Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,177 @@
|
|
1 |
import os, sys, json
|
2 |
-
from openai import OpenAI
|
3 |
import gradio as gr
|
|
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
|
7 |
# Schnittstellen hinzubinden und OpenAI Key holen aus den Secrets
|
8 |
-
client = OpenAI(
|
9 |
-
api_key=os.getenv("OPENAI_API_KEY"), # this is also the default, it can be omitted
|
10 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os, sys, json
|
|
|
2 |
import gradio as gr
|
3 |
+
import openai
|
4 |
|
5 |
+
from langchain.chains import LLMChain, RetrievalQA
|
6 |
+
from langchain.chat_models import ChatOpenAI
|
7 |
+
from langchain.document_loaders import PyPDFLoader, WebBaseLoader
|
8 |
+
from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader
|
9 |
+
from langchain.document_loaders.generic import GenericLoader
|
10 |
+
from langchain.document_loaders.parsers import OpenAIWhisperParser
|
11 |
+
|
12 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
13 |
+
from langchain.prompts import PromptTemplate
|
14 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
15 |
+
from langchain.vectorstores import Chroma
|
16 |
+
from langchain.vectorstores import MongoDBAtlasVectorSearch
|
17 |
+
|
18 |
+
from pymongo import MongoClient
|
19 |
+
|
20 |
+
from dotenv import load_dotenv, find_dotenv
|
21 |
+
_ = load_dotenv(find_dotenv())
|
22 |
|
23 |
|
24 |
# Schnittstellen hinzubinden und OpenAI Key holen aus den Secrets
|
25 |
+
#client = OpenAI(
|
26 |
+
#api_key=os.getenv("OPENAI_API_KEY"), # this is also the default, it can be omitted
|
27 |
+
#)
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
openai.api_key = os.getenv["OPENAI_API_KEY"]
|
34 |
+
|
35 |
+
MONGODB_URI = os.environ["MONGODB_ATLAS_CLUSTER_URI"]
|
36 |
+
client = MongoClient(MONGODB_URI)
|
37 |
+
MONGODB_DB_NAME = "langchain_db"
|
38 |
+
MONGODB_COLLECTION_NAME = "gpt-4"
|
39 |
+
MONGODB_COLLECTION = client[MONGODB_DB_NAME][MONGODB_COLLECTION_NAME]
|
40 |
+
MONGODB_INDEX_NAME = "default"
|
41 |
+
|
42 |
+
template = """If you don't know the answer, just say that you don't know, don't try to make up an answer. Keep the answer as concise as possible. Always say
|
43 |
+
"🧠 Thanks for using the app - Bernd" at the end of the answer. """
|
44 |
+
|
45 |
+
llm_template = "Answer the question at the end. " + template + "Question: {question} Helpful Answer: "
|
46 |
+
rag_template = "Use the following pieces of context to answer the question at the end. " + template + "{context} Question: {question} Helpful Answer: "
|
47 |
+
|
48 |
+
LLM_CHAIN_PROMPT = PromptTemplate(input_variables = ["question"],
|
49 |
+
template = llm_template)
|
50 |
+
RAG_CHAIN_PROMPT = PromptTemplate(input_variables = ["context", "question"],
|
51 |
+
template = rag_template)
|
52 |
+
|
53 |
+
CHROMA_DIR = "/data/chroma"
|
54 |
+
YOUTUBE_DIR = "/data/youtube"
|
55 |
+
|
56 |
+
PDF_URL = "https://arxiv.org/pdf/2303.08774.pdf"
|
57 |
+
WEB_URL = "https://openai.com/research/gpt-4"
|
58 |
+
YOUTUBE_URL_1 = "https://www.youtube.com/watch?v=--khbXchTeE"
|
59 |
+
YOUTUBE_URL_2 = "https://www.youtube.com/watch?v=hdhZwyf24mE"
|
60 |
+
YOUTUBE_URL_3 = "https://www.youtube.com/watch?v=vw-KWfKwvTQ"
|
61 |
+
|
62 |
+
MODEL_NAME = "gpt-4"
|
63 |
+
|
64 |
+
def document_loading_splitting():
|
65 |
+
# Document loading
|
66 |
+
docs = []
|
67 |
+
# Load PDF
|
68 |
+
loader = PyPDFLoader(PDF_URL)
|
69 |
+
docs.extend(loader.load())
|
70 |
+
# Load Web
|
71 |
+
loader = WebBaseLoader(WEB_URL)
|
72 |
+
docs.extend(loader.load())
|
73 |
+
# Load YouTube
|
74 |
+
loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL_1,
|
75 |
+
YOUTUBE_URL_2,
|
76 |
+
YOUTUBE_URL_3], YOUTUBE_DIR),
|
77 |
+
OpenAIWhisperParser())
|
78 |
+
docs.extend(loader.load())
|
79 |
+
# Document splitting
|
80 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_overlap = 150,
|
81 |
+
chunk_size = 1500)
|
82 |
+
splits = text_splitter.split_documents(docs)
|
83 |
+
return splits
|
84 |
+
|
85 |
+
def document_storage_chroma(splits):
|
86 |
+
Chroma.from_documents(documents = splits,
|
87 |
+
embedding = OpenAIEmbeddings(disallowed_special = ()),
|
88 |
+
persist_directory = CHROMA_DIR)
|
89 |
+
|
90 |
+
def document_storage_mongodb(splits):
|
91 |
+
MongoDBAtlasVectorSearch.from_documents(documents = splits,
|
92 |
+
embedding = OpenAIEmbeddings(disallowed_special = ()),
|
93 |
+
collection = MONGODB_COLLECTION,
|
94 |
+
index_name = MONGODB_INDEX_NAME)
|
95 |
+
|
96 |
+
def document_retrieval_chroma(llm, prompt):
|
97 |
+
db = Chroma(embedding_function = OpenAIEmbeddings(),
|
98 |
+
persist_directory = CHROMA_DIR)
|
99 |
+
return db
|
100 |
+
|
101 |
+
def document_retrieval_mongodb(llm, prompt):
|
102 |
+
db = MongoDBAtlasVectorSearch.from_connection_string(MONGODB_URI,
|
103 |
+
MONGODB_DB_NAME + "." + MONGODB_COLLECTION_NAME,
|
104 |
+
OpenAIEmbeddings(disallowed_special = ()),
|
105 |
+
index_name = MONGODB_INDEX_NAME)
|
106 |
+
return db
|
107 |
+
|
108 |
+
def llm_chain(llm, prompt):
|
109 |
+
llm_chain = LLMChain(llm = llm, prompt = LLM_CHAIN_PROMPT)
|
110 |
+
result = llm_chain.run({"question": prompt})
|
111 |
+
return result
|
112 |
+
|
113 |
+
def rag_chain(llm, prompt, db):
|
114 |
+
rag_chain = RetrievalQA.from_chain_type(llm,
|
115 |
+
chain_type_kwargs = {"prompt": RAG_CHAIN_PROMPT},
|
116 |
+
retriever = db.as_retriever(search_kwargs = {"k": 3}),
|
117 |
+
return_source_documents = True)
|
118 |
+
result = rag_chain({"query": prompt})
|
119 |
+
return result["result"]
|
120 |
+
|
121 |
+
def invoke(openai_api_key, rag_option, prompt):
|
122 |
+
if (openai_api_key == ""):
|
123 |
+
raise gr.Error("OpenAI API Key is required.")
|
124 |
+
if (rag_option is None):
|
125 |
+
raise gr.Error("Retrieval Augmented Generation is required.")
|
126 |
+
if (prompt == ""):
|
127 |
+
raise gr.Error("Prompt is required.")
|
128 |
+
try:
|
129 |
+
llm = ChatOpenAI(model_name = MODEL_NAME,
|
130 |
+
openai_api_key = openai_api_key,
|
131 |
+
temperature = 0)
|
132 |
+
if (rag_option == "Chroma"):
|
133 |
+
#splits = document_loading_splitting()
|
134 |
+
#document_storage_chroma(splits)
|
135 |
+
db = document_retrieval_chroma(llm, prompt)
|
136 |
+
result = rag_chain(llm, prompt, db)
|
137 |
+
elif (rag_option == "MongoDB"):
|
138 |
+
#splits = document_loading_splitting()
|
139 |
+
#document_storage_mongodb(splits)
|
140 |
+
db = document_retrieval_mongodb(llm, prompt)
|
141 |
+
result = rag_chain(llm, prompt, db)
|
142 |
+
else:
|
143 |
+
result = llm_chain(llm, prompt)
|
144 |
+
except Exception as e:
|
145 |
+
raise gr.Error(e)
|
146 |
+
return result
|
147 |
+
|
148 |
+
description = """<strong>Overview:</strong> Reasoning application that demonstrates a <strong>Large Language Model (LLM)</strong> with
|
149 |
+
<strong>Retrieval Augmented Generation (RAG)</strong> on <strong>external data</strong>.\n\n
|
150 |
+
<strong>Instructions:</strong> Enter an OpenAI API key and perform LLM use cases (semantic search, summarization, translation, etc.) on
|
151 |
+
<a href='""" + YOUTUBE_URL_1 + """'>YouTube</a>, <a href='""" + PDF_URL + """'>PDF</a>, and <a href='""" + WEB_URL + """'>Web</a>
|
152 |
+
data on GPT-4, published after LLM knowledge cutoff.
|
153 |
+
<ul style="list-style-type:square;">
|
154 |
+
<li>Set "Retrieval Augmented Generation" to "<strong>Off</strong>" and submit prompt "What is GPT-4?" The <strong>LLM without RAG</strong> does not know the answer.</li>
|
155 |
+
<li>Set "Retrieval Augmented Generation" to "<strong>Chroma</strong>" or "<strong>MongoDB</strong>" and submit prompt "What is GPT-4?" The <strong>LLM with RAG</strong> knows the answer.</li>
|
156 |
+
<li>Experiment with prompts, e.g. "What are GPT-4's media capabilities in 5 emojis and 1 sentence?", "List GPT-4's exam scores and benchmark results.", or "Compare GPT-4 to GPT-3.5 in markdown table format."</li>
|
157 |
+
<li>Experiment some more, for example "What is the GPT-4 API's cost and rate limit? Answer in English, Arabic, Chinese, Hindi, and Russian in JSON format." or "Write a Python program that calls the GPT-4 API."</li>
|
158 |
+
</ul>\n\n
|
159 |
+
<strong>Technology:</strong> <a href='https://www.gradio.app/'>Gradio</a> UI using the <a href='https://openai.com/'>OpenAI</a> API and
|
160 |
+
AI-native <a href='https://www.trychroma.com/'>Chroma</a> embedding database /
|
161 |
+
<a href='https://www.mongodb.com/blog/post/introducing-atlas-vector-search-build-intelligent-applications-semantic-search-ai'>MongoDB</a> vector search.
|
162 |
+
<strong>Speech-to-text</strong> (STT) via <a href='https://openai.com/research/whisper'>whisper-1</a> model, <strong>text embedding</strong> via
|
163 |
+
<a href='https://openai.com/blog/new-and-improved-embedding-model'>text-embedding-ada-002</a> model, and <strong>text generation</strong> via
|
164 |
+
<a href='""" + WEB_URL + """'>gpt-4</a> model. Implementation via AI-first <a href='https://www.langchain.com/'>LangChain</a> toolkit.\n\n
|
165 |
+
In addition to the OpenAI API version, see also the <a href='https://aws.amazon.com/bedrock/'>Amazon Bedrock</a> API and
|
166 |
+
<a href='https://cloud.google.com/vertex-ai'>Google Vertex AI</a> API versions on
|
167 |
+
<a href='https://github.com/bstraehle/ai-ml-dl/tree/main/hugging-face'>GitHub</a>."""
|
168 |
+
|
169 |
+
gr.close_all()
|
170 |
+
demo = gr.Interface(fn=invoke,
|
171 |
+
inputs = [gr.Textbox(label = "OpenAI API Key", value = "sk-", lines = 1),
|
172 |
+
gr.Radio(["Off", "Chroma", "MongoDB"], label="Retrieval Augmented Generation", value = "Off"),
|
173 |
+
gr.Textbox(label = "Prompt", value = "What is GPT-4?", lines = 1)],
|
174 |
+
outputs = [gr.Textbox(label = "Completion", lines = 1)],
|
175 |
+
title = "Generative AI - LLM & RAG",
|
176 |
+
description = description)
|
177 |
+
demo.launch()
|