Alexandra Kueck commited on
Commit
91feea3
·
0 Parent(s):

Duplicate from alexkueck/ChatBotLI2Klein

Browse files
Files changed (9) hide show
  1. .gitattributes +34 -0
  2. README.md +13 -0
  3. app.py +222 -0
  4. cookies.json +132 -0
  5. custom.css +191 -0
  6. custom.js +1 -0
  7. presets.py +86 -0
  8. requirements.txt +8 -0
  9. utils.py +195 -0
.gitattributes ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: ChatBotLIModelle
3
+ emoji: 🔥
4
+ colorFrom: indigo
5
+ colorTo: yellow
6
+ sdk: gradio
7
+ sdk_version: 3.29.0
8
+ app_file: app.py
9
+ pinned: false
10
+ duplicated_from: alexkueck/ChatBotLI2Klein
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # -*- coding: utf-8 -*-
3
+
4
+ import gradio as gr
5
+ #from transformers import pipeline
6
+ import torch
7
+ from utils import *
8
+ from presets import *
9
+
10
+ #antwort=""
11
+ ######################################################################
12
+ #Modelle und Tokenizer
13
+
14
+ #Hugging Chat nutzen
15
+ # Create a chatbot connection
16
+ #chatbot = hugchat.ChatBot(cookie_path="cookies.json")
17
+
18
+ #Alternativ mit beliebigen Modellen:
19
+ base_model = "project-baize/baize-v2-7b" #load_8bit = False (in load_tokenizer_and_model)
20
+ #base_model = "TheBloke/airoboros-13B-HF" #load_8bit = False (in load_tokenizer_and_model)
21
+ #base_model = "EleutherAI/gpt-neo-1.3B" #load_8bit = False (in load_tokenizer_and_model)
22
+ #base_model = "TheBloke/airoboros-13B-HF" #load_8bit = True
23
+ tokenizer,model,device = load_tokenizer_and_model(base_model,False)
24
+
25
+
26
+ ########################################################################
27
+ #Chat KI nutzen, um Text zu generieren...
28
+ def predict(text,
29
+ chatbotGr,
30
+ history,
31
+ top_p,
32
+ temperature,
33
+ max_length_tokens,
34
+ max_context_length_tokens,):
35
+ if text=="":
36
+ yield chatbotGr,history,"Empty context."
37
+ return
38
+ try:
39
+ model
40
+ except:
41
+ yield [[text,"No Model Found"]],[],"No Model Found"
42
+ return
43
+
44
+ inputs = generate_prompt_with_history(text,history,tokenizer,max_length=max_context_length_tokens)
45
+ if inputs is None:
46
+ yield chatbotGr,history,"Input too long."
47
+ return
48
+ else:
49
+ prompt,inputs=inputs
50
+ begin_length = len(prompt)
51
+
52
+ input_ids = inputs["input_ids"][:,-max_context_length_tokens:].to(device)
53
+ torch.cuda.empty_cache()
54
+
55
+ #torch.no_grad() bedeutet, dass für die betreffenden tensoren keine Ableitungen berechnet werden bei der backpropagation
56
+ #hier soll das NN ja auch nicht geändert werden 8backprop ist nicht nötig), da es um interference-prompts geht!
57
+ with torch.no_grad():
58
+ #die vergangenen prompts werden alle als Tupel in history abgelegt sortiert nach 'Human' und 'AI'- dass sind daher auch die stop-words, die den jeweils nächsten Eintrag kennzeichnen
59
+ for x in greedy_search(input_ids,model,tokenizer,stop_words=["[|Human|]", "[|AI|]"],max_length=max_length_tokens,temperature=temperature,top_p=top_p):
60
+ if is_stop_word_or_prefix(x,["[|Human|]", "[|AI|]"]) is False:
61
+ if "[|Human|]" in x:
62
+ x = x[:x.index("[|Human|]")].strip()
63
+ if "[|AI|]" in x:
64
+ x = x[:x.index("[|AI|]")].strip()
65
+ x = x.strip()
66
+ a, b= [[y[0],convert_to_markdown(y[1])] for y in history]+[[text, convert_to_markdown(x)]],history + [[text,x]]
67
+ yield a, b, "Generating..."
68
+ if shared_state.interrupted:
69
+ shared_state.recover()
70
+ try:
71
+ yield a, b, "Stop: Success"
72
+ return
73
+ except:
74
+ pass
75
+ del input_ids
76
+ gc.collect()
77
+ torch.cuda.empty_cache()
78
+
79
+ try:
80
+ yield a,b,"Generate: Success"
81
+ except:
82
+ pass
83
+
84
+
85
+ def reset_chat():
86
+ #id_new = chatbot.new_conversation()
87
+ #chatbot.change_conversation(id_new)
88
+ reset_textbox()
89
+
90
+
91
+ ##########################################################
92
+ #Übersetzungs Ki nutzen
93
+ def translate():
94
+ return "Kommt noch!"
95
+
96
+ #Programmcode KI
97
+ def coding():
98
+ return "Kommt noch!"
99
+
100
+ #######################################################################
101
+ #Darstellung mit Gradio
102
+
103
+ with open("custom.css", "r", encoding="utf-8") as f:
104
+ customCSS = f.read()
105
+
106
+ with gr.Blocks(theme=small_and_beautiful_theme) as demo:
107
+ history = gr.State([])
108
+ user_question = gr.State("")
109
+ gr.Markdown("KIs am LI - wähle aus, was du bzgl. KI-Bots ausprobieren möchtest!")
110
+ with gr.Tabs():
111
+ with gr.TabItem("LI-Chat"):
112
+ with gr.Row():
113
+ gr.HTML(title)
114
+ status_display = gr.Markdown("Erfolg", elem_id="status_display")
115
+ gr.Markdown(description_top)
116
+ with gr.Row(scale=1).style(equal_height=True):
117
+ with gr.Column(scale=5):
118
+ with gr.Row(scale=1):
119
+ chatbotGr = gr.Chatbot(elem_id="LI_chatbot").style(height="100%")
120
+ with gr.Row(scale=1):
121
+ with gr.Column(scale=12):
122
+ user_input = gr.Textbox(
123
+ show_label=False, placeholder="Gib deinen Text / Frage ein."
124
+ ).style(container=False)
125
+ with gr.Column(min_width=100, scale=1):
126
+ submitBtn = gr.Button("Absenden")
127
+ with gr.Column(min_width=100, scale=1):
128
+ cancelBtn = gr.Button("Stoppen")
129
+ with gr.Row(scale=1):
130
+ emptyBtn = gr.Button(
131
+ "🧹 Neuer Chat",
132
+ )
133
+ with gr.Column():
134
+ with gr.Column(min_width=50, scale=1):
135
+ with gr.Tab(label="Parameter zum Model"):
136
+ gr.Markdown("# Parameters")
137
+ top_p = gr.Slider(
138
+ minimum=-0,
139
+ maximum=1.0,
140
+ value=0.95,
141
+ step=0.05,
142
+ interactive=True,
143
+ label="Top-p",
144
+ )
145
+ temperature = gr.Slider(
146
+ minimum=0.1,
147
+ maximum=2.0,
148
+ value=1,
149
+ step=0.1,
150
+ interactive=True,
151
+ label="Temperature",
152
+ )
153
+ max_length_tokens = gr.Slider(
154
+ minimum=0,
155
+ maximum=512,
156
+ value=512,
157
+ step=8,
158
+ interactive=True,
159
+ label="Max Generation Tokens",
160
+ )
161
+ max_context_length_tokens = gr.Slider(
162
+ minimum=0,
163
+ maximum=4096,
164
+ value=2048,
165
+ step=128,
166
+ interactive=True,
167
+ label="Max History Tokens",
168
+ )
169
+ gr.Markdown(description)
170
+
171
+ with gr.TabItem("Übersetzungen"):
172
+ with gr.Row():
173
+ gr.Textbox(
174
+ show_label=False, placeholder="Ist noch in Arbeit..."
175
+ ).style(container=False)
176
+ with gr.TabItem("Code-Generierungen"):
177
+ with gr.Row():
178
+ gr.Textbox(
179
+ show_label=False, placeholder="Ist noch in Arbeit..."
180
+ ).style(container=False)
181
+
182
+ predict_args = dict(
183
+ fn=predict,
184
+ inputs=[
185
+ user_question,
186
+ chatbotGr,
187
+ history,
188
+ top_p,
189
+ temperature,
190
+ max_length_tokens,
191
+ max_context_length_tokens,
192
+ ],
193
+ outputs=[chatbotGr, history, status_display],
194
+ show_progress=True,
195
+ )
196
+
197
+ #neuer Chat
198
+ reset_args = dict(
199
+ #fn=reset_chat, inputs=[], outputs=[user_input, status_display]
200
+ fn=reset_textbox, inputs=[], outputs=[user_input, status_display]
201
+ )
202
+
203
+ # Chatbot
204
+ transfer_input_args = dict(
205
+ fn=transfer_input, inputs=[user_input], outputs=[user_question, user_input, submitBtn], show_progress=True
206
+ )
207
+
208
+ #Listener auf Start-Click auf Button oder Return
209
+ predict_event1 = user_input.submit(**transfer_input_args).then(**predict_args)
210
+ predict_event2 = submitBtn.click(**transfer_input_args).then(**predict_args)
211
+
212
+ #Listener, Wenn reset...
213
+ emptyBtn.click(
214
+ reset_state,
215
+ outputs=[chatbotGr, history, status_display],
216
+ show_progress=True,
217
+ )
218
+ emptyBtn.click(**reset_args)
219
+
220
+ demo.title = "LI Chat"
221
+ #demo.queue(concurrency_count=1).launch(share=True)
222
+ demo.queue(concurrency_count=1).launch(debug=True)
cookies.json ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "domain": ".huggingface.co",
4
+ "expirationDate": 1684947627,
5
+ "hostOnly": false,
6
+ "httpOnly": false,
7
+ "name": "intercom-session-hgve3glw",
8
+ "path": "/",
9
+ "sameSite": "lax",
10
+ "secure": false,
11
+ "session": false,
12
+ "storeId": null,
13
+ "value": ""
14
+ },
15
+ {
16
+ "domain": ".huggingface.co",
17
+ "expirationDate": 1716107825,
18
+ "hostOnly": false,
19
+ "httpOnly": false,
20
+ "name": "__stripe_mid",
21
+ "path": "/",
22
+ "sameSite": "strict",
23
+ "secure": true,
24
+ "session": false,
25
+ "storeId": null,
26
+ "value": "ee917974-9f17-465f-bd5f-98c3ef273dcebfc299"
27
+ },
28
+ {
29
+ "domain": ".huggingface.co",
30
+ "expirationDate": 1719131825.057236,
31
+ "hostOnly": false,
32
+ "httpOnly": false,
33
+ "name": "_ga",
34
+ "path": "/",
35
+ "sameSite": null,
36
+ "secure": false,
37
+ "session": false,
38
+ "storeId": null,
39
+ "value": "GA1.1.1854576425.1683459014"
40
+ },
41
+ {
42
+ "domain": ".huggingface.co",
43
+ "expirationDate": 1715265897.480276,
44
+ "hostOnly": false,
45
+ "httpOnly": true,
46
+ "name": "token",
47
+ "path": "/",
48
+ "sameSite": "lax",
49
+ "secure": true,
50
+ "session": false,
51
+ "storeId": null,
52
+ "value": "XPKKEnVzdMeoBdDLQWVipFyNlQAEAHWQohUpGAfcoHwPXNZogPpxHYWbdDcGRdiSrZcOCHFsKuPvVIQwMsybldJAmgkzemIAcjPHwizDfPeitRXgmSlfPpDGFBvFHVsM"
53
+ },
54
+ {
55
+ "domain": ".huggingface.co",
56
+ "expirationDate": 1707672827,
57
+ "hostOnly": false,
58
+ "httpOnly": false,
59
+ "name": "intercom-device-id-hgve3glw",
60
+ "path": "/",
61
+ "sameSite": "lax",
62
+ "secure": false,
63
+ "session": false,
64
+ "storeId": null,
65
+ "value": "7ff02e75-b8a1-43e8-8af3-2520b153983e"
66
+ },
67
+ {
68
+ "domain": ".huggingface.co",
69
+ "expirationDate": 1684573625,
70
+ "hostOnly": false,
71
+ "httpOnly": false,
72
+ "name": "__stripe_sid",
73
+ "path": "/",
74
+ "sameSite": "strict",
75
+ "secure": true,
76
+ "session": false,
77
+ "storeId": null,
78
+ "value": "e18d3fcd-4185-49bc-b24e-463d3eb18f443c0c01"
79
+ },
80
+ {
81
+ "domain": ".huggingface.co",
82
+ "expirationDate": 1719131825.056149,
83
+ "hostOnly": false,
84
+ "httpOnly": false,
85
+ "name": "_ga_8Q63TH4CSL",
86
+ "path": "/",
87
+ "sameSite": null,
88
+ "secure": false,
89
+ "session": false,
90
+ "storeId": null,
91
+ "value": "GS1.1.1684571540.41.1.1684571825.0.0.0"
92
+ },
93
+ {
94
+ "domain": ".huggingface.co",
95
+ "expirationDate": 1684658225,
96
+ "hostOnly": false,
97
+ "httpOnly": false,
98
+ "name": "_gid",
99
+ "path": "/",
100
+ "sameSite": null,
101
+ "secure": false,
102
+ "session": false,
103
+ "storeId": null,
104
+ "value": "GA1.2.1709365894.1683962834"
105
+ },
106
+ {
107
+ "domain": "huggingface.co",
108
+ "expirationDate": 1716194076.862726,
109
+ "hostOnly": true,
110
+ "httpOnly": true,
111
+ "name": "hf-chat",
112
+ "path": "/",
113
+ "sameSite": "no_restriction",
114
+ "secure": true,
115
+ "session": false,
116
+ "storeId": null,
117
+ "value": "65609f48-0d3b-4b69-931b-cd572b1fc88d"
118
+ },
119
+ {
120
+ "domain": ".huggingface.co",
121
+ "expirationDate": 1707672827,
122
+ "hostOnly": false,
123
+ "httpOnly": false,
124
+ "name": "intercom-id-hgve3glw",
125
+ "path": "/",
126
+ "sameSite": "lax",
127
+ "secure": false,
128
+ "session": false,
129
+ "storeId": null,
130
+ "value": "80725bd4-464f-425b-b9c9-313cf5b23012"
131
+ }
132
+ ]
custom.css ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ :root {
2
+ --chatbot-color-light: #F3F3F3;
3
+ --chatbot-color-dark: #121111;
4
+ }
5
+
6
+ /* status_display */
7
+ #status_display {
8
+ display: flex;
9
+ min-height: 2.5em;
10
+ align-items: flex-end;
11
+ justify-content: flex-end;
12
+ }
13
+ #status_display p {
14
+ font-size: .85em;
15
+ font-family: monospace;
16
+ color: var(--body-text-color-subdued);
17
+ }
18
+
19
+
20
+
21
+ /* usage_display */
22
+ #usage_display {
23
+ height: 1em;
24
+ }
25
+ #usage_display p{
26
+ padding: 0 1em;
27
+ font-size: .85em;
28
+ font-family: monospace;
29
+ color: var(--body-text-color-subdued);
30
+ }
31
+ /* list */
32
+ ol:not(.options), ul:not(.options) {
33
+ padding-inline-start: 2em !important;
34
+ }
35
+
36
+ /* Thank @Keldos-Li for fixing it */
37
+ /* Light mode (default) */
38
+ #chuanhu_chatbot {
39
+ background-color: var(--chatbot-color-light) !important;
40
+ color: #000000 !important;
41
+ }
42
+ [data-testid = "bot"] {
43
+ background-color: #FFFFFF !important;
44
+ }
45
+ [data-testid = "user"] {
46
+ background-color: #95EC69 !important;
47
+ }
48
+
49
+ /* Dark mode */
50
+ .dark #chuanhu_chatbot {
51
+ background-color: var(--chatbot-color-dark) !important;
52
+ color: #FFFFFF !important;
53
+ }
54
+ .dark [data-testid = "bot"] {
55
+ background-color: #2C2C2C !important;
56
+ }
57
+ .dark [data-testid = "user"] {
58
+ background-color: #26B561 !important;
59
+ }
60
+
61
+ #chuanhu_chatbot {
62
+ height: 100%;
63
+ min-height: 400px;
64
+ }
65
+
66
+ [class *= "message"] {
67
+ border-radius: var(--radius-xl) !important;
68
+ border: none;
69
+ padding: var(--spacing-xl) !important;
70
+ font-size: var(--text-md) !important;
71
+ line-height: var(--line-md) !important;
72
+ min-height: calc(var(--text-md)*var(--line-md) + 2*var(--spacing-xl));
73
+ min-width: calc(var(--text-md)*var(--line-md) + 2*var(--spacing-xl));
74
+ }
75
+ [data-testid = "bot"] {
76
+ max-width: 85%;
77
+ border-bottom-left-radius: 0 !important;
78
+ }
79
+ [data-testid = "user"] {
80
+ max-width: 85%;
81
+ width: auto !important;
82
+ border-bottom-right-radius: 0 !important;
83
+ }
84
+ /* Table */
85
+ table {
86
+ margin: 1em 0;
87
+ border-collapse: collapse;
88
+ empty-cells: show;
89
+ }
90
+ td,th {
91
+ border: 1.2px solid var(--border-color-primary) !important;
92
+ padding: 0.2em;
93
+ }
94
+ thead {
95
+ background-color: rgba(175,184,193,0.2);
96
+ }
97
+ thead th {
98
+ padding: .5em .2em;
99
+ }
100
+ /* Inline code */
101
+ #chuanhu_chatbot code {
102
+ display: inline;
103
+ white-space: break-spaces;
104
+ border-radius: 6px;
105
+ margin: 0 2px 0 2px;
106
+ padding: .2em .4em .1em .4em;
107
+ background-color: rgba(175,184,193,0.2);
108
+ }
109
+ /* Code block */
110
+ #chuanhu_chatbot pre code {
111
+ display: block;
112
+ overflow: auto;
113
+ white-space: pre;
114
+ background-color: hsla(0, 0%, 0%, 80%)!important;
115
+ border-radius: 10px;
116
+ padding: 1.4em 1.2em 0em 1.4em;
117
+ margin: 1.2em 2em 1.2em 0.5em;
118
+ color: #FFF;
119
+ box-shadow: 6px 6px 16px hsla(0, 0%, 0%, 0.2);
120
+ }
121
+ /* Hightlight */
122
+ #chuanhu_chatbot .highlight { background-color: transparent }
123
+ #chuanhu_chatbot .highlight .hll { background-color: #49483e }
124
+ #chuanhu_chatbot .highlight .c { color: #75715e } /* Comment */
125
+ #chuanhu_chatbot .highlight .err { color: #960050; background-color: #1e0010 } /* Error */
126
+ #chuanhu_chatbot .highlight .k { color: #66d9ef } /* Keyword */
127
+ #chuanhu_chatbot .highlight .l { color: #ae81ff } /* Literal */
128
+ #chuanhu_chatbot .highlight .n { color: #f8f8f2 } /* Name */
129
+ #chuanhu_chatbot .highlight .o { color: #f92672 } /* Operator */
130
+ #chuanhu_chatbot .highlight .p { color: #f8f8f2 } /* Punctuation */
131
+ #chuanhu_chatbot .highlight .ch { color: #75715e } /* Comment.Hashbang */
132
+ #chuanhu_chatbot .highlight .cm { color: #75715e } /* Comment.Multiline */
133
+ #chuanhu_chatbot .highlight .cp { color: #75715e } /* Comment.Preproc */
134
+ #chuanhu_chatbot .highlight .cpf { color: #75715e } /* Comment.PreprocFile */
135
+ #chuanhu_chatbot .highlight .c1 { color: #75715e } /* Comment.Single */
136
+ #chuanhu_chatbot .highlight .cs { color: #75715e } /* Comment.Special */
137
+ #chuanhu_chatbot .highlight .gd { color: #f92672 } /* Generic.Deleted */
138
+ #chuanhu_chatbot .highlight .ge { font-style: italic } /* Generic.Emph */
139
+ #chuanhu_chatbot .highlight .gi { color: #a6e22e } /* Generic.Inserted */
140
+ #chuanhu_chatbot .highlight .gs { font-weight: bold } /* Generic.Strong */
141
+ #chuanhu_chatbot .highlight .gu { color: #75715e } /* Generic.Subheading */
142
+ #chuanhu_chatbot .highlight .kc { color: #66d9ef } /* Keyword.Constant */
143
+ #chuanhu_chatbot .highlight .kd { color: #66d9ef } /* Keyword.Declaration */
144
+ #chuanhu_chatbot .highlight .kn { color: #f92672 } /* Keyword.Namespace */
145
+ #chuanhu_chatbot .highlight .kp { color: #66d9ef } /* Keyword.Pseudo */
146
+ #chuanhu_chatbot .highlight .kr { color: #66d9ef } /* Keyword.Reserved */
147
+ #chuanhu_chatbot .highlight .kt { color: #66d9ef } /* Keyword.Type */
148
+ #chuanhu_chatbot .highlight .ld { color: #e6db74 } /* Literal.Date */
149
+ #chuanhu_chatbot .highlight .m { color: #ae81ff } /* Literal.Number */
150
+ #chuanhu_chatbot .highlight .s { color: #e6db74 } /* Literal.String */
151
+ #chuanhu_chatbot .highlight .na { color: #a6e22e } /* Name.Attribute */
152
+ #chuanhu_chatbot .highlight .nb { color: #f8f8f2 } /* Name.Builtin */
153
+ #chuanhu_chatbot .highlight .nc { color: #a6e22e } /* Name.Class */
154
+ #chuanhu_chatbot .highlight .no { color: #66d9ef } /* Name.Constant */
155
+ #chuanhu_chatbot .highlight .nd { color: #a6e22e } /* Name.Decorator */
156
+ #chuanhu_chatbot .highlight .ni { color: #f8f8f2 } /* Name.Entity */
157
+ #chuanhu_chatbot .highlight .ne { color: #a6e22e } /* Name.Exception */
158
+ #chuanhu_chatbot .highlight .nf { color: #a6e22e } /* Name.Function */
159
+ #chuanhu_chatbot .highlight .nl { color: #f8f8f2 } /* Name.Label */
160
+ #chuanhu_chatbot .highlight .nn { color: #f8f8f2 } /* Name.Namespace */
161
+ #chuanhu_chatbot .highlight .nx { color: #a6e22e } /* Name.Other */
162
+ #chuanhu_chatbot .highlight .py { color: #f8f8f2 } /* Name.Property */
163
+ #chuanhu_chatbot .highlight .nt { color: #f92672 } /* Name.Tag */
164
+ #chuanhu_chatbot .highlight .nv { color: #f8f8f2 } /* Name.Variable */
165
+ #chuanhu_chatbot .highlight .ow { color: #f92672 } /* Operator.Word */
166
+ #chuanhu_chatbot .highlight .w { color: #f8f8f2 } /* Text.Whitespace */
167
+ #chuanhu_chatbot .highlight .mb { color: #ae81ff } /* Literal.Number.Bin */
168
+ #chuanhu_chatbot .highlight .mf { color: #ae81ff } /* Literal.Number.Float */
169
+ #chuanhu_chatbot .highlight .mh { color: #ae81ff } /* Literal.Number.Hex */
170
+ #chuanhu_chatbot .highlight .mi { color: #ae81ff } /* Literal.Number.Integer */
171
+ #chuanhu_chatbot .highlight .mo { color: #ae81ff } /* Literal.Number.Oct */
172
+ #chuanhu_chatbot .highlight .sa { color: #e6db74 } /* Literal.String.Affix */
173
+ #chuanhu_chatbot .highlight .sb { color: #e6db74 } /* Literal.String.Backtick */
174
+ #chuanhu_chatbot .highlight .sc { color: #e6db74 } /* Literal.String.Char */
175
+ #chuanhu_chatbot .highlight .dl { color: #e6db74 } /* Literal.String.Delimiter */
176
+ #chuanhu_chatbot .highlight .sd { color: #e6db74 } /* Literal.String.Doc */
177
+ #chuanhu_chatbot .highlight .s2 { color: #e6db74 } /* Literal.String.Double */
178
+ #chuanhu_chatbot .highlight .se { color: #ae81ff } /* Literal.String.Escape */
179
+ #chuanhu_chatbot .highlight .sh { color: #e6db74 } /* Literal.String.Heredoc */
180
+ #chuanhu_chatbot .highlight .si { color: #e6db74 } /* Literal.String.Interpol */
181
+ #chuanhu_chatbot .highlight .sx { color: #e6db74 } /* Literal.String.Other */
182
+ #chuanhu_chatbot .highlight .sr { color: #e6db74 } /* Literal.String.Regex */
183
+ #chuanhu_chatbot .highlight .s1 { color: #e6db74 } /* Literal.String.Single */
184
+ #chuanhu_chatbot .highlight .ss { color: #e6db74 } /* Literal.String.Symbol */
185
+ #chuanhu_chatbot .highlight .bp { color: #f8f8f2 } /* Name.Builtin.Pseudo */
186
+ #chuanhu_chatbot .highlight .fm { color: #a6e22e } /* Name.Function.Magic */
187
+ #chuanhu_chatbot .highlight .vc { color: #f8f8f2 } /* Name.Variable.Class */
188
+ #chuanhu_chatbot .highlight .vg { color: #f8f8f2 } /* Name.Variable.Global */
189
+ #chuanhu_chatbot .highlight .vi { color: #f8f8f2 } /* Name.Variable.Instance */
190
+ #chuanhu_chatbot .highlight .vm { color: #f8f8f2 } /* Name.Variable.Magic */
191
+ #chuanhu_chatbot .highlight .il { color: #ae81ff } /* Literal.Number.Integer.Long */
custom.js ADDED
@@ -0,0 +1 @@
 
 
1
+ // custom javascript here
presets.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding:utf-8 -*-
2
+ import gradio as gr
3
+
4
+
5
+ title = """<h1 align="left" style="min-width:200px; margin-top:0;"> KI am LI </h1>"""
6
+ description_top = """\
7
+ <div align="left">
8
+ <p> Hinterlegtes KI-Model: EleutherAI/gpt-neo-1.3B</p>
9
+ <p>
10
+ Disclaimer: Das KI-Model, welches hier verwendet wird, kommt vom Hugging Face Model-Hub und ist ein Open-Source Model.
11
+ Diese Demo darf nicht für komerzielle genutzt werden!
12
+ Der Output des Models ist nicht zensiert und die Authoren der KI stimmen nicht unbedingt mit den Inhalten überein.
13
+ Gebrauch auf eigenes Risiko.
14
+ </p >
15
+ </div>
16
+ """
17
+ description = """\
18
+ <div align="center" style="margin:16px 0">
19
+ Diese Demo setzt auf auf dem Open-Source Model 'EleutherAI/gpt-neo-1.3B' von HuggingChat.
20
+ </div>
21
+ """
22
+ CONCURRENT_COUNT = 100
23
+
24
+
25
+ ALREADY_CONVERTED_MARK = "<!-- ALREADY CONVERTED BY PARSER. -->"
26
+
27
+ small_and_beautiful_theme = gr.themes.Soft(
28
+ primary_hue=gr.themes.Color(
29
+ c50="#02C160",
30
+ c100="rgba(2, 193, 96, 0.2)",
31
+ c200="#02C160",
32
+ c300="rgba(2, 193, 96, 0.32)",
33
+ c400="rgba(2, 193, 96, 0.32)",
34
+ c500="rgba(2, 193, 96, 1.0)",
35
+ c600="rgba(2, 193, 96, 1.0)",
36
+ c700="rgba(2, 193, 96, 0.32)",
37
+ c800="rgba(2, 193, 96, 0.32)",
38
+ c900="#02C160",
39
+ c950="#02C160",
40
+ ),
41
+ secondary_hue=gr.themes.Color(
42
+ c50="#576b95",
43
+ c100="#576b95",
44
+ c200="#576b95",
45
+ c300="#576b95",
46
+ c400="#576b95",
47
+ c500="#576b95",
48
+ c600="#576b95",
49
+ c700="#576b95",
50
+ c800="#576b95",
51
+ c900="#576b95",
52
+ c950="#576b95",
53
+ ),
54
+ neutral_hue=gr.themes.Color(
55
+ name="gray",
56
+ c50="#f9fafb",
57
+ c100="#f3f4f6",
58
+ c200="#e5e7eb",
59
+ c300="#d1d5db",
60
+ c400="#B2B2B2",
61
+ c500="#808080",
62
+ c600="#636363",
63
+ c700="#515151",
64
+ c800="#393939",
65
+ c900="#272727",
66
+ c950="#171717",
67
+ ),
68
+ radius_size=gr.themes.sizes.radius_sm,
69
+ ).set(
70
+ button_primary_background_fill="#06AE56",
71
+ button_primary_background_fill_dark="#06AE56",
72
+ button_primary_background_fill_hover="#07C863",
73
+ button_primary_border_color="#06AE56",
74
+ button_primary_border_color_dark="#06AE56",
75
+ button_primary_text_color="#FFFFFF",
76
+ button_primary_text_color_dark="#FFFFFF",
77
+ button_secondary_background_fill="#F2F2F2",
78
+ button_secondary_background_fill_dark="#2B2B2B",
79
+ button_secondary_text_color="#393939",
80
+ button_secondary_text_color_dark="#FFFFFF",
81
+ # background_fill_primary="#F7F7F7",
82
+ # background_fill_primary_dark="#1F1F1F",
83
+ block_title_text_color="*primary_500",
84
+ block_title_background_fill="*primary_100",
85
+ input_background_fill="#F6F6F6",
86
+ )
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ gradio
2
+ torch
3
+ accelerate
4
+ transformers==4.29.1
5
+ sentencepiece #fast Tokenizer - necessary, wenn torch_dtype=torch.float16 angeschaltet ist bei funktion load_tokenizer_and_model
6
+
7
+
8
+
utils.py ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+ from typing import TYPE_CHECKING, Any, Callable, Dict, List, Tuple, Type
3
+ import logging
4
+ import json
5
+ import os
6
+ import datetime
7
+ import hashlib
8
+ import csv
9
+ import requests
10
+ import re
11
+ import html
12
+ import torch
13
+ import sys
14
+ import gc
15
+ from pygments.lexers import guess_lexer, ClassNotFound
16
+ import gradio as gr
17
+ from pygments import highlight
18
+ from pygments.lexers import guess_lexer,get_lexer_by_name
19
+ from pygments.formatters import HtmlFormatter
20
+ import transformers
21
+ from transformers import AutoTokenizer, AutoModelForCausalLM
22
+
23
+
24
+ def reset_state():
25
+ return [], [], "Reset Done"
26
+
27
+ def reset_textbox():
28
+ return gr.update(value=""),""
29
+
30
+ def cancel_outputing():
31
+ return "Stop Done"
32
+
33
+ def transfer_input(inputs):
34
+ textbox = reset_textbox()
35
+ return (
36
+ inputs,
37
+ gr.update(value=""),
38
+ gr.Button.update(visible=True),
39
+ )
40
+
41
+ def is_stop_word_or_prefix(s: str, stop_words: list) -> bool:
42
+ for stop_word in stop_words:
43
+ if s.endswith(stop_word):
44
+ return True
45
+ for i in range(1, len(stop_word)):
46
+ if s.endswith(stop_word[:i]):
47
+ return True
48
+ return False
49
+
50
+ def generate_prompt_with_history(text, history, tokenizer, max_length=2048):
51
+ #prompt = "The following is a conversation between a human and an AI assistant named Baize (named after a mythical creature in Chinese folklore). Baize is an open-source AI assistant developed by UCSD and Sun Yat-Sen University. The human and the AI assistant take turns chatting. Human statements start with [|Human|] and AI assistant statements start with [|AI|]. The AI assistant always provides responses in as much detail as possible, and in Markdown format. The AI assistant always declines to engage with topics, questions and instructions related to unethical, controversial, or sensitive issues. Complete the transcript in exactly that format.\n[|Human|]Hello!\n[|AI|]Hi!"
52
+ prompt = "Das folgende ist eine Unterhaltung zwischen einem Menschen und einem KI-Assistenten, der Baize genannt wird. Baize ist ein open-source KI-Assistent, der von UCSD entwickelt wurde. Der Mensch und der KI-Assistent chatten abwechselnd miteinander. Die Antworten des KI Assistenten sind immer so ausführlich wie möglich und in Markdown Schreibweise. Die Antworten des KI-Assistenten vermeiden Themen und Antworten zu unethischen, kontroversen oder sensiblen Themen. Die Antworten sind immer sehr höflich formuliert..\n[|Human|]Hallo!\n[|AI|]Hi!"
53
+ history = ["\n[|Human|]{}\n[|AI|]{}".format(x[0],x[1]) for x in history]
54
+ history.append("\n[|Human|]{}\n[|AI|]".format(text))
55
+ history_text = ""
56
+ flag = False
57
+ for x in history[::-1]:
58
+ if tokenizer(prompt+history_text+x, return_tensors="pt")['input_ids'].size(-1) <= max_length:
59
+ history_text = x + history_text
60
+ flag = True
61
+ else:
62
+ break
63
+ if flag:
64
+ return prompt+history_text,tokenizer(prompt+history_text, return_tensors="pt")
65
+ else:
66
+ return None
67
+
68
+
69
+
70
+ def load_tokenizer_and_model(base_model,load_8bit=False):
71
+ if torch.cuda.is_available():
72
+ device = "cuda"
73
+ else:
74
+ device = "cpu"
75
+
76
+ tokenizer = AutoTokenizer.from_pretrained(base_model, use_fast = False)
77
+ if device == "cuda":
78
+ model = AutoModelForCausalLM.from_pretrained(
79
+ base_model,
80
+ load_in_8bit=load_8bit,
81
+ torch_dtype=torch.float16,
82
+ device_map="auto",
83
+ )
84
+ else:
85
+ model = AutoModelForCausalLM.from_pretrained(
86
+ base_model, device_map={"": device}, low_cpu_mem_usage=True
87
+ )
88
+
89
+ #if not load_8bit:
90
+ #model.half() # seems to fix bugs for some users.
91
+
92
+ model.eval()
93
+ return tokenizer,model,device
94
+
95
+ # Greedy Search
96
+ def greedy_search(input_ids: torch.Tensor,
97
+ model: torch.nn.Module,
98
+ tokenizer: transformers.PreTrainedTokenizer,
99
+ stop_words: list,
100
+ max_length: int,
101
+ temperature: float = 1.0,
102
+ top_p: float = 1.0,
103
+ top_k: int = 25) -> Iterator[str]:
104
+ generated_tokens = []
105
+ past_key_values = None
106
+ current_length = 1
107
+ for i in range(max_length):
108
+ with torch.no_grad():
109
+ if past_key_values is None:
110
+ outputs = model(input_ids)
111
+ else:
112
+ outputs = model(input_ids[:, -1:], past_key_values=past_key_values)
113
+ logits = outputs.logits[:, -1, :]
114
+ past_key_values = outputs.past_key_values
115
+
116
+ # apply temperature
117
+ logits /= temperature
118
+
119
+ probs = torch.softmax(logits, dim=-1)
120
+ # apply top_p
121
+ probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
122
+ probs_sum = torch.cumsum(probs_sort, dim=-1)
123
+ mask = probs_sum - probs_sort > top_p
124
+ probs_sort[mask] = 0.0
125
+
126
+ # apply top_k
127
+ #if top_k is not None:
128
+ # probs_sort1, _ = torch.topk(probs_sort, top_k)
129
+ # min_top_probs_sort = torch.min(probs_sort1, dim=-1, keepdim=True).values
130
+ # probs_sort = torch.where(probs_sort < min_top_probs_sort, torch.full_like(probs_sort, float(0.0)), probs_sort)
131
+
132
+ probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
133
+ next_token = torch.multinomial(probs_sort, num_samples=1)
134
+ next_token = torch.gather(probs_idx, -1, next_token)
135
+
136
+ input_ids = torch.cat((input_ids, next_token), dim=-1)
137
+
138
+ generated_tokens.append(next_token[0].item())
139
+ text = tokenizer.decode(generated_tokens)
140
+
141
+ yield text
142
+ if any([x in text for x in stop_words]):
143
+ del past_key_values
144
+ del logits
145
+ del probs
146
+ del probs_sort
147
+ del probs_idx
148
+ del probs_sum
149
+ gc.collect()
150
+ return
151
+
152
+ def convert_to_markdown(text):
153
+ text = text.replace("$","&#36;")
154
+ def replace_leading_tabs_and_spaces(line):
155
+ new_line = []
156
+
157
+ for char in line:
158
+ if char == "\t":
159
+ new_line.append("&#9;")
160
+ elif char == " ":
161
+ new_line.append("&nbsp;")
162
+ else:
163
+ break
164
+ return "".join(new_line) + line[len(new_line):]
165
+
166
+ markdown_text = ""
167
+ lines = text.split("\n")
168
+ in_code_block = False
169
+
170
+ for line in lines:
171
+ if in_code_block is False and line.startswith("```"):
172
+ in_code_block = True
173
+ markdown_text += f"{line}\n"
174
+ elif in_code_block is True and line.startswith("```"):
175
+ in_code_block = False
176
+ markdown_text += f"{line}\n"
177
+ elif in_code_block:
178
+ markdown_text += f"{line}\n"
179
+ else:
180
+ line = replace_leading_tabs_and_spaces(line)
181
+ line = re.sub(r"^(#)", r"\\\1", line)
182
+ markdown_text += f"{line} \n"
183
+
184
+ return markdown_text
185
+
186
+
187
+ class State:
188
+ interrupted = False
189
+
190
+ def interrupt(self):
191
+ self.interrupted = True
192
+
193
+ def recover(self):
194
+ self.interrupted = False
195
+ shared_state = State()