Update app.py
Browse files
app.py
CHANGED
@@ -498,7 +498,7 @@ def generate_text (prompt, chatbot, history, rag_option, model_option, openai_ap
|
|
498 |
print("HF Anfrage.......................")
|
499 |
model_kwargs={"temperature": 0.5, "max_length": 512, "num_return_sequences": 1, "top_k": top_k, "top_p": top_p, "repetition_penalty": repetition_penalty}
|
500 |
llm = HuggingFaceHub(repo_id=repo_id, model_kwargs=model_kwargs)
|
501 |
-
|
502 |
#llm = HuggingFaceHub(url_??? = "https://wdgsjd6zf201mufn.us-east-1.aws.endpoints.huggingface.cloud", model_kwargs={"temperature": 0.5, "max_length": 64})
|
503 |
#llm = HuggingFaceTextGenInference( inference_server_url="http://localhost:8010/", max_new_tokens=max_new_tokens,top_k=10,top_p=top_p,typical_p=0.95,temperature=temperature,repetition_penalty=repetition_penalty,)
|
504 |
#llm via HuggingChat
|
@@ -522,9 +522,10 @@ def generate_text (prompt, chatbot, history, rag_option, model_option, openai_ap
|
|
522 |
else:
|
523 |
#splittet = False
|
524 |
print("LLM aufrufen ohne RAG: ...........")
|
525 |
-
|
526 |
-
|
527 |
#Alternativ mit API_URL - aber das model braucht 93 B Space!!!
|
|
|
528 |
data = {
|
529 |
"inputs": prompt,
|
530 |
"parameters": {"temperature": 0.2, "max_length": 64},
|
@@ -538,7 +539,7 @@ def generate_text (prompt, chatbot, history, rag_option, model_option, openai_ap
|
|
538 |
print("Fehler:", response.text)
|
539 |
result = response.json()
|
540 |
|
541 |
-
|
542 |
chatbot_response = result[0]['generated_text']
|
543 |
print("anzahl tokens gesamt antwort:------------------")
|
544 |
print (len(chatbot_response.split()))
|
|
|
498 |
print("HF Anfrage.......................")
|
499 |
model_kwargs={"temperature": 0.5, "max_length": 512, "num_return_sequences": 1, "top_k": top_k, "top_p": top_p, "repetition_penalty": repetition_penalty}
|
500 |
llm = HuggingFaceHub(repo_id=repo_id, model_kwargs=model_kwargs)
|
501 |
+
llm = HuggingFaceChain(model=MODEL_NAME_HF, model_kwargs={"temperature": 0.5, "max_length": 128})
|
502 |
#llm = HuggingFaceHub(url_??? = "https://wdgsjd6zf201mufn.us-east-1.aws.endpoints.huggingface.cloud", model_kwargs={"temperature": 0.5, "max_length": 64})
|
503 |
#llm = HuggingFaceTextGenInference( inference_server_url="http://localhost:8010/", max_new_tokens=max_new_tokens,top_k=10,top_p=top_p,typical_p=0.95,temperature=temperature,repetition_penalty=repetition_penalty,)
|
504 |
#llm via HuggingChat
|
|
|
522 |
else:
|
523 |
#splittet = False
|
524 |
print("LLM aufrufen ohne RAG: ...........")
|
525 |
+
resulti = llm_chain(llm, history_text_und_prompt)
|
526 |
+
result = resulti.strip()
|
527 |
#Alternativ mit API_URL - aber das model braucht 93 B Space!!!
|
528 |
+
"""
|
529 |
data = {
|
530 |
"inputs": prompt,
|
531 |
"parameters": {"temperature": 0.2, "max_length": 64},
|
|
|
539 |
print("Fehler:", response.text)
|
540 |
result = response.json()
|
541 |
|
542 |
+
|
543 |
chatbot_response = result[0]['generated_text']
|
544 |
print("anzahl tokens gesamt antwort:------------------")
|
545 |
print (len(chatbot_response.split()))
|