Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -135,7 +135,7 @@ os.environ["HUGGINGFACEHUB_API_TOKEN"] = HUGGINGFACEHUB_API_TOKEN
|
|
135 |
##############################################
|
136 |
#wenn löschen Button geklickt
|
137 |
def clear_all():
|
138 |
-
return None, gr.Image(visible=False)
|
139 |
|
140 |
##############################################
|
141 |
#History - die Frage oder das File eintragen...
|
@@ -561,9 +561,9 @@ def generate_text (prompt, chatbot, history, rag_option, model_option, openai_ap
|
|
561 |
llm = ChatOpenAI(model_name = MODEL_NAME, openai_api_key = openai_api_key, temperature=temperature)#, top_p = top_p)
|
562 |
#Prompt an history anhängen und einen Text daraus machen
|
563 |
if (rag_option == "An"):
|
564 |
-
history_text_und_prompt = generate_prompt_with_history(prompt,
|
565 |
else:
|
566 |
-
history_text_und_prompt = generate_prompt_with_history_openai(prompt,
|
567 |
else:
|
568 |
#oder an Hugging Face --------------------------
|
569 |
print("HF Anfrage.......................")
|
@@ -573,7 +573,7 @@ def generate_text (prompt, chatbot, history, rag_option, model_option, openai_ap
|
|
573 |
#llm = HuggingFaceTextGenInference( inference_server_url="http://localhost:8010/", max_new_tokens=max_new_tokens,top_k=10,top_p=top_p,typical_p=0.95,temperature=temperature,repetition_penalty=repetition_penalty,)
|
574 |
print("HF")
|
575 |
#Prompt an history anhängen und einen Text daraus machen
|
576 |
-
history_text_und_prompt = generate_prompt_with_history(prompt,
|
577 |
|
578 |
#zusätzliche Dokumenten Splits aus DB zum Prompt hinzufügen (aus VektorDB - Chroma oder Mongo DB)
|
579 |
if (rag_option == "An"):
|
@@ -781,7 +781,7 @@ with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
|
|
781 |
predict_event1 = user_input.submit(**transfer_input_args, queue=False,).then(**predict_args)
|
782 |
predict_event2 = submitBtn.click(**transfer_input_args, queue=False,).then(**predict_args)
|
783 |
predict_event3 = upload.upload(file_anzeigen, [upload], [image_display, image_display, attached_file] ) #.then(**predict_args)
|
784 |
-
emptyBtn.click(clear_all, [], [attached_file, image_display])
|
785 |
image_display.select(file_loeschen, [], [attached_file, image_display])
|
786 |
|
787 |
#Berechnung oder Ausgabe anhalten (kann danach fortgesetzt werden)
|
|
|
135 |
##############################################
|
136 |
#wenn löschen Button geklickt
|
137 |
def clear_all():
|
138 |
+
return None, gr.Image(visible=False), []
|
139 |
|
140 |
##############################################
|
141 |
#History - die Frage oder das File eintragen...
|
|
|
561 |
llm = ChatOpenAI(model_name = MODEL_NAME, openai_api_key = openai_api_key, temperature=temperature)#, top_p = top_p)
|
562 |
#Prompt an history anhängen und einen Text daraus machen
|
563 |
if (rag_option == "An"):
|
564 |
+
history_text_und_prompt = generate_prompt_with_history(prompt, chatbot)
|
565 |
else:
|
566 |
+
history_text_und_prompt = generate_prompt_with_history_openai(prompt, chatbot)
|
567 |
else:
|
568 |
#oder an Hugging Face --------------------------
|
569 |
print("HF Anfrage.......................")
|
|
|
573 |
#llm = HuggingFaceTextGenInference( inference_server_url="http://localhost:8010/", max_new_tokens=max_new_tokens,top_k=10,top_p=top_p,typical_p=0.95,temperature=temperature,repetition_penalty=repetition_penalty,)
|
574 |
print("HF")
|
575 |
#Prompt an history anhängen und einen Text daraus machen
|
576 |
+
history_text_und_prompt = generate_prompt_with_history(prompt, chatbot)
|
577 |
|
578 |
#zusätzliche Dokumenten Splits aus DB zum Prompt hinzufügen (aus VektorDB - Chroma oder Mongo DB)
|
579 |
if (rag_option == "An"):
|
|
|
781 |
predict_event1 = user_input.submit(**transfer_input_args, queue=False,).then(**predict_args)
|
782 |
predict_event2 = submitBtn.click(**transfer_input_args, queue=False,).then(**predict_args)
|
783 |
predict_event3 = upload.upload(file_anzeigen, [upload], [image_display, image_display, attached_file] ) #.then(**predict_args)
|
784 |
+
emptyBtn.click(clear_all, [], [attached_file, image_display, history])
|
785 |
image_display.select(file_loeschen, [], [attached_file, image_display])
|
786 |
|
787 |
#Berechnung oder Ausgabe anhalten (kann danach fortgesetzt werden)
|