alexkueck commited on
Commit
fd8594f
1 Parent(s): 16b7808

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -171,10 +171,10 @@ def document_loading_splitting():
171
  #Chroma DB die splits ablegen - vektorisiert...
172
  def document_storage_chroma(splits):
173
  #OpenAi embediings
174
- #Chroma.from_documents(documents = splits, embedding = OpenAIEmbeddings(disallowed_special = ()), persist_directory = PATH_WORK + CHROMA_DIR)
175
 
176
  #HF embeddings
177
- Chroma.from_documents(documents = splits, embedding = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False}), persist_directory = PATH_WORK + CHROMA_DIR)
178
 
179
  #Mongo DB die splits ablegen - vektorisiert...
180
  def document_storage_mongodb(splits):
@@ -185,11 +185,11 @@ def document_storage_mongodb(splits):
185
 
186
  #dokumente in chroma db vektorisiert ablegen können - die Db vorbereiten daüfur
187
  def document_retrieval_chroma(llm, prompt):
188
- #embeddings = OpenAIEmbeddings()
189
  #Alternative Embedding - für Vektorstore, um Ähnlichkeitsvektoren zu erzeugen - die ...InstructEmbedding ist sehr rechenaufwendig
190
  #embeddings = HuggingFaceInstructEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"})
191
  #etwas weniger rechenaufwendig:
192
- embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False})
193
 
194
  #ChromaDb für OpenAI embedinngs
195
  db = Chroma(embedding_function = embeddings, persist_directory = PATH_WORK + CHROMA_DIR)
 
171
  #Chroma DB die splits ablegen - vektorisiert...
172
  def document_storage_chroma(splits):
173
  #OpenAi embediings
174
+ Chroma.from_documents(documents = splits, embedding = OpenAIEmbeddings(disallowed_special = ()), persist_directory = PATH_WORK + CHROMA_DIR)
175
 
176
  #HF embeddings
177
+ #Chroma.from_documents(documents = splits, embedding = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False}), persist_directory = PATH_WORK + CHROMA_DIR)
178
 
179
  #Mongo DB die splits ablegen - vektorisiert...
180
  def document_storage_mongodb(splits):
 
185
 
186
  #dokumente in chroma db vektorisiert ablegen können - die Db vorbereiten daüfur
187
  def document_retrieval_chroma(llm, prompt):
188
+ embeddings = OpenAIEmbeddings()
189
  #Alternative Embedding - für Vektorstore, um Ähnlichkeitsvektoren zu erzeugen - die ...InstructEmbedding ist sehr rechenaufwendig
190
  #embeddings = HuggingFaceInstructEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"})
191
  #etwas weniger rechenaufwendig:
192
+ #embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False})
193
 
194
  #ChromaDb für OpenAI embedinngs
195
  db = Chroma(embedding_function = embeddings, persist_directory = PATH_WORK + CHROMA_DIR)