe>' |
|
|
|
return gr.update(choices=results, value=results[0] if results else None), rel_text, pdf_html |
|
|
|
def upload_file(file): |
|
file_name = "uploaded_file.pdf" |
|
file_path = os.path.join(DOCS_DIR, file_name) |
|
|
|
# Debugging-Ausgabe: Überprüfen Sie, ob das Verzeichnis existiert |
|
if not os.path.exists(DOCS_DIR): |
|
print(f"Verzeichnis {DOCS_DIR} existiert nicht. Erstelle Verzeichnis.") |
|
os.makedirs(DOCS_DIR) |
|
|
|
# Debugging-Ausgabe: Dateiname und Pfad |
|
print(f"Speichere Datei nach {file_path}") |
|
|
|
with open(file_path, "wb") as f: |
|
f.write(file) |
|
|
|
# Überprüfen, ob die Datei korrekt gespeichert wurde |
|
if os.path.exists(file_path): |
|
print(f"Datei erfolgreich gespeichert: {file_path}") |
|
else: |
|
print(f"Fehler beim Speichern der Datei: {file_path}") |
|
|
|
# Aktualisieren Sie die Dokumentenliste und die TF-IDF-Matrix |
|
pages_text = extract_text_from_pdf(file_path) |
|
documents.append({"file": file_name, "pages": pages_text}) |
|
|
|
global tfidf_matrix |
|
tfidf_matrix = vectorizer.fit_transform([page for doc in documents for page in doc['pages']]) |
|
|
|
return gr.update(choices=[doc['file'] for doc in documents], value=file_name) |
|
|
|
# Initialisieren der Gradio-Oberfläche |
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Dokumentensuche und -anzeige") |
|
|
|
query_input = gr.Textbox(label="Suchbegriff (leer lassen für alle Dokumente)") |
|
file_input = gr.File(label="Dokument hochladen", file_types=[".pdf"], type="binary") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
doc_dropdown = gr.Dropdown(choices=[doc['file'] for doc in documents], label="Dokumente", allow_custom_value=True) |
|
doc_display = gr.HTML(label="Dokumentvorschau") |
|
with gr.Column(scale=1): |
|
relevant_text = gr.Textbox(label="Relevanter Text", lines=10) |
|
pdf_display = gr.HTML() |
|
|
|
query_input.submit(search_and_update, inputs=[query_input], outputs=[doc_dropdown, relevant_text, pdf_display]) |
|
doc_dropdown.change(update_display, inputs=[doc_dropdown], outputs=[doc_display]) |
|
file_input.upload(upload_file, inputs=file_input, outputs=[doc_dropdown]) |
|
|
|
demo.launch() |
|
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
import gradio as gr |
|
import os |
|
import fitz # PyMuPDF |
|
from sklearn.feature_extraction.text import TfidfVectorizer |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
|
|
# Absoluter Pfad zum Verzeichnis mit den Dokumenten |
|
DOCS_DIR = os.path.abspath("kkg_dokumente") |
|
|
|
# Funktion zum Extrahieren des Textes aus einer PDF-Datei |
|
def extract_text_from_pdf(pdf_path): |
|
doc = fitz.open(pdf_path) |
|
text = [] |
|
for page in doc: |
|
text.append(page.get_text()) |
|
return text |
|
|
|
# Dynamische Erstellung der Dokumentenliste und Extraktion der Texte |
|
documents = [] |
|
for file_name in os.listdir(DOCS_DIR): |
|
if file_name.endswith(".pdf"): |
|
pdf_path = os.path.join(DOCS_DIR, file_name) |
|
pages_text = extract_text_from_pdf(pdf_path) |
|
documents.append({"file": file_name, "pages": pages_text}) |
|
|
|
# TF-IDF Vectorizer vorbereiten |
|
vectorizer = TfidfVectorizer() |
|
tfidf_matrix = vectorizer.fit_transform([page for doc in documents for page in doc['pages']]) |
|
|
|
def display_document(doc_name): |
|
if isinstance(doc_name, list): |
|
doc_name = doc_name[0] # Nehmen Sie das erste Element, falls eine Liste übergeben wurde |
|
|
|
file_path = os.path.join(DOCS_DIR, doc_name) |
|
|
|
if not os.path.exists(file_path): |
|
return f"<p>Fehler: Datei nicht gefunden - {file_path}</p>" |
|
|
|
# Generieren Sie die URL für das PDF |
|
file_url = f"file://{file_path}" |
|
|
|
return f'<iframe src="{file_url}" width="100%" height="600px"></iframe>' |
|
|
|
def search_documents(query): |
|
if not query: |
|
return [doc['file'] for doc in documents], "", [] |
|
|
|
query_vector = vectorizer.transform([query]) |
|
cosine_similarities = cosine_similarity(query_vector, tfidf_matrix).flatten() |
|
related_docs_indices = cosine_similarities.argsort()[::-1] |
|
|
|
results = [] |
|
relevant_text = "" |
|
relevant_pdfs = [] |
|
num_pages_per_doc = [len(doc['pages']) for doc in documents] |
|
cumulative_pages = [sum(num_pages_per_doc[:i+1]) for i in range(len(num_pages_per_doc))] |
|
|
|
for i in related_docs_indices: |
|
if cosine_similarities[i] > 0: |
|
doc_index = next(idx for idx, cumulative in enumerate(cumulative_pages) if i < cumulative) |
|
page_index = i if doc_index == 0 else i - cumulative_pages[doc_index-1] |
|
doc = documents[doc_index] |
|
results.append(doc['file']) |
|
page_content = doc['pages'][page_index] |
|
index = page_content.lower().find(query.lower()) |
|
if index != -1: |
|
start = max(0, index - 100) |
|
end = min(len(page_content), index + 100) |
|
relevant_text += f"Aus {doc['file']} (Seite {page_index + 1}):\n...{page_content[start:end]}...\n\n" |
|
relevant_pdfs.append((doc['file'], page_index)) |
|
|
|
return results, relevant_text, relevant_pdfs |
|
|
|
def update_display(doc_name): |
|
return display_document(doc_name) |
|
|
|
def search_and_update(query): |
|
results, rel_text, relevant_pdfs = search_documents(query) |
|
|
|
pdf_html = "" |
|
for pdf, page in relevant_pdfs: |
|
pdf_path = os.path.join(DOCS_DIR, pdf) |
|
|
|
if not os.path.exists(pdf_path): |
|
pdf_html += f"<p>Fehler: Datei nicht gefunden - {pdf_path}</p>" |
|
else: |
|
file_url = f"file://{pdf_path}" |
|
pdf_html += f"<h3>{pdf} - Seite {page+1}</h3>" |
|
pdf_html += f'<iframe src="{file_url}#page={page+1}" width="100%" height="600px"></iframe>' |
|
|
|
return gr.update(choices=results, value=results[0] if results else None), rel_text, pdf_html |
|
|
|
def upload_file(file): |
|
file_path = os.path.join(DOCS_DIR, file.name) |
|
with open(file_path, "wb") as f: |
|
f.write(file.read()) |
|
|
|
# Aktualisieren Sie die Dokumentenliste und die TF-IDF-Matrix |
|
pages_text = extract_text_from_pdf(file_path) |
|
documents.append({"file": file.name, "pages": pages_text}) |
|
|
|
global tfidf_matrix |
|
tfidf_matrix = vectorizer.fit_transform([page for doc in documents for page in doc['pages']]) |
|
|
|
return gr.update(choices=[doc['file'] for doc in documents], value=file.name) |
|
|
|
# Initialisieren der Gradio-Oberfläche |
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Dokumentensuche und -anzeige") |
|
|
|
query_input = gr.Textbox(label="Suchbegriff (leer lassen für alle Dokumente)") |
|
file_input = gr.File(label="Dokument hochladen", file_types=[".pdf"], type="binary") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
doc_dropdown = gr.Dropdown(choices=[doc['file'] for doc in documents], label="Dokumente", allow_custom_value=True) |
|
doc_display = gr.HTML(label="Dokumentvorschau") |
|
with gr.Column(scale=1): |
|
relevant_text = gr.Textbox(label="Relevanter Text", lines=10) |
|
pdf_display = gr.HTML() |
|
|
|
query_input.submit(search_and_update, inputs=[query_input], outputs=[doc_dropdown, relevant_text, pdf_display]) |
|
doc_dropdown.change(update_display, inputs=[doc_dropdown], outputs=[doc_display]) |
|
file_input.upload(upload_file, inputs=file_input, outputs=[doc_dropdown]) |
|
|
|
demo.launch() |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
import gradio as gr |
|
from sklearn.feature_extraction.text import TfidfVectorizer |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
|
|
# Beispiel-Daten mit hartcodierten Texten |
|
documents = [ |
|
{"file": "document1.pdf", "pages": ["Seite 1 Inhalt von Dokument 1", "Seite 2 Inhalt von Dokument 1"]}, |
|
{"file": "document2.pdf", "pages": ["Seite 1 Inhalt von Dokument 2", "Seite 2 Inhalt von Dokument 2"]} |
|
] |
|
|
|
# TF-IDF Vectorizer vorbereiten |
|
vectorizer = TfidfVectorizer() |
|
tfidf_matrix = vectorizer.fit_transform([page for doc in documents for page in doc['pages']]) |
|
|
|
def display_document(doc_name): |
|
# Hartcodierter HTML-Inhalt zur Anzeige des Dokuments |
|
hardcoded_html = f |
|
<h1>{doc_name}</h1> |
|
<p>Dies ist ein Beispieltext für die Anzeige des Dokuments {doc_name}.</p> |
|
<iframe src="https://www.example.com" width="100%" height="600px"></iframe> |
|
|
|
return hardcoded_html |
|
|
|
def search_documents(query): |
|
if not query: |
|
return [doc['file'] for doc in documents], "", [] |
|
|
|
query_vector = vectorizer.transform([query]) |
|
cosine_similarities = cosine_similarity(query_vector, tfidf_matrix).flatten() |
|
related_docs_indices = cosine_similarities.argsort()[::-1] |
|
|
|
results = [] |
|
relevant_text = "" |
|
relevant_pdfs = [] |
|
num_pages_per_doc = [len(doc['pages']) for doc in documents] |
|
cumulative_pages = [sum(num_pages_per_doc[:i+1]) for i in range(len(num_pages_per_doc))] |
|
|
|
for i in related_docs_indices: |
|
if cosine_similarities[i] > 0: |
|
doc_index = next(idx for idx, cumulative in enumerate(cumulative_pages) if i < cumulative) |
|
page_index = i if doc_index == 0 else i - cumulative_pages[doc_index-1] |
|
doc = documents[doc_index] |
|
results.append(doc['file']) |
|
page_content = doc['pages'][page_index] |
|
index = page_content.lower().find(query.lower()) |
|
if index != -1: |
|
start = max(0, index - 100) |
|
end = min(len(page_content), index + 100) |
|
relevant_text += f"Aus {doc['file']} (Seite {page_index + 1}):\n...{page_content[start:end]}...\n\n" |
|
relevant_pdfs.append((doc['file'], page_index)) |
|
|
|
return results, relevant_text, relevant_pdfs |
|
|
|
def update_display(doc_name): |
|
return display_document(doc_name) |
|
|
|
def search_and_update(query): |
|
results, rel_text, relevant_pdfs = search_documents(query) |
|
|
|
pdf_html = "" |
|
for pdf, page in relevant_pdfs: |
|
# Hartcodierter HTML-Inhalt zur Anzeige der Suchergebnisse |
|
pdf_html += f"<h3>{pdf} - Seite {page+1}</h3>" |
|
pdf_html += f'<iframe src="https://www.example.com" width="100%" height="600px"></iframe>' |
|
|
|
return results, rel_text, pdf_html |
|
|
|
# Initialisieren der Gradio-Oberfläche |
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Dokumentensuche und -anzeige") |
|
|
|
query_input = gr.Textbox(label="Suchbegriff (leer lassen für alle Dokumente)") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
doc_dropdown = gr.Dropdown(choices=[doc['file'] for doc in documents], label="Dokumente") |
|
doc_display = gr.HTML(label="Dokumentvorschau") |
|
with gr.Column(scale=1): |
|
relevant_text = gr.Textbox(label="Relevanter Text", lines=10) |
|
pdf_display = gr.HTML() |
|
|
|
query_input.submit(search_and_update, inputs=[query_input], outputs=[doc_dropdown, relevant_text, pdf_display]) |
|
doc_dropdown.change(update_display, inputs=[doc_dropdown], outputs=[doc_display]) |
|
|
|
demo.launch() |
|
""" |
|
|
|
|
|
""" |
|
import gradio as gr |
|
import os |
|
import fitz # PyMuPDF |
|
from sklearn.feature_extraction.text import TfidfVectorizer |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
|
|
# Verwenden Sie den korrekten Pfad für die hochgeladenen Dateien in Ihrem Hugging Face Space |
|
DOCS_DIR = os.path.abspath("kkg_dokumente") |
|
|
|
# Funktion zum Extrahieren des Textes aus einer PDF-Datei |
|
def extract_text_from_pdf(pdf_path): |
|
doc = fitz.open(pdf_path) |
|
text = [] |
|
for page in doc: |
|
text.append(page.get_text()) |
|
return text |
|
|
|
# Dynamische Erstellung der Dokumentenliste und Extraktion der Texte |
|
documents = [] |
|
for file_name in os.listdir(DOCS_DIR): |
|
if file_name.endswith(".pdf"): |
|
pdf_path = os.path.join(DOCS_DIR, file_name) |
|
pages_text = extract_text_from_pdf(pdf_path) |
|
documents.append({"file": file_name, "pages": pages_text}) |
|
|
|
# TF-IDF Vectorizer vorbereiten |
|
vectorizer = TfidfVectorizer() |
|
tfidf_matrix = vectorizer.fit_transform([page for doc in documents for page in doc['pages']]) |
|
|
|
def display_document(doc_name): |
|
file_path = os.path.join(DOCS_DIR, doc_name) |
|
|
|
if not os.path.exists(file_path): |
|
return f"<p>Fehler: Datei nicht gefunden - {file_path}</p>" |
|
|
|
# Generieren Sie die URL für das PDF |
|
file_url = f"{DOCS_DIR}/{doc_name}" |
|
|
|
return f'<iframe src="{file_url}" width="100%" height="600px"></iframe>' |
|
|
|
def search_documents(query): |
|
if not query: |
|
return [doc['file'] for doc in documents], "", [] |
|
|
|
query_vector = vectorizer.transform([query]) |
|
cosine_similarities = cosine_similarity(query_vector, tfidf_matrix).flatten() |
|
related_docs_indices = cosine_similarities.argsort()[::-1] |
|
|
|
results = [] |
|
relevant_text = "" |
|
relevant_pdfs = [] |
|
num_pages_per_doc = [len(doc['pages']) for doc in documents] |
|
cumulative_pages = [sum(num_pages_per_doc[:i+1]) for i in range(len(num_pages_per_doc))] |
|
|
|
for i in related_docs_indices: |
|
if cosine_similarities[i] > 0: |
|
doc_index = next(idx for idx, cumulative in enumerate(cumulative_pages) if i < cumulative) |
|
page_index = i if doc_index == 0 else i - cumulative_pages[doc_index-1] |
|
doc = documents[doc_index] |
|
results.append(doc['file']) |
|
page_content = doc['pages'][page_index] |
|
index = page_content.lower().find(query.lower()) |
|
if index != -1: |
|
start = max(0, index - 100) |
|
end = min(len(page_content), index + 100) |
|
relevant_text += f"Aus {doc['file']} (Seite {page_index + 1}):\n...{page_content[start:end]}...\n\n" |
|
relevant_pdfs.append((doc['file'], page_index)) |
|
|
|
return results, relevant_text, relevant_pdfs |
|
|
|
def update_display(doc_name): |
|
return display_document(doc_name) |
|
|
|
def search_and_update(query): |
|
results, rel_text, relevant_pdfs = search_documents(query) |
|
|
|
pdf_html = "" |
|
for pdf, page in relevant_pdfs: |
|
pdf_path = os.path.join(DOCS_DIR, pdf) |
|
|
|
if not os.path.exists(pdf_path): |
|
pdf_html += f"<p>Fehler: Datei nicht gefunden - {pdf_path}</p>" |
|
else: |
|
file_url = f"{DOCS_DIR}/{pdf}" |
|
pdf_html += f"<h3>{pdf} - Seite {page+1}</h3>" |
|
pdf_html += f'<iframe src="{file_url}#page={page+1}" width="100%" height="600px"></iframe>' |
|
|
|
return gr.Dropdown.update(choices=results), rel_text, pdf_html |
|
|
|
# Initialisieren der Gradio-Oberfläche |
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Dokumentensuche und -anzeige") |
|
|
|
query_input = gr.Textbox(label="Suchbegriff (leer lassen für alle Dokumente)") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
doc_dropdown = gr.Dropdown(choices=[doc['file'] for doc in documents], label="Dokumente") |
|
doc_display = gr.HTML(label="Dokumentvorschau") |
|
with gr.Column(scale=1): |
|
relevant_text = gr.Textbox(label="Relevanter Text", lines=10) |
|
pdf_display = gr.HTML() |
|
|
|
query_input.submit(search_and_update, inputs=[query_input], outputs=[doc_dropdown, relevant_text, pdf_display]) |
|
doc_dropdown.change(update_display, inputs=[doc_dropdown], outputs=[doc_display]) |
|
|
|
demo.launch() |
|
""" |