Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -20,6 +20,8 @@ from langchain.prompts import PromptTemplate
|
|
20 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
21 |
from langchain.vectorstores import Chroma
|
22 |
from chromadb.errors import InvalidDimensionException
|
|
|
|
|
23 |
|
24 |
#from langchain.vectorstores import MongoDBAtlasVectorSearch
|
25 |
#from pymongo import MongoClient
|
@@ -117,15 +119,28 @@ os.environ["HUGGINGFACEHUB_API_TOKEN"] = HUGGINGFACEHUB_API_TOKEN
|
|
117 |
#################################################
|
118 |
#Funktionen zur Verarbeitung
|
119 |
################################################
|
120 |
-
def add_text(history, text):
|
121 |
-
history = history + [(text, None)]
|
122 |
-
return history, gr.Textbox(value="", interactive=False)
|
123 |
-
|
124 |
-
|
125 |
-
def add_file(history, file):
|
126 |
-
history = history + [((file.name,), None)]
|
127 |
-
return history
|
128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
# Funktion, um für einen best. File-typ ein directory-loader zu definieren
|
130 |
def create_directory_loader(file_type, directory_path):
|
131 |
#verscheidene Dokument loaders:
|
@@ -300,8 +315,8 @@ def chatbot_response(messages):
|
|
300 |
print("Bild.............................")
|
301 |
return responses
|
302 |
|
303 |
-
|
304 |
-
def invoke (prompt, history, rag_option, model_option, openai_api_key,
|
305 |
global splittet
|
306 |
print(splittet)
|
307 |
#Prompt an history anhängen und einen Text daraus machen
|
@@ -361,10 +376,26 @@ def invoke (prompt, history, rag_option, model_option, openai_api_key, temperat
|
|
361 |
except Exception as e:
|
362 |
raise gr.Error(e)
|
363 |
|
|
|
364 |
#Antwort als Stream ausgeben...
|
365 |
for i in range(len(result)):
|
366 |
time.sleep(0.05)
|
367 |
yield result[: i+1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
368 |
|
369 |
################################################
|
370 |
#GUI
|
@@ -375,21 +406,137 @@ def invoke (prompt, history, rag_option, model_option, openai_api_key, temperat
|
|
375 |
description = """<strong>Information:</strong> Hier wird ein <strong>Large Language Model (LLM)</strong> mit
|
376 |
<strong>Retrieval Augmented Generation (RAG)</strong> auf <strong>externen Daten</strong> verwendet.\n\n
|
377 |
"""
|
378 |
-
css = """.toast-wrap { display: none !important } """
|
379 |
-
examples=[['Was ist ChtGPT-4?'],['schreibe ein Python Programm, dass die GPT-4 API aufruft.']]
|
380 |
|
381 |
def vote(data: gr.LikeData):
|
382 |
if data.liked: print("You upvoted this response: " + data.value)
|
383 |
else: print("You downvoted this response: " + data.value)
|
384 |
|
385 |
-
def read_image(image, size=512):
|
386 |
-
return np.array(Image.fromarray(image).resize((size, size)))
|
387 |
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
392 |
|
|
|
|
|
|
|
|
|
393 |
additional_inputs = [
|
394 |
#gr.Radio(["Off", "Chroma", "MongoDB"], label="Retrieval Augmented Generation", value = "Off"),
|
395 |
gr.Radio(["Aus", "An"], label="RAG - LI Erweiterungen", value = "Aus"),
|
@@ -401,10 +548,6 @@ additional_inputs = [
|
|
401 |
gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Strafe für wiederholte Tokens", visible=True)
|
402 |
]
|
403 |
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
with gr.Blocks() as demo:
|
409 |
reference_image = gr.Image(label="Reference Image")
|
410 |
|
@@ -424,7 +567,7 @@ with gr.Blocks() as demo:
|
|
424 |
)
|
425 |
|
426 |
gr.HTML(
|
427 |
-
|
428 |
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
|
429 |
<a href="https://github.com/magic-research/magic-animate" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
|
430 |
</a>
|
@@ -435,7 +578,7 @@ with gr.Blocks() as demo:
|
|
435 |
</div>
|
436 |
</div>
|
437 |
</div>
|
438 |
-
|
439 |
|
440 |
with gr.Row():
|
441 |
prompt = gr.Textbox(
|
@@ -453,33 +596,5 @@ with gr.Blocks() as demo:
|
|
453 |
#chatbot_stream.like(print_like_dislike, None, None)
|
454 |
|
455 |
|
456 |
-
|
457 |
-
|
458 |
-
iface = gr.Interface(
|
459 |
-
fn=chatbot_response,
|
460 |
-
inputs=[reference_image, chat_interface_stream],
|
461 |
-
outputs=chat_interface_stream,
|
462 |
-
title="Chatbot mit Bildeingabe",
|
463 |
-
description="Laden Sie ein Bild hoch oder interagieren Sie über den Chat."
|
464 |
-
)
|
465 |
-
|
466 |
-
iface.launch()
|
467 |
-
|
468 |
-
|
469 |
-
with gr.Row():
|
470 |
-
chatbot_stream.like(vote, None, None)
|
471 |
-
chat_interface_stream.queue().launch()
|
472 |
-
#with gr.Row():
|
473 |
-
#reference_image.queue().launch()
|
474 |
-
|
475 |
-
|
476 |
-
# when `first_frame` is updated
|
477 |
-
reference_image.upload(
|
478 |
-
read_image,
|
479 |
-
reference_image,
|
480 |
-
reference_image,
|
481 |
-
queue=False
|
482 |
-
)
|
483 |
-
"""
|
484 |
-
|
485 |
-
demo.queue().launch()
|
|
|
20 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
21 |
from langchain.vectorstores import Chroma
|
22 |
from chromadb.errors import InvalidDimensionException
|
23 |
+
from utils import *
|
24 |
+
from beschreibungen import *
|
25 |
|
26 |
#from langchain.vectorstores import MongoDBAtlasVectorSearch
|
27 |
#from pymongo import MongoClient
|
|
|
119 |
#################################################
|
120 |
#Funktionen zur Verarbeitung
|
121 |
################################################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
+
##############################################
|
124 |
+
#History - die Frage oder das File eintragen...
|
125 |
+
def add_text(history, prompt):
|
126 |
+
history = history + [(prompt, None)]
|
127 |
+
return history, prompt, "" #gr.Textbox(value="", interactive=False)
|
128 |
+
|
129 |
+
def add_file(history, file, prompt):
|
130 |
+
if (prompt == ""):
|
131 |
+
history = history + [((file.name,), None)]
|
132 |
+
else:
|
133 |
+
history = history + [((file.name,), None), (prompt, None)]
|
134 |
+
return history, prompt, ""
|
135 |
+
|
136 |
+
def transfer_input(inputs):
|
137 |
+
textbox = reset_textbox()
|
138 |
+
return (
|
139 |
+
inputs,
|
140 |
+
gr.update(value=""),
|
141 |
+
gr.Button.update(visible=True),
|
142 |
+
)
|
143 |
+
##################################################
|
144 |
# Funktion, um für einen best. File-typ ein directory-loader zu definieren
|
145 |
def create_directory_loader(file_type, directory_path):
|
146 |
#verscheidene Dokument loaders:
|
|
|
315 |
print("Bild.............................")
|
316 |
return responses
|
317 |
|
318 |
+
|
319 |
+
def invoke (prompt, history, rag_option, model_option, openai_api_key, k=3, top_p=0.6, temperature=0.5, max_new_tokens=4048, max_context_length_tokens=2048, repetition_penalty=1.3,):
|
320 |
global splittet
|
321 |
print(splittet)
|
322 |
#Prompt an history anhängen und einen Text daraus machen
|
|
|
376 |
except Exception as e:
|
377 |
raise gr.Error(e)
|
378 |
|
379 |
+
"""
|
380 |
#Antwort als Stream ausgeben...
|
381 |
for i in range(len(result)):
|
382 |
time.sleep(0.05)
|
383 |
yield result[: i+1]
|
384 |
+
"""
|
385 |
+
|
386 |
+
#Antwort als Stream ausgeben...
|
387 |
+
history[-1][1] = ""
|
388 |
+
for character in result:
|
389 |
+
history[-1][1] += character
|
390 |
+
time.sleep(0.03)
|
391 |
+
yield history, "Generating"
|
392 |
+
if shared_state.interrupted:
|
393 |
+
shared_state.recover()
|
394 |
+
try:
|
395 |
+
yield history, "Stop: Success"
|
396 |
+
return
|
397 |
+
except:
|
398 |
+
pass
|
399 |
|
400 |
################################################
|
401 |
#GUI
|
|
|
406 |
description = """<strong>Information:</strong> Hier wird ein <strong>Large Language Model (LLM)</strong> mit
|
407 |
<strong>Retrieval Augmented Generation (RAG)</strong> auf <strong>externen Daten</strong> verwendet.\n\n
|
408 |
"""
|
409 |
+
#css = """.toast-wrap { display: none !important } """
|
410 |
+
#examples=[['Was ist ChtGPT-4?'],['schreibe ein Python Programm, dass die GPT-4 API aufruft.']]
|
411 |
|
412 |
def vote(data: gr.LikeData):
|
413 |
if data.liked: print("You upvoted this response: " + data.value)
|
414 |
else: print("You downvoted this response: " + data.value)
|
415 |
|
|
|
|
|
416 |
|
417 |
+
print ("Start GUI")
|
418 |
+
with open("custom.css", "r", encoding="utf-8") as f:
|
419 |
+
customCSS = f.read()
|
420 |
|
421 |
+
with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
|
422 |
+
history = gr.State([])
|
423 |
+
user_question = gr.State("")
|
424 |
+
with gr.Row():
|
425 |
+
gr.HTML("LI Chatot")
|
426 |
+
status_display = gr.Markdown("Success", elem_id="status_display")
|
427 |
+
gr.Markdown(description_top)
|
428 |
+
with gr.Row():
|
429 |
+
with gr.Column(scale=5):
|
430 |
+
with gr.Row():
|
431 |
+
chatbot = gr.Chatbot(elem_id="chuanhu_chatbot")
|
432 |
+
with gr.Row():
|
433 |
+
with gr.Column(scale=12):
|
434 |
+
user_input = gr.Textbox(
|
435 |
+
show_label=False, placeholder="Gib hier deinen Prompt ein...",
|
436 |
+
container=False
|
437 |
+
)
|
438 |
+
with gr.Column(min_width=70, scale=1):
|
439 |
+
submitBtn = gr.Button("Senden")
|
440 |
+
with gr.Column(min_width=70, scale=1):
|
441 |
+
cancelBtn = gr.Button("Stop")
|
442 |
+
with gr.Row():
|
443 |
+
emptyBtn = gr.ClearButton( [user_input, chatbot], value="🧹 Neue Session")
|
444 |
+
btn = gr.UploadButton("📁", file_types=["image", "video", "audio"])
|
445 |
+
|
446 |
+
with gr.Column():
|
447 |
+
with gr.Column(min_width=50, scale=1):
|
448 |
+
with gr.Tab(label="Parameter Einstellung"):
|
449 |
+
gr.Markdown("# Parameters")
|
450 |
+
rag_option = gr.Radio(["Aus", "An"], label="RAG - LI Erweiterungen", value = "Aus")
|
451 |
+
model_option = gr.Radio(["HF1", "HF2"], label="Modellauswahl", value = "HF1")
|
452 |
+
|
453 |
+
top_p = gr.Slider(
|
454 |
+
minimum=-0,
|
455 |
+
maximum=1.0,
|
456 |
+
value=0.95,
|
457 |
+
step=0.05,
|
458 |
+
interactive=True,
|
459 |
+
label="Top-p",
|
460 |
+
)
|
461 |
+
temperature = gr.Slider(
|
462 |
+
minimum=0.1,
|
463 |
+
maximum=2.0,
|
464 |
+
value=1,
|
465 |
+
step=0.1,
|
466 |
+
interactive=True,
|
467 |
+
label="Temperature",
|
468 |
+
)
|
469 |
+
max_length_tokens = gr.Slider(
|
470 |
+
minimum=0,
|
471 |
+
maximum=512,
|
472 |
+
value=512,
|
473 |
+
step=8,
|
474 |
+
interactive=True,
|
475 |
+
label="Max Generation Tokens",
|
476 |
+
)
|
477 |
+
max_context_length_tokens = gr.Slider(
|
478 |
+
minimum=0,
|
479 |
+
maximum=4096,
|
480 |
+
value=2048,
|
481 |
+
step=128,
|
482 |
+
interactive=True,
|
483 |
+
label="Max History Tokens",
|
484 |
+
)
|
485 |
+
repetition_penalty=gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Strafe für wiederholte Tokens", visible=True)
|
486 |
+
anzahl_docs = gr.Slider(label="Anzahl Dokumente", value=3, minimum=1, maximum=10, step=1, interactive=True, info="wie viele Dokumententeile aus dem Vektorstore an den prompt gehängt werden", visible=True)
|
487 |
+
openai_key = gr.Textbox(label = "OpenAI API Key", value = "sk-", lines = 1)
|
488 |
+
gr.Markdown(description)
|
489 |
+
|
490 |
+
#Argumente für generate Funktion als Input
|
491 |
+
predict_args = dict(
|
492 |
+
fn=generate,
|
493 |
+
inputs=[
|
494 |
+
user_question,
|
495 |
+
chatbot,
|
496 |
+
#history,
|
497 |
+
rag_option,
|
498 |
+
model_option,
|
499 |
+
openai_key,
|
500 |
+
anzahl_docs,
|
501 |
+
top_p,
|
502 |
+
temperature,
|
503 |
+
max_length_tokens,
|
504 |
+
max_context_length_tokens,
|
505 |
+
repetition_penalty
|
506 |
+
],
|
507 |
+
outputs=[ chatbot, status_display], #[ chatbot, history, status_display],
|
508 |
+
show_progress=True,
|
509 |
+
)
|
510 |
+
|
511 |
+
|
512 |
+
reset_args = dict(
|
513 |
+
fn=reset_textbox, inputs=[], outputs=[user_input, status_display]
|
514 |
+
)
|
515 |
+
|
516 |
+
# Chatbot
|
517 |
+
transfer_input_args_text = dict(
|
518 |
+
fn=add_text, inputs=[chatbot, user_input], outputs=[chatbot, user_question, user_input], show_progress=True
|
519 |
+
)
|
520 |
+
transfer_input_args_file = dict(
|
521 |
+
fn=add_file, inputs=[chatbot, btn, user_input], outputs=[chatbot, user_question, user_input], show_progress=True
|
522 |
+
)
|
523 |
+
|
524 |
+
predict_event1 = user_input.submit(**transfer_input_args_text, queue=False,).then(**predict_args)
|
525 |
+
predict_event3 = btn.upload(**transfer_input_args_file,queue=False,).then(**predict_args)
|
526 |
+
predict_event2 = submitBtn.click(**transfer_input_args_text, queue=False,).then(**predict_args)
|
527 |
+
|
528 |
+
cancelBtn.click(
|
529 |
+
cancels=[predict_event1,predict_event2, predict_event3 ]
|
530 |
+
)
|
531 |
+
demo.title = "LI-ChatBot"
|
532 |
+
|
533 |
+
demo.queue().launch(debug=True)
|
534 |
+
|
535 |
|
536 |
+
|
537 |
+
|
538 |
+
|
539 |
+
"""
|
540 |
additional_inputs = [
|
541 |
#gr.Radio(["Off", "Chroma", "MongoDB"], label="Retrieval Augmented Generation", value = "Off"),
|
542 |
gr.Radio(["Aus", "An"], label="RAG - LI Erweiterungen", value = "Aus"),
|
|
|
548 |
gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Strafe für wiederholte Tokens", visible=True)
|
549 |
]
|
550 |
|
|
|
|
|
|
|
|
|
551 |
with gr.Blocks() as demo:
|
552 |
reference_image = gr.Image(label="Reference Image")
|
553 |
|
|
|
567 |
)
|
568 |
|
569 |
gr.HTML(
|
570 |
+
|
571 |
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
|
572 |
<a href="https://github.com/magic-research/magic-animate" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
|
573 |
</a>
|
|
|
578 |
</div>
|
579 |
</div>
|
580 |
</div>
|
581 |
+
)
|
582 |
|
583 |
with gr.Row():
|
584 |
prompt = gr.Textbox(
|
|
|
596 |
#chatbot_stream.like(print_like_dislike, None, None)
|
597 |
|
598 |
|
599 |
+
demo.queue().launch()
|
600 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|