Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -103,7 +103,10 @@ repo_id = "HuggingFaceH4/zephyr-7b-alpha" #das Modell ist echt gut!!! Vom MIT
|
|
103 |
MODEL_NAME_HF = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
104 |
MODEL_NAME_OAI_ZEICHNEN = "dall-e-3"
|
105 |
#Alternativ zeichnen: Stabe Diffusion from HF:
|
|
|
106 |
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-2-1"
|
|
|
|
|
107 |
|
108 |
################################################
|
109 |
#HF Hub Zugriff ermöglichen
|
@@ -435,10 +438,11 @@ def generate_text (prompt, chatbot, history, rag_option, model_option, openai_ap
|
|
435 |
#oder an Hugging Face --------------------------
|
436 |
print("HF Anfrage.......................")
|
437 |
model_kwargs={"temperature": 0.5, "max_length": 512, "num_return_sequences": 1, "top_k": top_k, "top_p": top_p, "repetition_penalty": repetition_penalty}
|
438 |
-
llm = HuggingFaceHub(repo_id=repo_id, model_kwargs=model_kwargs)
|
439 |
#llm = HuggingFaceChain(model=MODEL_NAME_HF, model_kwargs={"temperature": 0.5, "max_length": 128})
|
440 |
#llm = HuggingFaceHub(url_??? = "https://wdgsjd6zf201mufn.us-east-1.aws.endpoints.huggingface.cloud", model_kwargs={"temperature": 0.5, "max_length": 64})
|
441 |
#llm = HuggingFaceTextGenInference( inference_server_url="http://localhost:8010/", max_new_tokens=max_new_tokens,top_k=10,top_p=top_p,typical_p=0.95,temperature=temperature,repetition_penalty=repetition_penalty,)
|
|
|
442 |
print("HF")
|
443 |
#Prompt an history anhängen und einen Text daraus machen
|
444 |
history_text_und_prompt = generate_prompt_with_history(prompt, history)
|
@@ -453,10 +457,18 @@ def generate_text (prompt, chatbot, history, rag_option, model_option, openai_ap
|
|
453 |
#db = document_retrieval_mongodb(llm, history_text_und_prompt)
|
454 |
#result = rag_chain(llm, history_text_und_prompt, db)
|
455 |
else:
|
456 |
-
splittet = False
|
457 |
print("LLM aufrufen ohne RAG: ...........")
|
458 |
-
|
459 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
460 |
|
461 |
#Wenn keine Antwort möglich "Ich weiß es nicht" etc., dann versuchen mit Suche im Internet.
|
462 |
if (result == None or is_response_similar(result)):
|
|
|
103 |
MODEL_NAME_HF = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
104 |
MODEL_NAME_OAI_ZEICHNEN = "dall-e-3"
|
105 |
#Alternativ zeichnen: Stabe Diffusion from HF:
|
106 |
+
#Zeichnen
|
107 |
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-2-1"
|
108 |
+
#Textgenerierung
|
109 |
+
API_URL_TEXT = "https://api-inference.huggingface.co/models/argilla/notux-8x7b-v1"
|
110 |
|
111 |
################################################
|
112 |
#HF Hub Zugriff ermöglichen
|
|
|
438 |
#oder an Hugging Face --------------------------
|
439 |
print("HF Anfrage.......................")
|
440 |
model_kwargs={"temperature": 0.5, "max_length": 512, "num_return_sequences": 1, "top_k": top_k, "top_p": top_p, "repetition_penalty": repetition_penalty}
|
441 |
+
#llm = HuggingFaceHub(repo_id=repo_id, model_kwargs=model_kwargs)
|
442 |
#llm = HuggingFaceChain(model=MODEL_NAME_HF, model_kwargs={"temperature": 0.5, "max_length": 128})
|
443 |
#llm = HuggingFaceHub(url_??? = "https://wdgsjd6zf201mufn.us-east-1.aws.endpoints.huggingface.cloud", model_kwargs={"temperature": 0.5, "max_length": 64})
|
444 |
#llm = HuggingFaceTextGenInference( inference_server_url="http://localhost:8010/", max_new_tokens=max_new_tokens,top_k=10,top_p=top_p,typical_p=0.95,temperature=temperature,repetition_penalty=repetition_penalty,)
|
445 |
+
|
446 |
print("HF")
|
447 |
#Prompt an history anhängen und einen Text daraus machen
|
448 |
history_text_und_prompt = generate_prompt_with_history(prompt, history)
|
|
|
457 |
#db = document_retrieval_mongodb(llm, history_text_und_prompt)
|
458 |
#result = rag_chain(llm, history_text_und_prompt, db)
|
459 |
else:
|
460 |
+
#splittet = False
|
461 |
print("LLM aufrufen ohne RAG: ...........")
|
462 |
+
if (model_option == "OpenAI"):
|
463 |
+
resulti = llm_chain(llm, history_text_und_prompt)
|
464 |
+
result = resulti.strip()
|
465 |
+
else:
|
466 |
+
data = {"inputs": prompt}
|
467 |
+
response = requests.post(API_URL, headers=HEADERS, json=data)
|
468 |
+
result = response.json()
|
469 |
+
print("result. HF API.....................")
|
470 |
+
print(result)
|
471 |
+
|
472 |
|
473 |
#Wenn keine Antwort möglich "Ich weiß es nicht" etc., dann versuchen mit Suche im Internet.
|
474 |
if (result == None or is_response_similar(result)):
|