Alexis Rodriguez commited on
Commit
6e3969a
1 Parent(s): f504fd5

updated comments

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -23,7 +23,7 @@ embedding_model = PretrainedSpeakerEmbedding(
23
  device=torch.device("cuda" if torch.cuda.is_available() else "cpu"),
24
  )
25
 
26
-
27
  def bulk_transcribe(files, model):
28
  chosen_model = whisper.load_model(model)
29
  output = ""
@@ -42,13 +42,13 @@ def bulk_transcribe(files, model):
42
 
43
  return "Transcripci贸n.txt", output
44
 
45
-
46
  def get_file_name(file):
47
  file_path = file.split("/")
48
  file_name = file_path[-1]
49
  return file_name
50
 
51
-
52
  def transcribe(audio, model):
53
  num_speakers = 3
54
  path, error = convert_to_wav(audio)
@@ -103,7 +103,7 @@ audio = Audio()
103
 
104
  def segment_embedding(path, segment, duration):
105
  start = segment["start"]
106
- # Whisper overshoots the end timestamp in the last segment
107
  end = min(duration, segment["end"])
108
  clip = Segment(start, end)
109
  waveform, sample_rate = audio.crop(path, clip)
 
23
  device=torch.device("cuda" if torch.cuda.is_available() else "cpu"),
24
  )
25
 
26
+ #Transcribe a bulk of audio files
27
  def bulk_transcribe(files, model):
28
  chosen_model = whisper.load_model(model)
29
  output = ""
 
42
 
43
  return "Transcripci贸n.txt", output
44
 
45
+ #Getting the file name from the path
46
  def get_file_name(file):
47
  file_path = file.split("/")
48
  file_name = file_path[-1]
49
  return file_name
50
 
51
+ #The main function that transcribe each audio file
52
  def transcribe(audio, model):
53
  num_speakers = 3
54
  path, error = convert_to_wav(audio)
 
103
 
104
  def segment_embedding(path, segment, duration):
105
  start = segment["start"]
106
+
107
  end = min(duration, segment["end"])
108
  clip = Segment(start, end)
109
  waveform, sample_rate = audio.crop(path, clip)