Update app.py
Browse files
app.py
CHANGED
@@ -507,12 +507,13 @@ def generate_text (prompt, chatbot, history, rag_option, model_option, openai_ap
|
|
507 |
###########################
|
508 |
if (model_option == "OpenAI"):
|
509 |
#Anfrage an OpenAI ----------------------------
|
510 |
-
print("OpenAI
|
511 |
llm = ChatOpenAI(model_name = MODEL_NAME, openai_api_key = openai_api_key, temperature=temperature)#, top_p = top_p)
|
512 |
#Prompt an history anhängen und einen Text daraus machen
|
513 |
history_text_und_prompt = generate_prompt_with_history_openai(prompt, history)
|
514 |
else:
|
515 |
#oder an Hugging Face --------------------------
|
|
|
516 |
llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature": 0.5, "max_length": 128})
|
517 |
#llm = HuggingFaceChain(model=MODEL_NAME_HF, model_kwargs={"temperature": 0.5, "max_length": 128})
|
518 |
#llm = HuggingFaceHub(url_??? = "https://wdgsjd6zf201mufn.us-east-1.aws.endpoints.huggingface.cloud", model_kwargs={"temperature": 0.5, "max_length": 64})
|
@@ -523,6 +524,7 @@ def generate_text (prompt, chatbot, history, rag_option, model_option, openai_ap
|
|
523 |
|
524 |
#zusätzliche Dokumenten Splits aus DB zum Prompt hinzufügen (aus VektorDB - Chroma oder Mongo DB)
|
525 |
if (rag_option == "An"):
|
|
|
526 |
#muss nur einmal ausgeführt werden...
|
527 |
if not splittet:
|
528 |
splits = document_loading_splitting()
|
@@ -530,11 +532,11 @@ def generate_text (prompt, chatbot, history, rag_option, model_option, openai_ap
|
|
530 |
db = document_retrieval_chroma(llm, history_text_und_prompt)
|
531 |
print("LLM aufrufen mit RAG: ...........")
|
532 |
result = rag_chain(llm, history_text_und_prompt, db)
|
533 |
-
elif (rag_option == "MongoDB"):
|
534 |
#splits = document_loading_splitting()
|
535 |
#document_storage_mongodb(splits)
|
536 |
-
db = document_retrieval_mongodb(llm, history_text_und_prompt)
|
537 |
-
result = rag_chain(llm, history_text_und_prompt, db)
|
538 |
else:
|
539 |
print("LLM aufrufen ohne RAG: ...........")
|
540 |
result = llm_chain(llm, history_text_und_prompt)
|
|
|
507 |
###########################
|
508 |
if (model_option == "OpenAI"):
|
509 |
#Anfrage an OpenAI ----------------------------
|
510 |
+
print("OpenAI Anfrage.......................")
|
511 |
llm = ChatOpenAI(model_name = MODEL_NAME, openai_api_key = openai_api_key, temperature=temperature)#, top_p = top_p)
|
512 |
#Prompt an history anhängen und einen Text daraus machen
|
513 |
history_text_und_prompt = generate_prompt_with_history_openai(prompt, history)
|
514 |
else:
|
515 |
#oder an Hugging Face --------------------------
|
516 |
+
print("HF Anfrage.......................")
|
517 |
llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature": 0.5, "max_length": 128})
|
518 |
#llm = HuggingFaceChain(model=MODEL_NAME_HF, model_kwargs={"temperature": 0.5, "max_length": 128})
|
519 |
#llm = HuggingFaceHub(url_??? = "https://wdgsjd6zf201mufn.us-east-1.aws.endpoints.huggingface.cloud", model_kwargs={"temperature": 0.5, "max_length": 64})
|
|
|
524 |
|
525 |
#zusätzliche Dokumenten Splits aus DB zum Prompt hinzufügen (aus VektorDB - Chroma oder Mongo DB)
|
526 |
if (rag_option == "An"):
|
527 |
+
print("RAG aktiviert.......................")
|
528 |
#muss nur einmal ausgeführt werden...
|
529 |
if not splittet:
|
530 |
splits = document_loading_splitting()
|
|
|
532 |
db = document_retrieval_chroma(llm, history_text_und_prompt)
|
533 |
print("LLM aufrufen mit RAG: ...........")
|
534 |
result = rag_chain(llm, history_text_und_prompt, db)
|
535 |
+
#elif (rag_option == "MongoDB"):
|
536 |
#splits = document_loading_splitting()
|
537 |
#document_storage_mongodb(splits)
|
538 |
+
#db = document_retrieval_mongodb(llm, history_text_und_prompt)
|
539 |
+
#result = rag_chain(llm, history_text_und_prompt, db)
|
540 |
else:
|
541 |
print("LLM aufrufen ohne RAG: ...........")
|
542 |
result = llm_chain(llm, history_text_und_prompt)
|