Spaces:
Sleeping
Sleeping
from huggingface_hub import InferenceClient, login | |
from transformers import AutoTokenizer | |
from langchain.chat_models import ChatOpenAI | |
import os, sys, json | |
import gradio as gr | |
from langchain.evaluation import load_evaluator | |
from pprint import pprint as print | |
import time | |
from langchain.chains import LLMChain, RetrievalQA | |
from langchain.chat_models import ChatOpenAI | |
from langchain.document_loaders import PyPDFLoader, WebBaseLoader, UnstructuredWordDocumentLoader, DirectoryLoader | |
from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader | |
from langchain.document_loaders.generic import GenericLoader | |
from langchain.document_loaders.parsers import OpenAIWhisperParser | |
from langchain.schema import AIMessage, HumanMessage | |
from langchain.embeddings import HuggingFaceInstructEmbeddings, HuggingFaceEmbeddings, HuggingFaceBgeEmbeddings, HuggingFaceInferenceAPIEmbeddings | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.vectorstores import Chroma | |
from chromadb.errors import InvalidDimensionException | |
from dotenv import load_dotenv, find_dotenv | |
_ = load_dotenv(find_dotenv()) | |
# access token with permission to access the model and PRO subscription | |
#HUGGINGFACEHUB_API_TOKEN = os.getenv("HF_ACCESS_READ") | |
login(token=os.environ["HF_ACCESS_READ"]) | |
OAI_API_KEY=os.getenv("OPENAI_API_KEY") | |
################################################# | |
#Prompt Zusätze | |
################################################# | |
template = """Antworte in deutsch, wenn es nicht explizit anders gefordert wird. Wenn du die Antwort nicht kennst, antworte einfach, dass du es nicht weißt. Versuche nicht, die Antwort zu erfinden oder aufzumocken. Halte die Antwort so kurz aber exakt.""" | |
llm_template = "Beantworte die Frage am Ende. " + template + "Frage: {question} Hilfreiche Antwort: " | |
rag_template = "Nutze die folgenden Kontext Teile, um die Frage zu beantworten am Ende. " + template + "{context} Frage: {question} Hilfreiche Antwort: " | |
################################################# | |
# Konstanten | |
#RAG: Pfad, wo Docs/Bilder/Filme abgelegt werden können - lokal, also hier im HF Space (sonst auf eigenem Rechner) | |
################################################# | |
PATH_WORK = "." | |
CHROMA_DIR = "/chroma" | |
YOUTUBE_DIR = "/youtube" | |
############################################### | |
#URLs zu Dokumenten oder andere Inhalte, die einbezogen werden sollen | |
PDF_URL = "https://arxiv.org/pdf/2303.08774.pdf" | |
WEB_URL = "https://openai.com/research/gpt-4" | |
YOUTUBE_URL_1 = "https://www.youtube.com/watch?v=--khbXchTeE" | |
YOUTUBE_URL_2 = "https://www.youtube.com/watch?v=hdhZwyf24mE" | |
#YOUTUBE_URL_3 = "https://www.youtube.com/watch?v=vw-KWfKwvTQ" | |
############################################### | |
#globale Variablen | |
############################################## | |
#nur bei ersten Anfrage splitten der Dokumente - um die Vektordatenbank entsprechend zu füllen | |
splittet = False | |
############################################## | |
# tokenizer for generating prompt | |
############################################## | |
print ("Tokenizer") | |
#tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-70b-chat-hf") | |
#tokenizer = AutoTokenizer.from_pretrained("TheBloke/Yi-34B-Chat-GGUF") | |
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1") | |
############################################## | |
# inference client | |
############################################## | |
print ("Inf.Client") | |
#client = InferenceClient("https://api-inference.huggingface.co/models/meta-llama/Llama-2-70b-chat-hf") | |
client = InferenceClient("https://ybdhvwle4ksrawzo.eu-west-1.aws.endpoints.huggingface.cloud") | |
#client = InferenceClient(model="TheBloke/Yi-34B-Chat-GGUF") | |
################################################# | |
################################################# | |
################################################# | |
#Funktionen zur Verarbeitung | |
################################################ | |
def add_text(history, text): | |
history = history + [(text, None)] | |
return history, gr.Textbox(value="", interactive=False) | |
def add_file(history, file): | |
history = history + [((file.name,), None)] | |
return history | |
################################################ | |
################################################ | |
# Für den Vektorstore... | |
# Funktion, um für einen best. File-typ ein directory-loader zu definieren | |
def create_directory_loader(file_type, directory_path): | |
#verschiedene Dokument loaders: | |
loaders = { | |
'.pdf': PyPDFLoader, | |
'.word': UnstructuredWordDocumentLoader, | |
} | |
return DirectoryLoader( | |
path=directory_path, | |
glob=f"**/*{file_type}", | |
loader_cls=loaders[file_type], | |
) | |
#die Inhalte splitten, um in Vektordatenbank entsprechend zu laden als Splits | |
def document_loading_splitting(): | |
global splittet | |
############################## | |
# Document loading | |
docs = [] | |
# kreiere einen DirectoryLoader für jeden file type | |
pdf_loader = create_directory_loader('.pdf', './chroma/pdf') | |
word_loader = create_directory_loader('.word', './chroma/word') | |
# Laden der files | |
pdf_documents = pdf_loader.load() | |
word_documents = word_loader.load() | |
#alle zusammen in docs (s.o.)... | |
docs.extend(pdf_documents) | |
docs.extend(word_documents) | |
#andere loader - für URLs zu Web, Video, PDF im Web... | |
# Load PDF | |
loader = PyPDFLoader(PDF_URL) | |
docs.extend(loader.load()) | |
# Load Web | |
loader = WebBaseLoader(WEB_URL) | |
docs.extend(loader.load()) | |
# Load YouTube | |
loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL_1,YOUTUBE_URL_2], PATH_WORK + YOUTUBE_DIR), OpenAIWhisperParser()) | |
docs.extend(loader.load()) | |
################################ | |
# Vektorstore Vorbereitung: Document splitting | |
text_splitter = RecursiveCharacterTextSplitter(chunk_overlap = 150, chunk_size = 1500) | |
splits = text_splitter.split_documents(docs) | |
#nur bei erster Anfrage mit "choma" wird gesplittet... | |
splittet = True | |
return splits | |
#Vektorstore anlegen... | |
#Chroma DB die splits ablegen - vektorisiert... | |
def document_storage_chroma(splits): | |
#OpenAi embeddings---------------------------------- | |
Chroma.from_documents(documents = splits, embedding = OpenAIEmbeddings(disallowed_special = ()), persist_directory = PATH_WORK + CHROMA_DIR) | |
#HF embeddings-------------------------------------- | |
#Chroma.from_documents(documents = splits, embedding = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False}), persist_directory = PATH_WORK + CHROMA_DIR) | |
#Vektorstore vorbereiten... | |
#dokumente in chroma db vektorisiert ablegen können - die Db vorbereiten daüfur | |
def document_retrieval_chroma(llm, prompt): | |
#OpenAI embeddings ------------------------------- | |
embeddings = OpenAIEmbeddings() | |
#HF embeddings ----------------------------------- | |
#Alternative Embedding - für Vektorstore, um Ähnlichkeitsvektoren zu erzeugen - die ...InstructEmbedding ist sehr rechenaufwendig | |
#embeddings = HuggingFaceInstructEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"}) | |
#etwas weniger rechenaufwendig: | |
#embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False}) | |
#ChromaDb um die embedings zu speichern | |
db = Chroma(embedding_function = embeddings, persist_directory = PATH_WORK + CHROMA_DIR) | |
return db | |
############################################### | |
#Langchain anlegen | |
#langchain nutzen, um prompt an LLM zu leiten - llm und prompt sind austauschbar | |
#prompt ohne RAG!!! | |
def llm_chain(prompt): | |
llm_template = "Beantworte die Frage am Ende. " + template + "Frage: " + prompt | |
return llm_template | |
#langchain nutzen, um prompt an llm zu leiten, aber vorher in der VektorDB suchen, um passende splits zum Prompt hinzuzufügen | |
#prompt mit RAG!!! | |
def rag_chain(prompt, db): | |
rag_template = "Nutze die folgenden Kontext Teile am Ende, um die Frage zu beantworten . " + template + "Frage: " + prompt + "Kontext Teile: " | |
retrieved_chunks = db.query(prompt, k=3) #3 passende chunks zum Prompt hinzufügen | |
neu_prompt = rag_template | |
for i, chunk in enumerate(retrieved_chunks): | |
neu_prompt += f"{i+1}. {chunk}\n" | |
return neu_prompt | |
################################################### | |
#Prompts mit History erzeugen für verschiednee Modelle | |
################################################### | |
#Funktion, die einen Prompt mit der history zusammen erzeugt - allgemein | |
def generate_prompt_with_history(text, history, max_length=4048): | |
#prompt = "The following is a conversation between a human and an AI assistant named Baize (named after a mythical creature in Chinese folklore). Baize is an open-source AI assistant developed by UCSD and Sun Yat-Sen University. The human and the AI assistant take turns chatting. Human statements start with [|Human|] and AI assistant statements start with [|AI|]. The AI assistant always provides responses in as much detail as possible, and in Markdown format. The AI assistant always declines to engage with topics, questions and instructions related to unethical, controversial, or sensitive issues. Complete the transcript in exactly that format.\n[|Human|]Hello!\n[|AI|]Hi!" | |
#prompt = "Das folgende ist eine Unterhaltung in deutsch zwischen einem Menschen und einem KI-Assistenten, der Baize genannt wird. Baize ist ein open-source KI-Assistent, der von UCSD entwickelt wurde. Der Mensch und der KI-Assistent chatten abwechselnd miteinander in deutsch. Die Antworten des KI Assistenten sind immer so ausführlich wie möglich und in Markdown Schreibweise und in deutscher Sprache. Wenn nötig übersetzt er sie ins Deutsche. Die Antworten des KI-Assistenten vermeiden Themen und Antworten zu unethischen, kontroversen oder sensiblen Themen. Die Antworten sind immer sehr höflich formuliert..\n[|Human|]Hallo!\n[|AI|]Hi!" | |
prompt="" | |
history = ["\n{}\n{}".format(x[0],x[1]) for x in history] | |
history.append("\n{}\n".format(text)) | |
history_text = "" | |
flag = False | |
for x in history[::-1]: | |
history_text = x + history_text | |
flag = True | |
print ("Prompt: ..........................") | |
print(prompt+history_text) | |
if flag: | |
return prompt+history_text | |
else: | |
return None | |
#Prompt und History für OPenAi Schnittstelle | |
def generate_prompt_with_history_openai(prompt, history): | |
history_openai_format = [] | |
for human, assistant in history: | |
history_openai_format.append({"role": "user", "content": human }) | |
history_openai_format.append({"role": "assistant", "content":assistant}) | |
history_openai_format.append({"role": "user", "content": prompt}) | |
return history_openai_format | |
############################################## | |
############################################## | |
############################################## | |
# generate function | |
############################################## | |
def generate(text, history, rag_option, model_option, temperature=0.5, max_new_tokens=4048, top_p=0.6, repetition_penalty=1.3): | |
#mit RAG | |
#später entsprechend mit Vektorstore... | |
#context="Nuremberg is the second-largest city of the German state of Bavaria after its capital Munich, and its 541,000 inhabitants make it the 14th-largest city in Germany. On the Pegnitz River (from its confluence with the Rednitz in Fürth onwards: Regnitz, a tributary of the River Main) and the Rhine–Main–Danube Canal, it lies in the Bavarian administrative region of Middle Franconia, and is the largest city and the unofficial capital of Franconia. Nuremberg forms with the neighbouring cities of Fürth, Erlangen and Schwabach a continuous conurbation with a total population of 812,248 (2022), which is the heart of the urban area region with around 1.4 million inhabitants,[4] while the larger Nuremberg Metropolitan Region has approximately 3.6 million inhabitants. The city lies about 170 kilometres (110 mi) north of Munich. It is the largest city in the East Franconian dialect area." | |
#prompt = f"""Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. | |
#{context} Question: {text}""" | |
try: | |
#muss nur einmal ausgeführt werden... | |
if not splittet: | |
splits = document_loading_splitting() | |
document_storage_chroma(splits) | |
db = document_retrieval_chroma(llm, history_text_und_prompt) | |
#result = rag_chain(llm, history_text_und_prompt, db) | |
#mit RAG: | |
neu_text_mit_chunks = rag_chain(text, db) | |
prompt = generate_prompt_with_history_openai(neu_text_mit_chunks, history) | |
#zusammengesetzte Anfrage an Modell... | |
#payload = tokenizer.apply_chat_template([{"role":"user","content":prompt}],tokenize=False) | |
payload = tokenizer.apply_chat_template(prompt,tokenize=False) | |
result = client.text_generation( | |
payload, | |
do_sample=True, | |
return_full_text=False, | |
max_new_tokens=2048, | |
top_p=0.9, | |
temperature=0.6, | |
) | |
except Exception as e: | |
raise gr.Error(e) | |
#Antwort als Stream ausgeben... | |
for i in range(len(result)): | |
time.sleep(0.05) | |
yield result[: i+1] | |
#zum Evaluieren: | |
# custom eli5 criteria | |
custom_criterion = {"eli5": "Is the output explained in a way that a 5 yeard old would unterstand it?"} | |
eval_result = evaluator.evaluate_strings(prediction=res.strip(), input=text, criteria=custom_criterion, requires_reference=True) | |
print ("eval_result:............ ") | |
print(eval_result) | |
return res.strip() | |
######################################## | |
#Evaluation | |
######################################## | |
evaluation_llm = ChatOpenAI(model="gpt-4") | |
# create evaluator | |
evaluator = load_evaluator("criteria", criteria="conciseness", llm=evaluation_llm) | |
################################################ | |
#GUI | |
############################################### | |
#Beschreibung oben in GUI | |
################################################ | |
print ("Start GUI") | |
description = """<strong>Information:</strong> Hier wird ein <strong>Large Language Model (LLM)</strong> mit | |
<strong>Retrieval Augmented Generation (RAG)</strong> auf <strong>externen Daten</strong> verwendet.\n\n | |
""" | |
css = """.toast-wrap { display: none !important } """ | |
examples=[['Was ist ChtGPT-4?'],['schreibe ein Python Programm, dass die GPT-4 API aufruft.']] | |
additional_inputs = [ | |
gr.Radio(["Aus", "An"], label="RAG - LI Erweiterungen", value = "Aus"), | |
gr.Radio(["OpenAI", "HuggingFace"], label="Modellauswahl", value = "HuggingFace"), | |
gr.Slider(label="Temperature", value=0.65, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Höhere Werte erzeugen diversere Antworten", visible=True), | |
gr.Slider(label="Max new tokens", value=1024, minimum=0, maximum=4096, step=64, interactive=True, info="Maximale Anzahl neuer Tokens", visible=True), | |
gr.Slider(label="Top-p (nucleus sampling)", value=0.6, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Höhere Werte verwenden auch Tokens mit niedrigerer Wahrscheinlichkeit.", visible=True), | |
gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Strafe für wiederholte Tokens", visible=True) | |
] | |
chatbot_stream = gr.Chatbot() | |
chat_interface_stream = gr.ChatInterface(fn=generate, | |
additional_inputs = additional_inputs, | |
title = "ChatGPT vom LI", | |
theme="soft", | |
chatbot=chatbot_stream, | |
retry_btn="🔄 Wiederholen", | |
undo_btn="↩️ Letztes löschen", | |
clear_btn="🗑️ Verlauf löschen", | |
submit_btn = "Abschicken", | |
description = description) | |
with gr.Blocks() as demo: | |
with gr.Tab("Chatbot"): | |
chatbot_stream.like(vote, None, None) | |
chat_interface_stream.queue().launch() | |