alexkueck commited on
Commit
f7ac717
1 Parent(s): ce5bde8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -4
app.py CHANGED
@@ -103,7 +103,10 @@ repo_id = "HuggingFaceH4/zephyr-7b-alpha" #das Modell ist echt gut!!! Vom MIT
103
  MODEL_NAME_HF = "mistralai/Mixtral-8x7B-Instruct-v0.1"
104
  MODEL_NAME_OAI_ZEICHNEN = "dall-e-3"
105
  #Alternativ zeichnen: Stabe Diffusion from HF:
 
106
  API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-2-1"
 
 
107
 
108
  ################################################
109
  #HF Hub Zugriff ermöglichen
@@ -435,10 +438,11 @@ def generate_text (prompt, chatbot, history, rag_option, model_option, openai_ap
435
  #oder an Hugging Face --------------------------
436
  print("HF Anfrage.......................")
437
  model_kwargs={"temperature": 0.5, "max_length": 512, "num_return_sequences": 1, "top_k": top_k, "top_p": top_p, "repetition_penalty": repetition_penalty}
438
- llm = HuggingFaceHub(repo_id=repo_id, model_kwargs=model_kwargs)
439
  #llm = HuggingFaceChain(model=MODEL_NAME_HF, model_kwargs={"temperature": 0.5, "max_length": 128})
440
  #llm = HuggingFaceHub(url_??? = "https://wdgsjd6zf201mufn.us-east-1.aws.endpoints.huggingface.cloud", model_kwargs={"temperature": 0.5, "max_length": 64})
441
  #llm = HuggingFaceTextGenInference( inference_server_url="http://localhost:8010/", max_new_tokens=max_new_tokens,top_k=10,top_p=top_p,typical_p=0.95,temperature=temperature,repetition_penalty=repetition_penalty,)
 
442
  print("HF")
443
  #Prompt an history anhängen und einen Text daraus machen
444
  history_text_und_prompt = generate_prompt_with_history(prompt, history)
@@ -453,10 +457,18 @@ def generate_text (prompt, chatbot, history, rag_option, model_option, openai_ap
453
  #db = document_retrieval_mongodb(llm, history_text_und_prompt)
454
  #result = rag_chain(llm, history_text_und_prompt, db)
455
  else:
456
- splittet = False
457
  print("LLM aufrufen ohne RAG: ...........")
458
- resulti = llm_chain(llm, history_text_und_prompt)
459
- result = resulti.strip()
 
 
 
 
 
 
 
 
460
 
461
  #Wenn keine Antwort möglich "Ich weiß es nicht" etc., dann versuchen mit Suche im Internet.
462
  if (result == None or is_response_similar(result)):
 
103
  MODEL_NAME_HF = "mistralai/Mixtral-8x7B-Instruct-v0.1"
104
  MODEL_NAME_OAI_ZEICHNEN = "dall-e-3"
105
  #Alternativ zeichnen: Stabe Diffusion from HF:
106
+ #Zeichnen
107
  API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-2-1"
108
+ #Textgenerierung
109
+ API_URL_TEXT = "https://api-inference.huggingface.co/models/argilla/notux-8x7b-v1"
110
 
111
  ################################################
112
  #HF Hub Zugriff ermöglichen
 
438
  #oder an Hugging Face --------------------------
439
  print("HF Anfrage.......................")
440
  model_kwargs={"temperature": 0.5, "max_length": 512, "num_return_sequences": 1, "top_k": top_k, "top_p": top_p, "repetition_penalty": repetition_penalty}
441
+ #llm = HuggingFaceHub(repo_id=repo_id, model_kwargs=model_kwargs)
442
  #llm = HuggingFaceChain(model=MODEL_NAME_HF, model_kwargs={"temperature": 0.5, "max_length": 128})
443
  #llm = HuggingFaceHub(url_??? = "https://wdgsjd6zf201mufn.us-east-1.aws.endpoints.huggingface.cloud", model_kwargs={"temperature": 0.5, "max_length": 64})
444
  #llm = HuggingFaceTextGenInference( inference_server_url="http://localhost:8010/", max_new_tokens=max_new_tokens,top_k=10,top_p=top_p,typical_p=0.95,temperature=temperature,repetition_penalty=repetition_penalty,)
445
+
446
  print("HF")
447
  #Prompt an history anhängen und einen Text daraus machen
448
  history_text_und_prompt = generate_prompt_with_history(prompt, history)
 
457
  #db = document_retrieval_mongodb(llm, history_text_und_prompt)
458
  #result = rag_chain(llm, history_text_und_prompt, db)
459
  else:
460
+ #splittet = False
461
  print("LLM aufrufen ohne RAG: ...........")
462
+ if (model_option == "OpenAI"):
463
+ resulti = llm_chain(llm, history_text_und_prompt)
464
+ result = resulti.strip()
465
+ else:
466
+ data = {"inputs": prompt}
467
+ response = requests.post(API_URL, headers=HEADERS, json=data)
468
+ result = response.json()
469
+ print("result. HF API.....................")
470
+ print(result)
471
+
472
 
473
  #Wenn keine Antwort möglich "Ich weiß es nicht" etc., dann versuchen mit Suche im Internet.
474
  if (result == None or is_response_similar(result)):