Spaces:
Runtime error
Runtime error
Alex Chan
commited on
Commit
•
999c5c9
1
Parent(s):
e424ddb
initial commit
Browse files- .gitignore +1 -0
- Code/Inference.py +275 -0
- Code/__pycache__/Inference.cpython-311.pyc +0 -0
- Repositories/DeepLabCut-live/.gitignore +139 -0
- Repositories/DeepLabCut-live/CITATION.cff +55 -0
- Repositories/DeepLabCut-live/LICENSE +666 -0
- Repositories/DeepLabCut-live/MANIFEST.in +1 -0
- Repositories/DeepLabCut-live/README.md +153 -0
- Repositories/DeepLabCut-live/benchmarking/run_dlclive_benchmark.py +43 -0
- Repositories/DeepLabCut-live/dlclive/__init__.py +11 -0
- Repositories/DeepLabCut-live/dlclive/benchmark.py +726 -0
- Repositories/DeepLabCut-live/dlclive/check_install/check_install.py +88 -0
- Repositories/DeepLabCut-live/dlclive/display.py +117 -0
- Repositories/DeepLabCut-live/dlclive/dlclive.py +480 -0
- Repositories/DeepLabCut-live/dlclive/exceptions.py +18 -0
- Repositories/DeepLabCut-live/dlclive/graph.py +138 -0
- Repositories/DeepLabCut-live/dlclive/pose.py +120 -0
- Repositories/DeepLabCut-live/dlclive/processor/README.md +21 -0
- Repositories/DeepLabCut-live/dlclive/processor/__init__.py +9 -0
- Repositories/DeepLabCut-live/dlclive/processor/kalmanfilter.py +144 -0
- Repositories/DeepLabCut-live/dlclive/processor/processor.py +23 -0
- Repositories/DeepLabCut-live/dlclive/utils.py +218 -0
- Repositories/DeepLabCut-live/dlclive/version.py +11 -0
- Repositories/DeepLabCut-live/docs/install_desktop.md +29 -0
- Repositories/DeepLabCut-live/docs/install_jetson.md +81 -0
- Repositories/DeepLabCut-live/example_processors/DogJumpLED/__init__.py +9 -0
- Repositories/DeepLabCut-live/example_processors/DogJumpLED/izzy_jump.py +143 -0
- Repositories/DeepLabCut-live/example_processors/DogJumpLED/izzy_jump_offline.py +123 -0
- Repositories/DeepLabCut-live/example_processors/DogJumpLED/teensy_leds/teensy_leds.ino +49 -0
- Repositories/DeepLabCut-live/example_processors/MouseLickLED/__init__.py +8 -0
- Repositories/DeepLabCut-live/example_processors/MouseLickLED/lick_led.py +85 -0
- Repositories/DeepLabCut-live/example_processors/MouseLickLED/teensy_leds/teensy_leds.ino +49 -0
- Repositories/DeepLabCut-live/example_processors/TeensyLaser/__init__.py +8 -0
- Repositories/DeepLabCut-live/example_processors/TeensyLaser/teensy_laser.py +86 -0
- Repositories/DeepLabCut-live/example_processors/TeensyLaser/teensy_laser/teensy_laser.ino +77 -0
- Repositories/DeepLabCut-live/poetry.lock +0 -0
- Repositories/DeepLabCut-live/pyproject.toml +46 -0
- Repositories/DeepLabCut-live/reinstall.sh +4 -0
- app.py +46 -0
- requirements.txt +8 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Weights/
|
Code/Inference.py
ADDED
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
inference on single image for MaskRCNN (FROM DETECTRON) + DLC
|
3 |
+
|
4 |
+
two step, pretrained MaskRCNN, then DLC
|
5 |
+
|
6 |
+
"""
|
7 |
+
import cv2
|
8 |
+
import torch
|
9 |
+
|
10 |
+
import sys
|
11 |
+
sys.path.append("Repositories/DeepLabCut-live")
|
12 |
+
|
13 |
+
import deeplabcut as dlc
|
14 |
+
from dlclive import DLCLive, Processor
|
15 |
+
|
16 |
+
import matplotlib.pyplot as plt
|
17 |
+
import numpy as np
|
18 |
+
from tqdm import tqdm
|
19 |
+
import os
|
20 |
+
import shutil
|
21 |
+
|
22 |
+
import torchvision
|
23 |
+
from torchvision.transforms import transforms as transforms
|
24 |
+
|
25 |
+
import pickle
|
26 |
+
|
27 |
+
import detectron2
|
28 |
+
|
29 |
+
# import some common detectron2 utilities
|
30 |
+
from detectron2 import model_zoo
|
31 |
+
from detectron2.engine import DefaultPredictor
|
32 |
+
from detectron2.config import get_cfg
|
33 |
+
from detectron2.utils.visualizer import Visualizer
|
34 |
+
from detectron2.data import MetadataCatalog, DatasetCatalog
|
35 |
+
|
36 |
+
import cv2
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
COCO_INSTANCE_CATEGORY_NAMES = [
|
41 |
+
'__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
|
42 |
+
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',
|
43 |
+
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
|
44 |
+
'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A',
|
45 |
+
'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
|
46 |
+
'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
|
47 |
+
'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
|
48 |
+
'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
|
49 |
+
'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table',
|
50 |
+
'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
|
51 |
+
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
|
52 |
+
'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
|
53 |
+
]
|
54 |
+
|
55 |
+
|
56 |
+
def Process_Crop(Crop, CropSize):
|
57 |
+
"""Crop image and pad, if too big, will scale down """
|
58 |
+
# import ipdb;ipdb.set_trace()
|
59 |
+
if Crop.shape[0] > CropSize[0] or Crop.shape[1] > CropSize[1]: #Crop is bigger, scale down
|
60 |
+
ScaleProportion = min(CropSize[0]/Crop.shape[0],CropSize[1]/Crop.shape[1])
|
61 |
+
|
62 |
+
width_scaled = int(Crop.shape[1] * ScaleProportion)
|
63 |
+
height_scaled = int(Crop.shape[0] * ScaleProportion)
|
64 |
+
Crop = cv2.resize(Crop, (width_scaled,height_scaled), interpolation=cv2.INTER_LINEAR) # resize image
|
65 |
+
|
66 |
+
# Points2D = {k:[v[0]*ScaleProportion,v[1]*ScaleProportion] for k,v in Points2D.items()}
|
67 |
+
else:
|
68 |
+
ScaleProportion = 1
|
69 |
+
|
70 |
+
if Crop.shape[0] %2 ==0:
|
71 |
+
#Shape is even number
|
72 |
+
YPadTop = int((CropSize[1] - Crop.shape[0])/2)
|
73 |
+
YPadBot = int((CropSize[1] - Crop.shape[0])/2)
|
74 |
+
else:
|
75 |
+
YPadTop = int( ((CropSize[1] - Crop.shape[0])/2)-0.5)
|
76 |
+
YPadBot = int(((CropSize[1] - Crop.shape[0])/2)+0.5)
|
77 |
+
##Padding:
|
78 |
+
if Crop.shape[1] %2 ==0:
|
79 |
+
#Shape is even number
|
80 |
+
XPadLeft = int((CropSize[0] - Crop.shape[1])/2)
|
81 |
+
XPadRight= int((CropSize[0] - Crop.shape[1])/2)
|
82 |
+
else:
|
83 |
+
XPadLeft = int(((CropSize[0] - Crop.shape[1])/2)-0.5)
|
84 |
+
XPadRight= int(((CropSize[0] - Crop.shape[1])/2)+0.5)
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
OutImage = cv2.copyMakeBorder(Crop, YPadTop,YPadBot,XPadLeft,XPadRight,cv2.BORDER_CONSTANT,value=[0,0,0])
|
89 |
+
|
90 |
+
return OutImage,ScaleProportion, YPadTop,XPadLeft
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
def DLCInference(Crop,dlc_liveObj,CropSize):
|
95 |
+
"""Inference for DLC"""
|
96 |
+
|
97 |
+
###Scale crop if image bigger than cropsize
|
98 |
+
# import ipdb;ipdb.set_trace()
|
99 |
+
if Crop.shape[0] > CropSize[0] or Crop.shape[1] > CropSize[1]: #Image bigger than crop size, scale down
|
100 |
+
ScaleRatio = min([CropSize[0]/Crop.shape[0], CropSize[1]/Crop.shape[1]])
|
101 |
+
ScaleWidth = round(Crop.shape[1] * ScaleRatio)
|
102 |
+
ScaleHeight = round(Crop.shape[0]*ScaleRatio)
|
103 |
+
resizedCrop = cv2.resize(Crop, (ScaleWidth,ScaleHeight), interpolation=cv2.INTER_LINEAR) # resize image
|
104 |
+
ScaleUpRatio = 1/ScaleRatio #ratio to scale keypoints back up to original
|
105 |
+
# import ipdb;ipdb.set_trace()
|
106 |
+
else:
|
107 |
+
resizedCrop = Crop
|
108 |
+
ScaleUpRatio = 1
|
109 |
+
# cv2.imwrite(filename="tempresize.jpg", img=resizedCrop)
|
110 |
+
# cv2.imwrite(filename="temp.jpg", img=Crop)
|
111 |
+
if dlc_liveObj.sess == None: #if first time, init
|
112 |
+
DLCPredict2D = dlc_liveObj.init_inference(resizedCrop)
|
113 |
+
|
114 |
+
DLCPredict2D= dlc_liveObj.get_pose(resizedCrop)
|
115 |
+
DLCPredict2D[:,0] = DLCPredict2D[:,0]*ScaleUpRatio
|
116 |
+
DLCPredict2D[:,1] = DLCPredict2D[:,1]*ScaleUpRatio
|
117 |
+
|
118 |
+
return DLCPredict2D
|
119 |
+
|
120 |
+
|
121 |
+
def VisualizeAll(frame, box, DLCPredict2D,MeanConfidence,ScaleBBox, imsize):
|
122 |
+
"""Visualize all stuff"""
|
123 |
+
# colourList = [(255,255,0),(255,0 ,255),(128,0,128),(203,192,255),(0, 255, 255),(255, 0 , 0 ),(63,133,205),(0,255,0),(0,0,255)]
|
124 |
+
colourList = [(0,255,255),(255,0 ,255),(128,0,128),(255,192,203),(255, 255, 0),(0, 0 , 255 ),(205,133,63),(0,255,0),(255,0,0)]
|
125 |
+
|
126 |
+
##Order: Lshoulder, Rshoulder, topKeel,botKeel,Tail,Beak,Nose,Leye,Reye
|
127 |
+
##Points:
|
128 |
+
PlotPoints = []
|
129 |
+
for x,point in enumerate(DLCPredict2D):
|
130 |
+
roundPoint = [round(point[0]+box[0]),round(point[1]+box[1])]
|
131 |
+
cv2.circle(frame,roundPoint,1,colourList[x], 5)
|
132 |
+
PlotPoints.append(roundPoint)
|
133 |
+
|
134 |
+
|
135 |
+
##change box to XYWH to scale down
|
136 |
+
# bbox = [box[0],box[1],box[2]-box[0],box[3]-box[1]]
|
137 |
+
# ScaleWidth = (bbox[2]/ScaleBBox)/2
|
138 |
+
# ScaleHeight = (bbox[3]/ScaleBBox)/2
|
139 |
+
# ###based on ScaleBBox, scale back down bounding box for plotting
|
140 |
+
# x1 = round(bbox[0]+ScaleWidth) if round(bbox[0]+ScaleWidth)>0 else 0
|
141 |
+
# y1 = round(bbox[1]+ScaleHeight)if round(bbox[1]+ScaleHeight)>0 else 0
|
142 |
+
# x2 = round(bbox[0]+bbox[2]-ScaleWidth) if round(bbox[0]+bbox[2]-ScaleWidth) < imsize[0] else imsize[0]
|
143 |
+
# y2 = round(bbox[1]+bbox[3]-ScaleHeight)if round(bbox[1]+bbox[3]-ScaleHeight) < imsize[1] else imsize[1]
|
144 |
+
# box = [x1,y1,x2,y2]
|
145 |
+
cv2.rectangle(frame,(round(box[0]),round(box[1])),(round(box[2]),round(box[3])),[0,0,255],3)
|
146 |
+
|
147 |
+
#plot mean confidence
|
148 |
+
# import ipdb;ipdb.set_trace()
|
149 |
+
# font = cv2.FONT_HERSHEY_SIMPLEX
|
150 |
+
# cv2.putText(frame,str(round(MeanConfidence,3)),(round(box[0]),round(box[1])),font,2,[255,0,0],2)
|
151 |
+
|
152 |
+
return frame, PlotPoints
|
153 |
+
|
154 |
+
|
155 |
+
def Inference(frame,predictor,dlc_liveObj,ScaleBBox=1,Dilate=5,DLCThreshold=0.3):
|
156 |
+
"""Loop through video for SAM, save framewise info"""
|
157 |
+
|
158 |
+
InferFrame = frame.copy()
|
159 |
+
outputs = predictor(InferFrame)["instances"].to("cpu")
|
160 |
+
CropSize = (320,320)
|
161 |
+
|
162 |
+
# import ipdb;ipdb.set_trace()
|
163 |
+
imsize = [frame.shape[1],frame.shape[0]]
|
164 |
+
|
165 |
+
BirdIndex = np.where(outputs.pred_classes.numpy() == 14)[0] #14 is ID for bird
|
166 |
+
BirdBBox = outputs.pred_boxes[BirdIndex].tensor.numpy()
|
167 |
+
# import ipdb;ipdb.set_trace()
|
168 |
+
BirdMasks = (outputs.pred_masks>0.95).numpy()[BirdIndex]
|
169 |
+
|
170 |
+
for x in range(BirdBBox.shape[0]):
|
171 |
+
# import ipdb;ipdb.set_trace()
|
172 |
+
|
173 |
+
bbox = list(BirdBBox[x])
|
174 |
+
Mask = BirdMasks[x]>0
|
175 |
+
Mask = np.array(Mask,dtype=np.uint8)
|
176 |
+
# show_anns(frame, Mask)
|
177 |
+
|
178 |
+
if Dilate > 0:
|
179 |
+
DilateKernel = np.ones((Dilate,Dilate),np.uint8)
|
180 |
+
Mask = cv2.dilate(Mask,DilateKernel,iterations = 3)
|
181 |
+
|
182 |
+
# import ipdb;ipdb.set_trace()
|
183 |
+
Mask = np.array(Mask,dtype=np.uint8)
|
184 |
+
Mask = Mask.reshape(imsize[1],imsize[0],1)
|
185 |
+
Crop = cv2.bitwise_and(InferFrame, InferFrame, mask=Mask)
|
186 |
+
|
187 |
+
# cv2.imwrite(filename="temp.jpg", img = Crop)
|
188 |
+
|
189 |
+
##change box to XYWH to scale up
|
190 |
+
bbox = [bbox[0],bbox[1],bbox[2]-bbox[0],bbox[3]-bbox[1]]
|
191 |
+
ScaleWidth = ((ScaleBBox * bbox[2])/2)-(bbox[2]/2)
|
192 |
+
ScaleHeight = ((ScaleBBox * bbox[3])/2)-(bbox[3]/2)
|
193 |
+
# import ipdb;ipdb.set_trace()
|
194 |
+
# BirdCrop = frame[round(bbox[1]):round(bbox[3]),round(bbox[0]):round(bbox[2])] #bbox is XYWH
|
195 |
+
|
196 |
+
x1 = round(bbox[0]-ScaleWidth) if round(bbox[0]-ScaleWidth)>0 else 0
|
197 |
+
y1 = round(bbox[1]-ScaleHeight)if round(bbox[1]-ScaleHeight)>0 else 0
|
198 |
+
x2 = round(bbox[0]+bbox[2]+ScaleWidth) if round(bbox[0]+bbox[2]+ScaleWidth) < imsize[0] else imsize[0]
|
199 |
+
y2 = round(bbox[1]+bbox[3]+ScaleHeight)if round(bbox[1]+bbox[3]+ScaleHeight) < imsize[1] else imsize[1]
|
200 |
+
bbox = [x1,y1,x2,y2]
|
201 |
+
BirdCrop = Crop[y1:y2,x1:x2] #bbox is XYWH
|
202 |
+
|
203 |
+
DLCPredict2D= DLCInference(BirdCrop,dlc_liveObj,CropSize)
|
204 |
+
MeanConfidence = DLCPredict2D[:,2].mean()
|
205 |
+
|
206 |
+
if MeanConfidence > DLCThreshold: #if mean keypoint confidence is higher than this threshold, consider bird
|
207 |
+
bbox.append(MeanConfidence)
|
208 |
+
frame, PlotPoints = VisualizeAll(frame, bbox, DLCPredict2D,MeanConfidence,ScaleBBox,imsize)
|
209 |
+
|
210 |
+
if BirdBBox.shape[0] == 0:
|
211 |
+
DLCPredict2D= DLCInference(InferFrame,dlc_liveObj,CropSize)
|
212 |
+
MeanConfidence = DLCPredict2D[:,2].mean()
|
213 |
+
bbox = [0,0,0,0]
|
214 |
+
if MeanConfidence > DLCThreshold: #if mean keypoint confidence is higher than this threshold, consider bird
|
215 |
+
frame, PlotPoints = VisualizeAll(frame, bbox, DLCPredict2D,MeanConfidence,ScaleBBox,imsize)
|
216 |
+
|
217 |
+
return frame
|
218 |
+
|
219 |
+
|
220 |
+
|
221 |
+
|
222 |
+
if __name__ == "__main__":
|
223 |
+
# VidPath = "/media/alexchan/Extreme SSD/WorkDir/Pigeon3DTrack/ManualClickTrials/Videos/Cam1_C0008.MP4_Trimmed.mp4"
|
224 |
+
VidPath = "/media/alexchan/Extreme SSD/SampleDatasets/PigeonsEverywhere/2022-12-01_Pilot_bottom_control.mp4"
|
225 |
+
|
226 |
+
OutDir = "/media/alexchan/Extreme SSD/WorkDir/Pigeon3DTrack/OutdoorTracking/Final2D"
|
227 |
+
|
228 |
+
ExportModelPath = "/media/alexchan/Extreme SSD/WorkDir/Pigeon3DTrack/Weights/DLC_Weights/N6000_DLC_Mask/exported-models/DLC_DLC_Segmented_resnet_50_iteration-0_shuffle-1"
|
229 |
+
# ExportModelPath = "/media/alexchan/Extreme SSD/WorkDir/Pigeon3DTrack/Weights/DLC_Weights/DLC_PigeonSuperModel_imgaug_efficientnet-b0_iteration-0_shuffle-2"
|
230 |
+
|
231 |
+
if not os.path.isdir(ExportModelPath):
|
232 |
+
#need to export model first
|
233 |
+
# DLC_Config = "/media/alexchan/Extreme SSD/SampleDatasets/ImageTrainingData/N5000/DLC_Seg_Aug/config.yaml"
|
234 |
+
|
235 |
+
dlc.export_model(DLC_Config)
|
236 |
+
else:
|
237 |
+
print("model already exported!")
|
238 |
+
|
239 |
+
CropSize = (320,320)
|
240 |
+
# WeightPath = "/home/alexchan/Documents/Pigeon3DTrack/Data/YOLO_Weights/yolov8m.pt"
|
241 |
+
# VidPath= "/media/alexchan/Extreme SSD/PigeonOutdoors/28032023/Cam1_C0004.MP4"
|
242 |
+
# import ipdb;ipdb.set_trace()
|
243 |
+
# YOLOModel = YOLO(YOLOPath)
|
244 |
+
device = "cuda"
|
245 |
+
# device = "cpu"
|
246 |
+
|
247 |
+
###Detectron:
|
248 |
+
cfg = get_cfg()
|
249 |
+
# add project-specific config (e.g., TensorMask) here if you're not running a model in detectron2's core library
|
250 |
+
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml"))
|
251 |
+
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7 # set threshold for this model
|
252 |
+
# Find a model from detectron2's model zoo. You can use the https://dl.fbaipublicfiles... url as well
|
253 |
+
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml")
|
254 |
+
predictor = DefaultPredictor(cfg)
|
255 |
+
|
256 |
+
|
257 |
+
##DLC:
|
258 |
+
dlc_proc = Processor()
|
259 |
+
dlc_liveObj = DLCLive(ExportModelPath, processor=dlc_proc)
|
260 |
+
|
261 |
+
RunInference(predictor,dlc_liveObj, device,OutDir,
|
262 |
+
VidPath,CropSize,startFrame=0,
|
263 |
+
TotalFrames =900, ScaleBBox=1.3,
|
264 |
+
DLCThreshold = 0, Dilate=5)
|
265 |
+
|
266 |
+
|
267 |
+
|
268 |
+
###DLC tests
|
269 |
+
# DLC_Config = "/media/alexchan/Extreme SSD/SampleDatasets/ImageTrainingData/N5000/DLC/config.yaml"
|
270 |
+
# Video = "/media/alexchan/Extreme SSD/SampleDatasets/ImageTrainingData/N5000/DLC/videos/Video1.mp4"
|
271 |
+
# dlc.analyze_videos(DLC_Config,[Video])
|
272 |
+
# dlc.export_model(DLC_Config)
|
273 |
+
|
274 |
+
# import pandas as pd
|
275 |
+
# pd.read_hdf("/media/alexchan/Extreme SSD/SampleDatasets/ImageTrainingData/N5000/DLC/videos/Video1DLC_resnet50_DLC20230401-173058shuffle1_3000.h5")
|
Code/__pycache__/Inference.cpython-311.pyc
ADDED
Binary file (12.1 kB). View file
|
|
Repositories/DeepLabCut-live/.gitignore
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# DeepLabCut-live
|
2 |
+
|
3 |
+
# Data related to benchmark!
|
4 |
+
benchmarking/Data*
|
5 |
+
benchmarking/results*
|
6 |
+
|
7 |
+
*test*
|
8 |
+
**DS_Store*
|
9 |
+
*vscode*
|
10 |
+
|
11 |
+
# Byte-compiled / optimized / DLL files
|
12 |
+
__pycache__/
|
13 |
+
*.py[cod]
|
14 |
+
*$py.class
|
15 |
+
|
16 |
+
# C extensions
|
17 |
+
*.so
|
18 |
+
|
19 |
+
# Distribution / packaging
|
20 |
+
.Python
|
21 |
+
build/
|
22 |
+
develop-eggs/
|
23 |
+
dist/
|
24 |
+
downloads/
|
25 |
+
eggs/
|
26 |
+
.eggs/
|
27 |
+
lib/
|
28 |
+
lib64/
|
29 |
+
parts/
|
30 |
+
sdist/
|
31 |
+
var/
|
32 |
+
wheels/
|
33 |
+
pip-wheel-metadata/
|
34 |
+
share/python-wheels/
|
35 |
+
*.egg-info/
|
36 |
+
.installed.cfg
|
37 |
+
*.egg
|
38 |
+
MANIFEST
|
39 |
+
|
40 |
+
# PyInstaller
|
41 |
+
# Usually these files are written by a python script from a template
|
42 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
43 |
+
*.manifest
|
44 |
+
*.spec
|
45 |
+
|
46 |
+
# Installer logs
|
47 |
+
pip-log.txt
|
48 |
+
pip-delete-this-directory.txt
|
49 |
+
|
50 |
+
# Unit test / coverage reports
|
51 |
+
htmlcov/
|
52 |
+
.tox/
|
53 |
+
.nox/
|
54 |
+
.coverage
|
55 |
+
.coverage.*
|
56 |
+
.cache
|
57 |
+
nosetests.xml
|
58 |
+
coverage.xml
|
59 |
+
*.cover
|
60 |
+
*.py,cover
|
61 |
+
.hypothesis/
|
62 |
+
.pytest_cache/
|
63 |
+
|
64 |
+
# Translations
|
65 |
+
*.mo
|
66 |
+
*.pot
|
67 |
+
|
68 |
+
# Django stuff:
|
69 |
+
*.log
|
70 |
+
local_settings.py
|
71 |
+
db.sqlite3
|
72 |
+
db.sqlite3-journal
|
73 |
+
|
74 |
+
# Flask stuff:
|
75 |
+
instance/
|
76 |
+
.webassets-cache
|
77 |
+
|
78 |
+
# Scrapy stuff:
|
79 |
+
.scrapy
|
80 |
+
|
81 |
+
# Sphinx documentation
|
82 |
+
docs/_build/
|
83 |
+
|
84 |
+
# PyBuilder
|
85 |
+
target/
|
86 |
+
|
87 |
+
# Jupyter Notebook
|
88 |
+
.ipynb_checkpoints
|
89 |
+
|
90 |
+
# IPython
|
91 |
+
profile_default/
|
92 |
+
ipython_config.py
|
93 |
+
|
94 |
+
# pyenv
|
95 |
+
.python-version
|
96 |
+
|
97 |
+
# pipenv
|
98 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
99 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
100 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
101 |
+
# install all needed dependencies.
|
102 |
+
#Pipfile.lock
|
103 |
+
|
104 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
105 |
+
__pypackages__/
|
106 |
+
|
107 |
+
# Celery stuff
|
108 |
+
celerybeat-schedule
|
109 |
+
celerybeat.pid
|
110 |
+
|
111 |
+
# SageMath parsed files
|
112 |
+
*.sage.py
|
113 |
+
|
114 |
+
# Environments
|
115 |
+
.env
|
116 |
+
.venv
|
117 |
+
env/
|
118 |
+
venv/
|
119 |
+
ENV/
|
120 |
+
env.bak/
|
121 |
+
venv.bak/
|
122 |
+
|
123 |
+
# Spyder project settings
|
124 |
+
.spyderproject
|
125 |
+
.spyproject
|
126 |
+
|
127 |
+
# Rope project settings
|
128 |
+
.ropeproject
|
129 |
+
|
130 |
+
# mkdocs documentation
|
131 |
+
/site
|
132 |
+
|
133 |
+
# mypy
|
134 |
+
.mypy_cache/
|
135 |
+
.dmypy.json
|
136 |
+
dmypy.json
|
137 |
+
|
138 |
+
# Pyre type checker
|
139 |
+
.pyre/
|
Repositories/DeepLabCut-live/CITATION.cff
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This CITATION.cff file was generated with cffinit.
|
2 |
+
# Visit https://bit.ly/cffinit to generate yours today!
|
3 |
+
|
4 |
+
cff-version: 1.2.0
|
5 |
+
title: >-
|
6 |
+
Real-time, low-latency closed-loop feedback using
|
7 |
+
markerless posture tracking
|
8 |
+
message: >-
|
9 |
+
If you utilize our tool, please [cite Kane et al,
|
10 |
+
eLife
|
11 |
+
2020](https://elifesciences.org/articles/61909).
|
12 |
+
The preprint is available here:
|
13 |
+
https://www.biorxiv.org/content/10.1101/2020.08.04.236422v2
|
14 |
+
type: article
|
15 |
+
authors:
|
16 |
+
- given-names: Gary
|
17 |
+
name-particle: A
|
18 |
+
family-names: Kane
|
19 |
+
affiliation: >-
|
20 |
+
The Rowland Institute at Harvard, Harvard
|
21 |
+
University, Cambridge, United States
|
22 |
+
- given-names: Gonçalo
|
23 |
+
family-names: Lopes
|
24 |
+
affiliation: 'NeuroGEARS Ltd, London, United Kingdom'
|
25 |
+
- given-names: Jonny
|
26 |
+
name-particle: L
|
27 |
+
family-names: Saunders
|
28 |
+
affiliation: >-
|
29 |
+
Institute of Neuroscience, Department of
|
30 |
+
Psychology, University of Oregon, Eugene,
|
31 |
+
United States
|
32 |
+
- given-names: Alexander
|
33 |
+
family-names: Mathis
|
34 |
+
affiliation: >-
|
35 |
+
The Rowland Institute at Harvard, Harvard
|
36 |
+
University, Cambridge, United States; Center
|
37 |
+
for Neuroprosthetics, Center for Intelligent
|
38 |
+
Systems, & Brain Mind Institute, School of Life
|
39 |
+
Sciences, Swiss Federal Institute of Technology
|
40 |
+
(EPFL), Lausanne, Switzerland
|
41 |
+
- given-names: Mackenzie
|
42 |
+
name-particle: W
|
43 |
+
family-names: Mathis
|
44 |
+
affiliation: >-
|
45 |
+
The Rowland Institute at Harvard, Harvard
|
46 |
+
University, Cambridge, United States; Center
|
47 |
+
for Neuroprosthetics, Center for Intelligent
|
48 |
+
Systems, & Brain Mind Institute, School of Life
|
49 |
+
Sciences, Swiss Federal Institute of Technology
|
50 |
+
(EPFL), Lausanne, Switzerland
|
51 |
+
email: mackenzie.mathis@epfl.ch
|
52 |
+
date-released: 2020-08-05
|
53 |
+
doi: "10.7554/eLife.61909"
|
54 |
+
license: "AGPL-3.0-or-later"
|
55 |
+
version: "1.0.3"
|
Repositories/DeepLabCut-live/LICENSE
ADDED
@@ -0,0 +1,666 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Copyright 2020-2022 by Mackenzie Mathis, Gary Kane, Alexander Mathis and contributors. All rights reserved.
|
2 |
+
This software may not be used to harm any person deliberately.
|
3 |
+
|
4 |
+
This project and all its files are licensed under GNU AGPLv3 or later version.
|
5 |
+
|
6 |
+
GNU AFFERO GENERAL PUBLIC LICENSE
|
7 |
+
Version 3, 19 November 2007
|
8 |
+
|
9 |
+
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
10 |
+
Everyone is permitted to copy and distribute verbatim copies
|
11 |
+
of this license document, but changing it is not allowed.
|
12 |
+
|
13 |
+
Preamble
|
14 |
+
|
15 |
+
The GNU Affero General Public License is a free, copyleft license for
|
16 |
+
software and other kinds of works, specifically designed to ensure
|
17 |
+
cooperation with the community in the case of network server software.
|
18 |
+
|
19 |
+
The licenses for most software and other practical works are designed
|
20 |
+
to take away your freedom to share and change the works. By contrast,
|
21 |
+
our General Public Licenses are intended to guarantee your freedom to
|
22 |
+
share and change all versions of a program--to make sure it remains free
|
23 |
+
software for all its users.
|
24 |
+
|
25 |
+
When we speak of free software, we are referring to freedom, not
|
26 |
+
price. Our General Public Licenses are designed to make sure that you
|
27 |
+
have the freedom to distribute copies of free software (and charge for
|
28 |
+
them if you wish), that you receive source code or can get it if you
|
29 |
+
want it, that you can change the software or use pieces of it in new
|
30 |
+
free programs, and that you know you can do these things.
|
31 |
+
|
32 |
+
Developers that use our General Public Licenses protect your rights
|
33 |
+
with two steps: (1) assert copyright on the software, and (2) offer
|
34 |
+
you this License which gives you legal permission to copy, distribute
|
35 |
+
and/or modify the software.
|
36 |
+
|
37 |
+
A secondary benefit of defending all users' freedom is that
|
38 |
+
improvements made in alternate versions of the program, if they
|
39 |
+
receive widespread use, become available for other developers to
|
40 |
+
incorporate. Many developers of free software are heartened and
|
41 |
+
encouraged by the resulting cooperation. However, in the case of
|
42 |
+
software used on network servers, this result may fail to come about.
|
43 |
+
The GNU General Public License permits making a modified version and
|
44 |
+
letting the public access it on a server without ever releasing its
|
45 |
+
source code to the public.
|
46 |
+
|
47 |
+
The GNU Affero General Public License is designed specifically to
|
48 |
+
ensure that, in such cases, the modified source code becomes available
|
49 |
+
to the community. It requires the operator of a network server to
|
50 |
+
provide the source code of the modified version running there to the
|
51 |
+
users of that server. Therefore, public use of a modified version, on
|
52 |
+
a publicly accessible server, gives the public access to the source
|
53 |
+
code of the modified version.
|
54 |
+
|
55 |
+
An older license, called the Affero General Public License and
|
56 |
+
published by Affero, was designed to accomplish similar goals. This is
|
57 |
+
a different license, not a version of the Affero GPL, but Affero has
|
58 |
+
released a new version of the Affero GPL which permits relicensing under
|
59 |
+
this license.
|
60 |
+
|
61 |
+
The precise terms and conditions for copying, distribution and
|
62 |
+
modification follow.
|
63 |
+
|
64 |
+
TERMS AND CONDITIONS
|
65 |
+
|
66 |
+
0. Definitions.
|
67 |
+
|
68 |
+
"This License" refers to version 3 of the GNU Affero General Public License.
|
69 |
+
|
70 |
+
"Copyright" also means copyright-like laws that apply to other kinds of
|
71 |
+
works, such as semiconductor masks.
|
72 |
+
|
73 |
+
"The Program" refers to any copyrightable work licensed under this
|
74 |
+
License. Each licensee is addressed as "you". "Licensees" and
|
75 |
+
"recipients" may be individuals or organizations.
|
76 |
+
|
77 |
+
To "modify" a work means to copy from or adapt all or part of the work
|
78 |
+
in a fashion requiring copyright permission, other than the making of an
|
79 |
+
exact copy. The resulting work is called a "modified version" of the
|
80 |
+
earlier work or a work "based on" the earlier work.
|
81 |
+
|
82 |
+
A "covered work" means either the unmodified Program or a work based
|
83 |
+
on the Program.
|
84 |
+
|
85 |
+
To "propagate" a work means to do anything with it that, without
|
86 |
+
permission, would make you directly or secondarily liable for
|
87 |
+
infringement under applicable copyright law, except executing it on a
|
88 |
+
computer or modifying a private copy. Propagation includes copying,
|
89 |
+
distribution (with or without modification), making available to the
|
90 |
+
public, and in some countries other activities as well.
|
91 |
+
|
92 |
+
To "convey" a work means any kind of propagation that enables other
|
93 |
+
parties to make or receive copies. Mere interaction with a user through
|
94 |
+
a computer network, with no transfer of a copy, is not conveying.
|
95 |
+
|
96 |
+
An interactive user interface displays "Appropriate Legal Notices"
|
97 |
+
to the extent that it includes a convenient and prominently visible
|
98 |
+
feature that (1) displays an appropriate copyright notice, and (2)
|
99 |
+
tells the user that there is no warranty for the work (except to the
|
100 |
+
extent that warranties are provided), that licensees may convey the
|
101 |
+
work under this License, and how to view a copy of this License. If
|
102 |
+
the interface presents a list of user commands or options, such as a
|
103 |
+
menu, a prominent item in the list meets this criterion.
|
104 |
+
|
105 |
+
1. Source Code.
|
106 |
+
|
107 |
+
The "source code" for a work means the preferred form of the work
|
108 |
+
for making modifications to it. "Object code" means any non-source
|
109 |
+
form of a work.
|
110 |
+
|
111 |
+
A "Standard Interface" means an interface that either is an official
|
112 |
+
standard defined by a recognized standards body, or, in the case of
|
113 |
+
interfaces specified for a particular programming language, one that
|
114 |
+
is widely used among developers working in that language.
|
115 |
+
|
116 |
+
The "System Libraries" of an executable work include anything, other
|
117 |
+
than the work as a whole, that (a) is included in the normal form of
|
118 |
+
packaging a Major Component, but which is not part of that Major
|
119 |
+
Component, and (b) serves only to enable use of the work with that
|
120 |
+
Major Component, or to implement a Standard Interface for which an
|
121 |
+
implementation is available to the public in source code form. A
|
122 |
+
"Major Component", in this context, means a major essential component
|
123 |
+
(kernel, window system, and so on) of the specific operating system
|
124 |
+
(if any) on which the executable work runs, or a compiler used to
|
125 |
+
produce the work, or an object code interpreter used to run it.
|
126 |
+
|
127 |
+
The "Corresponding Source" for a work in object code form means all
|
128 |
+
the source code needed to generate, install, and (for an executable
|
129 |
+
work) run the object code and to modify the work, including scripts to
|
130 |
+
control those activities. However, it does not include the work's
|
131 |
+
System Libraries, or general-purpose tools or generally available free
|
132 |
+
programs which are used unmodified in performing those activities but
|
133 |
+
which are not part of the work. For example, Corresponding Source
|
134 |
+
includes interface definition files associated with source files for
|
135 |
+
the work, and the source code for shared libraries and dynamically
|
136 |
+
linked subprograms that the work is specifically designed to require,
|
137 |
+
such as by intimate data communication or control flow between those
|
138 |
+
subprograms and other parts of the work.
|
139 |
+
|
140 |
+
The Corresponding Source need not include anything that users
|
141 |
+
can regenerate automatically from other parts of the Corresponding
|
142 |
+
Source.
|
143 |
+
|
144 |
+
The Corresponding Source for a work in source code form is that
|
145 |
+
same work.
|
146 |
+
|
147 |
+
2. Basic Permissions.
|
148 |
+
|
149 |
+
All rights granted under this License are granted for the term of
|
150 |
+
copyright on the Program, and are irrevocable provided the stated
|
151 |
+
conditions are met. This License explicitly affirms your unlimited
|
152 |
+
permission to run the unmodified Program. The output from running a
|
153 |
+
covered work is covered by this License only if the output, given its
|
154 |
+
content, constitutes a covered work. This License acknowledges your
|
155 |
+
rights of fair use or other equivalent, as provided by copyright law.
|
156 |
+
|
157 |
+
You may make, run and propagate covered works that you do not
|
158 |
+
convey, without conditions so long as your license otherwise remains
|
159 |
+
in force. You may convey covered works to others for the sole purpose
|
160 |
+
of having them make modifications exclusively for you, or provide you
|
161 |
+
with facilities for running those works, provided that you comply with
|
162 |
+
the terms of this License in conveying all material for which you do
|
163 |
+
not control copyright. Those thus making or running the covered works
|
164 |
+
for you must do so exclusively on your behalf, under your direction
|
165 |
+
and control, on terms that prohibit them from making any copies of
|
166 |
+
your copyrighted material outside their relationship with you.
|
167 |
+
|
168 |
+
Conveying under any other circumstances is permitted solely under
|
169 |
+
the conditions stated below. Sublicensing is not allowed; section 10
|
170 |
+
makes it unnecessary.
|
171 |
+
|
172 |
+
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
173 |
+
|
174 |
+
No covered work shall be deemed part of an effective technological
|
175 |
+
measure under any applicable law fulfilling obligations under article
|
176 |
+
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
177 |
+
similar laws prohibiting or restricting circumvention of such
|
178 |
+
measures.
|
179 |
+
|
180 |
+
When you convey a covered work, you waive any legal power to forbid
|
181 |
+
circumvention of technological measures to the extent such circumvention
|
182 |
+
is effected by exercising rights under this License with respect to
|
183 |
+
the covered work, and you disclaim any intention to limit operation or
|
184 |
+
modification of the work as a means of enforcing, against the work's
|
185 |
+
users, your or third parties' legal rights to forbid circumvention of
|
186 |
+
technological measures.
|
187 |
+
|
188 |
+
4. Conveying Verbatim Copies.
|
189 |
+
|
190 |
+
You may convey verbatim copies of the Program's source code as you
|
191 |
+
receive it, in any medium, provided that you conspicuously and
|
192 |
+
appropriately publish on each copy an appropriate copyright notice;
|
193 |
+
keep intact all notices stating that this License and any
|
194 |
+
non-permissive terms added in accord with section 7 apply to the code;
|
195 |
+
keep intact all notices of the absence of any warranty; and give all
|
196 |
+
recipients a copy of this License along with the Program.
|
197 |
+
|
198 |
+
You may charge any price or no price for each copy that you convey,
|
199 |
+
and you may offer support or warranty protection for a fee.
|
200 |
+
|
201 |
+
5. Conveying Modified Source Versions.
|
202 |
+
|
203 |
+
You may convey a work based on the Program, or the modifications to
|
204 |
+
produce it from the Program, in the form of source code under the
|
205 |
+
terms of section 4, provided that you also meet all of these conditions:
|
206 |
+
|
207 |
+
a) The work must carry prominent notices stating that you modified
|
208 |
+
it, and giving a relevant date.
|
209 |
+
|
210 |
+
b) The work must carry prominent notices stating that it is
|
211 |
+
released under this License and any conditions added under section
|
212 |
+
7. This requirement modifies the requirement in section 4 to
|
213 |
+
"keep intact all notices".
|
214 |
+
|
215 |
+
c) You must license the entire work, as a whole, under this
|
216 |
+
License to anyone who comes into possession of a copy. This
|
217 |
+
License will therefore apply, along with any applicable section 7
|
218 |
+
additional terms, to the whole of the work, and all its parts,
|
219 |
+
regardless of how they are packaged. This License gives no
|
220 |
+
permission to license the work in any other way, but it does not
|
221 |
+
invalidate such permission if you have separately received it.
|
222 |
+
|
223 |
+
d) If the work has interactive user interfaces, each must display
|
224 |
+
Appropriate Legal Notices; however, if the Program has interactive
|
225 |
+
interfaces that do not display Appropriate Legal Notices, your
|
226 |
+
work need not make them do so.
|
227 |
+
|
228 |
+
A compilation of a covered work with other separate and independent
|
229 |
+
works, which are not by their nature extensions of the covered work,
|
230 |
+
and which are not combined with it such as to form a larger program,
|
231 |
+
in or on a volume of a storage or distribution medium, is called an
|
232 |
+
"aggregate" if the compilation and its resulting copyright are not
|
233 |
+
used to limit the access or legal rights of the compilation's users
|
234 |
+
beyond what the individual works permit. Inclusion of a covered work
|
235 |
+
in an aggregate does not cause this License to apply to the other
|
236 |
+
parts of the aggregate.
|
237 |
+
|
238 |
+
6. Conveying Non-Source Forms.
|
239 |
+
|
240 |
+
You may convey a covered work in object code form under the terms
|
241 |
+
of sections 4 and 5, provided that you also convey the
|
242 |
+
machine-readable Corresponding Source under the terms of this License,
|
243 |
+
in one of these ways:
|
244 |
+
|
245 |
+
a) Convey the object code in, or embodied in, a physical product
|
246 |
+
(including a physical distribution medium), accompanied by the
|
247 |
+
Corresponding Source fixed on a durable physical medium
|
248 |
+
customarily used for software interchange.
|
249 |
+
|
250 |
+
b) Convey the object code in, or embodied in, a physical product
|
251 |
+
(including a physical distribution medium), accompanied by a
|
252 |
+
written offer, valid for at least three years and valid for as
|
253 |
+
long as you offer spare parts or customer support for that product
|
254 |
+
model, to give anyone who possesses the object code either (1) a
|
255 |
+
copy of the Corresponding Source for all the software in the
|
256 |
+
product that is covered by this License, on a durable physical
|
257 |
+
medium customarily used for software interchange, for a price no
|
258 |
+
more than your reasonable cost of physically performing this
|
259 |
+
conveying of source, or (2) access to copy the
|
260 |
+
Corresponding Source from a network server at no charge.
|
261 |
+
|
262 |
+
c) Convey individual copies of the object code with a copy of the
|
263 |
+
written offer to provide the Corresponding Source. This
|
264 |
+
alternative is allowed only occasionally and noncommercially, and
|
265 |
+
only if you received the object code with such an offer, in accord
|
266 |
+
with subsection 6b.
|
267 |
+
|
268 |
+
d) Convey the object code by offering access from a designated
|
269 |
+
place (gratis or for a charge), and offer equivalent access to the
|
270 |
+
Corresponding Source in the same way through the same place at no
|
271 |
+
further charge. You need not require recipients to copy the
|
272 |
+
Corresponding Source along with the object code. If the place to
|
273 |
+
copy the object code is a network server, the Corresponding Source
|
274 |
+
may be on a different server (operated by you or a third party)
|
275 |
+
that supports equivalent copying facilities, provided you maintain
|
276 |
+
clear directions next to the object code saying where to find the
|
277 |
+
Corresponding Source. Regardless of what server hosts the
|
278 |
+
Corresponding Source, you remain obligated to ensure that it is
|
279 |
+
available for as long as needed to satisfy these requirements.
|
280 |
+
|
281 |
+
e) Convey the object code using peer-to-peer transmission, provided
|
282 |
+
you inform other peers where the object code and Corresponding
|
283 |
+
Source of the work are being offered to the general public at no
|
284 |
+
charge under subsection 6d.
|
285 |
+
|
286 |
+
A separable portion of the object code, whose source code is excluded
|
287 |
+
from the Corresponding Source as a System Library, need not be
|
288 |
+
included in conveying the object code work.
|
289 |
+
|
290 |
+
A "User Product" is either (1) a "consumer product", which means any
|
291 |
+
tangible personal property which is normally used for personal, family,
|
292 |
+
or household purposes, or (2) anything designed or sold for incorporation
|
293 |
+
into a dwelling. In determining whether a product is a consumer product,
|
294 |
+
doubtful cases shall be resolved in favor of coverage. For a particular
|
295 |
+
product received by a particular user, "normally used" refers to a
|
296 |
+
typical or common use of that class of product, regardless of the status
|
297 |
+
of the particular user or of the way in which the particular user
|
298 |
+
actually uses, or expects or is expected to use, the product. A product
|
299 |
+
is a consumer product regardless of whether the product has substantial
|
300 |
+
commercial, industrial or non-consumer uses, unless such uses represent
|
301 |
+
the only significant mode of use of the product.
|
302 |
+
|
303 |
+
"Installation Information" for a User Product means any methods,
|
304 |
+
procedures, authorization keys, or other information required to install
|
305 |
+
and execute modified versions of a covered work in that User Product from
|
306 |
+
a modified version of its Corresponding Source. The information must
|
307 |
+
suffice to ensure that the continued functioning of the modified object
|
308 |
+
code is in no case prevented or interfered with solely because
|
309 |
+
modification has been made.
|
310 |
+
|
311 |
+
If you convey an object code work under this section in, or with, or
|
312 |
+
specifically for use in, a User Product, and the conveying occurs as
|
313 |
+
part of a transaction in which the right of possession and use of the
|
314 |
+
User Product is transferred to the recipient in perpetuity or for a
|
315 |
+
fixed term (regardless of how the transaction is characterized), the
|
316 |
+
Corresponding Source conveyed under this section must be accompanied
|
317 |
+
by the Installation Information. But this requirement does not apply
|
318 |
+
if neither you nor any third party retains the ability to install
|
319 |
+
modified object code on the User Product (for example, the work has
|
320 |
+
been installed in ROM).
|
321 |
+
|
322 |
+
The requirement to provide Installation Information does not include a
|
323 |
+
requirement to continue to provide support service, warranty, or updates
|
324 |
+
for a work that has been modified or installed by the recipient, or for
|
325 |
+
the User Product in which it has been modified or installed. Access to a
|
326 |
+
network may be denied when the modification itself materially and
|
327 |
+
adversely affects the operation of the network or violates the rules and
|
328 |
+
protocols for communication across the network.
|
329 |
+
|
330 |
+
Corresponding Source conveyed, and Installation Information provided,
|
331 |
+
in accord with this section must be in a format that is publicly
|
332 |
+
documented (and with an implementation available to the public in
|
333 |
+
source code form), and must require no special password or key for
|
334 |
+
unpacking, reading or copying.
|
335 |
+
|
336 |
+
7. Additional Terms.
|
337 |
+
|
338 |
+
"Additional permissions" are terms that supplement the terms of this
|
339 |
+
License by making exceptions from one or more of its conditions.
|
340 |
+
Additional permissions that are applicable to the entire Program shall
|
341 |
+
be treated as though they were included in this License, to the extent
|
342 |
+
that they are valid under applicable law. If additional permissions
|
343 |
+
apply only to part of the Program, that part may be used separately
|
344 |
+
under those permissions, but the entire Program remains governed by
|
345 |
+
this License without regard to the additional permissions.
|
346 |
+
|
347 |
+
When you convey a copy of a covered work, you may at your option
|
348 |
+
remove any additional permissions from that copy, or from any part of
|
349 |
+
it. (Additional permissions may be written to require their own
|
350 |
+
removal in certain cases when you modify the work.) You may place
|
351 |
+
additional permissions on material, added by you to a covered work,
|
352 |
+
for which you have or can give appropriate copyright permission.
|
353 |
+
|
354 |
+
Notwithstanding any other provision of this License, for material you
|
355 |
+
add to a covered work, you may (if authorized by the copyright holders of
|
356 |
+
that material) supplement the terms of this License with terms:
|
357 |
+
|
358 |
+
a) Disclaiming warranty or limiting liability differently from the
|
359 |
+
terms of sections 15 and 16 of this License; or
|
360 |
+
|
361 |
+
b) Requiring preservation of specified reasonable legal notices or
|
362 |
+
author attributions in that material or in the Appropriate Legal
|
363 |
+
Notices displayed by works containing it; or
|
364 |
+
|
365 |
+
c) Prohibiting misrepresentation of the origin of that material, or
|
366 |
+
requiring that modified versions of such material be marked in
|
367 |
+
reasonable ways as different from the original version; or
|
368 |
+
|
369 |
+
d) Limiting the use for publicity purposes of names of licensors or
|
370 |
+
authors of the material; or
|
371 |
+
|
372 |
+
e) Declining to grant rights under trademark law for use of some
|
373 |
+
trade names, trademarks, or service marks; or
|
374 |
+
|
375 |
+
f) Requiring indemnification of licensors and authors of that
|
376 |
+
material by anyone who conveys the material (or modified versions of
|
377 |
+
it) with contractual assumptions of liability to the recipient, for
|
378 |
+
any liability that these contractual assumptions directly impose on
|
379 |
+
those licensors and authors.
|
380 |
+
|
381 |
+
All other non-permissive additional terms are considered "further
|
382 |
+
restrictions" within the meaning of section 10. If the Program as you
|
383 |
+
received it, or any part of it, contains a notice stating that it is
|
384 |
+
governed by this License along with a term that is a further
|
385 |
+
restriction, you may remove that term. If a license document contains
|
386 |
+
a further restriction but permits relicensing or conveying under this
|
387 |
+
License, you may add to a covered work material governed by the terms
|
388 |
+
of that license document, provided that the further restriction does
|
389 |
+
not survive such relicensing or conveying.
|
390 |
+
|
391 |
+
If you add terms to a covered work in accord with this section, you
|
392 |
+
must place, in the relevant source files, a statement of the
|
393 |
+
additional terms that apply to those files, or a notice indicating
|
394 |
+
where to find the applicable terms.
|
395 |
+
|
396 |
+
Additional terms, permissive or non-permissive, may be stated in the
|
397 |
+
form of a separately written license, or stated as exceptions;
|
398 |
+
the above requirements apply either way.
|
399 |
+
|
400 |
+
8. Termination.
|
401 |
+
|
402 |
+
You may not propagate or modify a covered work except as expressly
|
403 |
+
provided under this License. Any attempt otherwise to propagate or
|
404 |
+
modify it is void, and will automatically terminate your rights under
|
405 |
+
this License (including any patent licenses granted under the third
|
406 |
+
paragraph of section 11).
|
407 |
+
|
408 |
+
However, if you cease all violation of this License, then your
|
409 |
+
license from a particular copyright holder is reinstated (a)
|
410 |
+
provisionally, unless and until the copyright holder explicitly and
|
411 |
+
finally terminates your license, and (b) permanently, if the copyright
|
412 |
+
holder fails to notify you of the violation by some reasonable means
|
413 |
+
prior to 60 days after the cessation.
|
414 |
+
|
415 |
+
Moreover, your license from a particular copyright holder is
|
416 |
+
reinstated permanently if the copyright holder notifies you of the
|
417 |
+
violation by some reasonable means, this is the first time you have
|
418 |
+
received notice of violation of this License (for any work) from that
|
419 |
+
copyright holder, and you cure the violation prior to 30 days after
|
420 |
+
your receipt of the notice.
|
421 |
+
|
422 |
+
Termination of your rights under this section does not terminate the
|
423 |
+
licenses of parties who have received copies or rights from you under
|
424 |
+
this License. If your rights have been terminated and not permanently
|
425 |
+
reinstated, you do not qualify to receive new licenses for the same
|
426 |
+
material under section 10.
|
427 |
+
|
428 |
+
9. Acceptance Not Required for Having Copies.
|
429 |
+
|
430 |
+
You are not required to accept this License in order to receive or
|
431 |
+
run a copy of the Program. Ancillary propagation of a covered work
|
432 |
+
occurring solely as a consequence of using peer-to-peer transmission
|
433 |
+
to receive a copy likewise does not require acceptance. However,
|
434 |
+
nothing other than this License grants you permission to propagate or
|
435 |
+
modify any covered work. These actions infringe copyright if you do
|
436 |
+
not accept this License. Therefore, by modifying or propagating a
|
437 |
+
covered work, you indicate your acceptance of this License to do so.
|
438 |
+
|
439 |
+
10. Automatic Licensing of Downstream Recipients.
|
440 |
+
|
441 |
+
Each time you convey a covered work, the recipient automatically
|
442 |
+
receives a license from the original licensors, to run, modify and
|
443 |
+
propagate that work, subject to this License. You are not responsible
|
444 |
+
for enforcing compliance by third parties with this License.
|
445 |
+
|
446 |
+
An "entity transaction" is a transaction transferring control of an
|
447 |
+
organization, or substantially all assets of one, or subdividing an
|
448 |
+
organization, or merging organizations. If propagation of a covered
|
449 |
+
work results from an entity transaction, each party to that
|
450 |
+
transaction who receives a copy of the work also receives whatever
|
451 |
+
licenses to the work the party's predecessor in interest had or could
|
452 |
+
give under the previous paragraph, plus a right to possession of the
|
453 |
+
Corresponding Source of the work from the predecessor in interest, if
|
454 |
+
the predecessor has it or can get it with reasonable efforts.
|
455 |
+
|
456 |
+
You may not impose any further restrictions on the exercise of the
|
457 |
+
rights granted or affirmed under this License. For example, you may
|
458 |
+
not impose a license fee, royalty, or other charge for exercise of
|
459 |
+
rights granted under this License, and you may not initiate litigation
|
460 |
+
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
461 |
+
any patent claim is infringed by making, using, selling, offering for
|
462 |
+
sale, or importing the Program or any portion of it.
|
463 |
+
|
464 |
+
11. Patents.
|
465 |
+
|
466 |
+
A "contributor" is a copyright holder who authorizes use under this
|
467 |
+
License of the Program or a work on which the Program is based. The
|
468 |
+
work thus licensed is called the contributor's "contributor version".
|
469 |
+
|
470 |
+
A contributor's "essential patent claims" are all patent claims
|
471 |
+
owned or controlled by the contributor, whether already acquired or
|
472 |
+
hereafter acquired, that would be infringed by some manner, permitted
|
473 |
+
by this License, of making, using, or selling its contributor version,
|
474 |
+
but do not include claims that would be infringed only as a
|
475 |
+
consequence of further modification of the contributor version. For
|
476 |
+
purposes of this definition, "control" includes the right to grant
|
477 |
+
patent sublicenses in a manner consistent with the requirements of
|
478 |
+
this License.
|
479 |
+
|
480 |
+
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
481 |
+
patent license under the contributor's essential patent claims, to
|
482 |
+
make, use, sell, offer for sale, import and otherwise run, modify and
|
483 |
+
propagate the contents of its contributor version.
|
484 |
+
|
485 |
+
In the following three paragraphs, a "patent license" is any express
|
486 |
+
agreement or commitment, however denominated, not to enforce a patent
|
487 |
+
(such as an express permission to practice a patent or covenant not to
|
488 |
+
sue for patent infringement). To "grant" such a patent license to a
|
489 |
+
party means to make such an agreement or commitment not to enforce a
|
490 |
+
patent against the party.
|
491 |
+
|
492 |
+
If you convey a covered work, knowingly relying on a patent license,
|
493 |
+
and the Corresponding Source of the work is not available for anyone
|
494 |
+
to copy, free of charge and under the terms of this License, through a
|
495 |
+
publicly available network server or other readily accessible means,
|
496 |
+
then you must either (1) cause the Corresponding Source to be so
|
497 |
+
available, or (2) arrange to deprive yourself of the benefit of the
|
498 |
+
patent license for this particular work, or (3) arrange, in a manner
|
499 |
+
consistent with the requirements of this License, to extend the patent
|
500 |
+
license to downstream recipients. "Knowingly relying" means you have
|
501 |
+
actual knowledge that, but for the patent license, your conveying the
|
502 |
+
covered work in a country, or your recipient's use of the covered work
|
503 |
+
in a country, would infringe one or more identifiable patents in that
|
504 |
+
country that you have reason to believe are valid.
|
505 |
+
|
506 |
+
If, pursuant to or in connection with a single transaction or
|
507 |
+
arrangement, you convey, or propagate by procuring conveyance of, a
|
508 |
+
covered work, and grant a patent license to some of the parties
|
509 |
+
receiving the covered work authorizing them to use, propagate, modify
|
510 |
+
or convey a specific copy of the covered work, then the patent license
|
511 |
+
you grant is automatically extended to all recipients of the covered
|
512 |
+
work and works based on it.
|
513 |
+
|
514 |
+
A patent license is "discriminatory" if it does not include within
|
515 |
+
the scope of its coverage, prohibits the exercise of, or is
|
516 |
+
conditioned on the non-exercise of one or more of the rights that are
|
517 |
+
specifically granted under this License. You may not convey a covered
|
518 |
+
work if you are a party to an arrangement with a third party that is
|
519 |
+
in the business of distributing software, under which you make payment
|
520 |
+
to the third party based on the extent of your activity of conveying
|
521 |
+
the work, and under which the third party grants, to any of the
|
522 |
+
parties who would receive the covered work from you, a discriminatory
|
523 |
+
patent license (a) in connection with copies of the covered work
|
524 |
+
conveyed by you (or copies made from those copies), or (b) primarily
|
525 |
+
for and in connection with specific products or compilations that
|
526 |
+
contain the covered work, unless you entered into that arrangement,
|
527 |
+
or that patent license was granted, prior to 28 March 2007.
|
528 |
+
|
529 |
+
Nothing in this License shall be construed as excluding or limiting
|
530 |
+
any implied license or other defenses to infringement that may
|
531 |
+
otherwise be available to you under applicable patent law.
|
532 |
+
|
533 |
+
12. No Surrender of Others' Freedom.
|
534 |
+
|
535 |
+
If conditions are imposed on you (whether by court order, agreement or
|
536 |
+
otherwise) that contradict the conditions of this License, they do not
|
537 |
+
excuse you from the conditions of this License. If you cannot convey a
|
538 |
+
covered work so as to satisfy simultaneously your obligations under this
|
539 |
+
License and any other pertinent obligations, then as a consequence you may
|
540 |
+
not convey it at all. For example, if you agree to terms that obligate you
|
541 |
+
to collect a royalty for further conveying from those to whom you convey
|
542 |
+
the Program, the only way you could satisfy both those terms and this
|
543 |
+
License would be to refrain entirely from conveying the Program.
|
544 |
+
|
545 |
+
13. Remote Network Interaction; Use with the GNU General Public License.
|
546 |
+
|
547 |
+
Notwithstanding any other provision of this License, if you modify the
|
548 |
+
Program, your modified version must prominently offer all users
|
549 |
+
interacting with it remotely through a computer network (if your version
|
550 |
+
supports such interaction) an opportunity to receive the Corresponding
|
551 |
+
Source of your version by providing access to the Corresponding Source
|
552 |
+
from a network server at no charge, through some standard or customary
|
553 |
+
means of facilitating copying of software. This Corresponding Source
|
554 |
+
shall include the Corresponding Source for any work covered by version 3
|
555 |
+
of the GNU General Public License that is incorporated pursuant to the
|
556 |
+
following paragraph.
|
557 |
+
|
558 |
+
Notwithstanding any other provision of this License, you have
|
559 |
+
permission to link or combine any covered work with a work licensed
|
560 |
+
under version 3 of the GNU General Public License into a single
|
561 |
+
combined work, and to convey the resulting work. The terms of this
|
562 |
+
License will continue to apply to the part which is the covered work,
|
563 |
+
but the work with which it is combined will remain governed by version
|
564 |
+
3 of the GNU General Public License.
|
565 |
+
|
566 |
+
14. Revised Versions of this License.
|
567 |
+
|
568 |
+
The Free Software Foundation may publish revised and/or new versions of
|
569 |
+
the GNU Affero General Public License from time to time. Such new versions
|
570 |
+
will be similar in spirit to the present version, but may differ in detail to
|
571 |
+
address new problems or concerns.
|
572 |
+
|
573 |
+
Each version is given a distinguishing version number. If the
|
574 |
+
Program specifies that a certain numbered version of the GNU Affero General
|
575 |
+
Public License "or any later version" applies to it, you have the
|
576 |
+
option of following the terms and conditions either of that numbered
|
577 |
+
version or of any later version published by the Free Software
|
578 |
+
Foundation. If the Program does not specify a version number of the
|
579 |
+
GNU Affero General Public License, you may choose any version ever published
|
580 |
+
by the Free Software Foundation.
|
581 |
+
|
582 |
+
If the Program specifies that a proxy can decide which future
|
583 |
+
versions of the GNU Affero General Public License can be used, that proxy's
|
584 |
+
public statement of acceptance of a version permanently authorizes you
|
585 |
+
to choose that version for the Program.
|
586 |
+
|
587 |
+
Later license versions may give you additional or different
|
588 |
+
permissions. However, no additional obligations are imposed on any
|
589 |
+
author or copyright holder as a result of your choosing to follow a
|
590 |
+
later version.
|
591 |
+
|
592 |
+
15. Disclaimer of Warranty.
|
593 |
+
|
594 |
+
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
595 |
+
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
596 |
+
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
597 |
+
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
598 |
+
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
599 |
+
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
600 |
+
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
601 |
+
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
602 |
+
|
603 |
+
16. Limitation of Liability.
|
604 |
+
|
605 |
+
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
606 |
+
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
607 |
+
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
608 |
+
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
609 |
+
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
610 |
+
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
611 |
+
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
612 |
+
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
613 |
+
SUCH DAMAGES.
|
614 |
+
|
615 |
+
17. Interpretation of Sections 15 and 16.
|
616 |
+
|
617 |
+
If the disclaimer of warranty and limitation of liability provided
|
618 |
+
above cannot be given local legal effect according to their terms,
|
619 |
+
reviewing courts shall apply local law that most closely approximates
|
620 |
+
an absolute waiver of all civil liability in connection with the
|
621 |
+
Program, unless a warranty or assumption of liability accompanies a
|
622 |
+
copy of the Program in return for a fee.
|
623 |
+
|
624 |
+
END OF TERMS AND CONDITIONS
|
625 |
+
|
626 |
+
How to Apply These Terms to Your New Programs
|
627 |
+
|
628 |
+
If you develop a new program, and you want it to be of the greatest
|
629 |
+
possible use to the public, the best way to achieve this is to make it
|
630 |
+
free software which everyone can redistribute and change under these terms.
|
631 |
+
|
632 |
+
To do so, attach the following notices to the program. It is safest
|
633 |
+
to attach them to the start of each source file to most effectively
|
634 |
+
state the exclusion of warranty; and each file should have at least
|
635 |
+
the "copyright" line and a pointer to where the full notice is found.
|
636 |
+
|
637 |
+
<one line to give the program's name and a brief idea of what it does.>
|
638 |
+
Copyright (C) <year> <name of author>
|
639 |
+
|
640 |
+
This program is free software: you can redistribute it and/or modify
|
641 |
+
it under the terms of the GNU Affero General Public License as published
|
642 |
+
by the Free Software Foundation, either version 3 of the License, or
|
643 |
+
(at your option) any later version.
|
644 |
+
|
645 |
+
This program is distributed in the hope that it will be useful,
|
646 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
647 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
648 |
+
GNU Affero General Public License for more details.
|
649 |
+
|
650 |
+
You should have received a copy of the GNU Affero General Public License
|
651 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
652 |
+
|
653 |
+
Also add information on how to contact you by electronic and paper mail.
|
654 |
+
|
655 |
+
If your software can interact with users remotely through a computer
|
656 |
+
network, you should also make sure that it provides a way for users to
|
657 |
+
get its source. For example, if your program is a web application, its
|
658 |
+
interface could display a "Source" link that leads users to an archive
|
659 |
+
of the code. There are many ways you could offer source, and different
|
660 |
+
solutions will be better for different programs; see section 13 for the
|
661 |
+
specific requirements.
|
662 |
+
|
663 |
+
You should also get your employer (if you work as a programmer) or school,
|
664 |
+
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
665 |
+
For more information on this, and how to apply and follow the GNU AGPL, see
|
666 |
+
<https://www.gnu.org/licenses/>.
|
Repositories/DeepLabCut-live/MANIFEST.in
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
include dlclive/check_install/*
|
Repositories/DeepLabCut-live/README.md
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# DeepLabCut-live! SDK<img src="https://images.squarespace-cdn.com/content/v1/57f6d51c9f74566f55ecf271/1606082050387-M8M1CFI5DFUZCBAAUI0W/ke17ZwdGBToddI8pDm48kLuMKy7Ws6mFofiFehYynfdZw-zPPgdn4jUwVcJE1ZvWQUxwkmyExglNqGp0IvTJZUJFbgE-7XRK3dMEBRBhUpzp2tFVMcEgqZM8QO7VXXQogrsLnYKC4n4YnYuHC1HMRWygQlqMNAoTF9HaycikLeg/DLClive.png?format=750w" width="350" title="DLC-live" alt="DLC LIVE!" align="right" vspace = "50">
|
2 |
+
|
3 |
+
<a href="https://github.com/psf/black"><img alt="Code style: black" src="https://img.shields.io/badge/code%20style-black-000000.svg"></a>
|
4 |
+
![PyPI - Python Version](https://img.shields.io/pypi/v/deeplabcut-live)
|
5 |
+
[![Downloads](https://pepy.tech/badge/deeplabcut-live)](https://pepy.tech/project/deeplabcut-live)
|
6 |
+
[![Downloads](https://pepy.tech/badge/deeplabcut-live/month)](https://pepy.tech/project/deeplabcut-live)
|
7 |
+
![Python package](https://github.com/DeepLabCut/DeepLabCut-live/workflows/Python%20package/badge.svg)
|
8 |
+
[![GitHub stars](https://img.shields.io/github/stars/DeepLabCut/DeepLabCut-live.svg?style=social&label=Star)](https://github.com/DeepLabCut/DeepLabCut-live)
|
9 |
+
[![GitHub forks](https://img.shields.io/github/forks/DeepLabCut/DeepLabCut-live.svg?style=social&label=Fork)](https://github.com/DeepLabCut/DeepLabCut-live)
|
10 |
+
[![Image.sc forum](https://img.shields.io/badge/dynamic/json.svg?label=forum&url=https%3A%2F%2Fforum.image.sc%2Ftags%2Fdeeplabcut.json&query=%24.topic_list.tags.0.topic_count&colorB=brightgreen&&suffix=%20topics&logo=)](https://forum.image.sc/tags/deeplabcut)
|
11 |
+
[![Gitter](https://badges.gitter.im/DeepLabCut/community.svg)](https://gitter.im/DeepLabCut/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge)
|
12 |
+
[![Twitter Follow](https://img.shields.io/twitter/follow/DeepLabCut.svg?label=DeepLabCut&style=social)](https://twitter.com/DeepLabCut)
|
13 |
+
|
14 |
+
This package contains a [DeepLabCut](http://www.mousemotorlab.org/deeplabcut) inference pipeline for real-time applications that has minimal (software) dependencies. Thus, it is as easy to install as possible (in particular, on atypical systems like [NVIDIA Jetson boards](https://developer.nvidia.com/buy-jetson)).
|
15 |
+
|
16 |
+
**Performance:** If you would like to see estimates on how your model should perform given different video sizes, neural network type, and hardware, please see: https://deeplabcut.github.io/DLC-inferencespeed-benchmark/
|
17 |
+
|
18 |
+
If you have different hardware, please consider submitting your results too! https://github.com/DeepLabCut/DLC-inferencespeed-benchmark
|
19 |
+
|
20 |
+
**What this SDK provides:** This package provides a `DLCLive` class which enables pose estimation online to provide feedback. This object loads and prepares a DeepLabCut network for inference, and will return the predicted pose for single images.
|
21 |
+
|
22 |
+
To perform processing on poses (such as predicting the future pose of an animal given it's current pose, or to trigger external hardware like send TTL pulses to a laser for optogenetic stimulation), this object takes in a `Processor` object. Processor objects must contain two methods: process and save.
|
23 |
+
|
24 |
+
- The `process` method takes in a pose, performs some processing, and returns processed pose.
|
25 |
+
- The `save` method saves any valuable data created by or used by the processor
|
26 |
+
|
27 |
+
For more details and examples, see documentation [here](dlclive/processor/README.md).
|
28 |
+
|
29 |
+
###### 🔥🔥🔥🔥🔥 Note :: alone, this object does not record video or capture images from a camera. This must be done separately, i.e. see our [DeepLabCut-live GUI](https://github.com/gkane26/DeepLabCut-live-GUI).🔥🔥🔥
|
30 |
+
|
31 |
+
### News!
|
32 |
+
- March 2022: DeepLabCut-Live! 1.0.2 supports poetry installation `poetry install deeplabcut-live`, thanks to PR #60.
|
33 |
+
- March 2021: DeepLabCut-Live! [**version 1.0** is released](https://pypi.org/project/deeplabcut-live/), with support for tensorflow 1 and tensorflow 2!
|
34 |
+
- Feb 2021: DeepLabCut-Live! was featured in **Nature Methods**: ["Real-time behavioral analysis"](https://www.nature.com/articles/s41592-021-01072-z)
|
35 |
+
- Jan 2021: full **eLife** paper is published: ["Real-time, low-latency closed-loop feedback using markerless posture tracking"](https://elifesciences.org/articles/61909)
|
36 |
+
- Dec 2020: we talked to **RTS Suisse Radio** about DLC-Live!: ["Capture animal movements in real time"](https://www.rts.ch/play/radio/cqfd/audio/capturer-les-mouvements-des-animaux-en-temps-reel?id=11782529)
|
37 |
+
|
38 |
+
|
39 |
+
### Installation:
|
40 |
+
|
41 |
+
Please see our instruction manual to install on a [Windows or Linux machine](docs/install_desktop.md) or on a [NVIDIA Jetson Development Board](docs/install_jetson.md). Note, this code works with tensorflow (TF) 1 or TF 2 models, but TF requires that whatever version you exported your model with, you must import with the same version (i.e., export with TF1.13, then use TF1.13 with DlC-Live; export with TF2.3, then use TF2.3 with DLC-live).
|
42 |
+
|
43 |
+
- available on pypi as: `pip install deeplabcut-live`
|
44 |
+
|
45 |
+
Note, you can then test your installation by running:
|
46 |
+
|
47 |
+
`dlc-live-test`
|
48 |
+
|
49 |
+
If installed properly, this script will i) create a temporary folder ii) download the full_dog model from the [DeepLabCut Model Zoo](http://www.mousemotorlab.org/dlc-modelzoo), iii) download a short video clip of a dog, and iv) run inference while displaying keypoints. v) remove the temporary folder.
|
50 |
+
|
51 |
+
<img src="https://images.squarespace-cdn.com/content/v1/57f6d51c9f74566f55ecf271/1606081086014-TG9GWH63ZGGOO7K779G3/ke17ZwdGBToddI8pDm48kHiSoSToKfKUI9t99vKErWoUqsxRUqqbr1mOJYKfIPR7LoDQ9mXPOjoJoqy81S2I8N_N4V1vUb5AoIIIbLZhVYxCRW4BPu10St3TBAUQYVKcOoIGycwr1shdgJWzLuxyzjLbSRGBFFxjYMBr42yCvRK5HHsLZWtMlAHzDU294nCd/dlclivetest.png?format=1000w" width="650" title="DLC-live-test" alt="DLC LIVE TEST" align="center" vspace = "50">
|
52 |
+
|
53 |
+
### Quick Start: instructions for use:
|
54 |
+
|
55 |
+
1. Initialize `Processor` (if desired)
|
56 |
+
2. Initialize the `DLCLive` object
|
57 |
+
3. Perform pose estimation!
|
58 |
+
|
59 |
+
```python
|
60 |
+
from dlclive import DLCLive, Processor
|
61 |
+
dlc_proc = Processor()
|
62 |
+
dlc_live = DLCLive(<path to exported model directory>, processor=dlc_proc)
|
63 |
+
dlc_live.init_inference(<your image>)
|
64 |
+
dlc_live.get_pose(<your image>)
|
65 |
+
```
|
66 |
+
|
67 |
+
`DLCLive` **parameters:**
|
68 |
+
|
69 |
+
- `path` = string; full path to the exported DLC model directory
|
70 |
+
- `model_type` = string; the type of model to use for inference. Types include:
|
71 |
+
- `base` = the base DeepLabCut model
|
72 |
+
- `tensorrt` = apply [tensor-rt](https://developer.nvidia.com/tensorrt) optimizations to model
|
73 |
+
- `tflite` = use [tensorflow lite](https://www.tensorflow.org/lite) inference (in progress...)
|
74 |
+
- `cropping` = list of int, optional; cropping parameters in pixel number: [x1, x2, y1, y2]
|
75 |
+
- `dynamic` = tuple, optional; defines parameters for dynamic cropping of images
|
76 |
+
- `index 0` = use dynamic cropping, bool
|
77 |
+
- `index 1` = detection threshold, float
|
78 |
+
- `index 2` = margin (in pixels) around identified points, int
|
79 |
+
- `resize` = float, optional; factor by which to resize image (resize=0.5 downsizes both width and height of image by half). Can be used to downsize large images for faster inference
|
80 |
+
- `processor` = dlc pose processor object, optional
|
81 |
+
- `display` = bool, optional; display processed image with DeepLabCut points? Can be used to troubleshoot cropping and resizing parameters, but is very slow
|
82 |
+
|
83 |
+
`DLCLive` **inputs:**
|
84 |
+
|
85 |
+
- `<path to exported model directory>` = path to the folder that has the `.pb` files that you acquire after running `deeplabcut.export_model`
|
86 |
+
- `<your image>` = is a numpy array of each frame
|
87 |
+
|
88 |
+
|
89 |
+
### Benchmarking/Analyzing your exported DeepLabCut models
|
90 |
+
|
91 |
+
DeepLabCut-live offers some analysis tools that allow users to peform the following operations on videos, from python or from the command line:
|
92 |
+
|
93 |
+
1. Test inference speed across a range of image sizes, downsizing images by specifying the `resize` or `pixels` parameter. Using the `pixels` parameter will resize images to the desired number of `pixels`, without changing the aspect ratio. Results will be saved (along with system info) to a pickle file if you specify an output directory.
|
94 |
+
##### python
|
95 |
+
```python
|
96 |
+
dlclive.benchmark_videos('/path/to/exported/model', ['/path/to/video1', '/path/to/video2'], output='/path/to/output', resize=[1.0, 0.75, '0.5'])
|
97 |
+
```
|
98 |
+
##### command line
|
99 |
+
```
|
100 |
+
dlc-live-benchmark /path/to/exported/model /path/to/video1 /path/to/video2 -o /path/to/output -r 1.0 0.75 0.5
|
101 |
+
```
|
102 |
+
|
103 |
+
2. Display keypoints to visually inspect the accuracy of exported models on different image sizes (note, this is slow and only for testing purposes):
|
104 |
+
|
105 |
+
##### python
|
106 |
+
```python
|
107 |
+
dlclive.benchmark_videos('/path/to/exported/model', '/path/to/video', resize=0.5, display=True, pcutoff=0.5, display_radius=4, cmap='bmy')
|
108 |
+
```
|
109 |
+
##### command line
|
110 |
+
```
|
111 |
+
dlc-live-benchmark /path/to/exported/model /path/to/video -r 0.5 --display --pcutoff 0.5 --display-radius 4 --cmap bmy
|
112 |
+
```
|
113 |
+
|
114 |
+
3. Analyze and create a labeled video using the exported model and desired resize parameters. This option functions similar to `deeplabcut.benchmark_videos` and `deeplabcut.create_labeled_video` (note, this is slow and only for testing purposes).
|
115 |
+
|
116 |
+
##### python
|
117 |
+
```python
|
118 |
+
dlclive.benchmark_videos('/path/to/exported/model', '/path/to/video', resize=[1.0, 0.75, 0.5], pcutoff=0.5, display_radius=4, cmap='bmy', save_poses=True, save_video=True)
|
119 |
+
```
|
120 |
+
##### command line
|
121 |
+
```
|
122 |
+
dlc-live-benchmark /path/to/exported/model /path/to/video -r 0.5 --pcutoff 0.5 --display-radius 4 --cmap bmy --save-poses --save-video
|
123 |
+
```
|
124 |
+
|
125 |
+
## License:
|
126 |
+
|
127 |
+
This project is licensed under the GNU AGPLv3. Note that the software is provided "as is", without warranty of any kind, express or implied. If you use the code or data, we ask that you please cite us! This software is available for licensing via the EPFL Technology Transfer Office (https://tto.epfl.ch/, info.tto@epfl.ch).
|
128 |
+
|
129 |
+
## Community Support, Developers, & Help:
|
130 |
+
|
131 |
+
This is an actively developed package and we welcome community development and involvement.
|
132 |
+
|
133 |
+
- If you want to contribute to the code, please read our guide [here](https://github.com/DeepLabCut/DeepLabCut/blob/master/CONTRIBUTING.md), which is provided at the main repository of DeepLabCut.
|
134 |
+
|
135 |
+
- We are a community partner on the [![Image.sc forum](https://img.shields.io/badge/dynamic/json.svg?label=forum&url=https%3A%2F%2Fforum.image.sc%2Ftags%2Fdeeplabcut.json&query=%24.topic_list.tags.0.topic_count&colorB=brightgreen&&suffix=%20topics&logo=)](https://forum.image.sc/tags/deeplabcut). Please post help and support questions on the forum with the tag DeepLabCut. Check out their mission statement [Scientific Community Image Forum: A discussion forum for scientific image software](https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000340).
|
136 |
+
|
137 |
+
- If you encounter a previously unreported bug/code issue, please post here (we encourage you to search issues first): https://github.com/DeepLabCut/DeepLabCut-live/issues
|
138 |
+
|
139 |
+
- For quick discussions here: [![Gitter](https://badges.gitter.im/DeepLabCut/community.svg)](https://gitter.im/DeepLabCut/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge)
|
140 |
+
|
141 |
+
### Reference:
|
142 |
+
|
143 |
+
If you utilize our tool, please [cite Kane et al, eLife 2020](https://elifesciences.org/articles/61909). The preprint is available here: https://www.biorxiv.org/content/10.1101/2020.08.04.236422v2
|
144 |
+
|
145 |
+
```
|
146 |
+
@Article{Kane2020dlclive,
|
147 |
+
author = {Kane, Gary and Lopes, Gonçalo and Sanders, Jonny and Mathis, Alexander and Mathis, Mackenzie},
|
148 |
+
title = {Real-time, low-latency closed-loop feedback using markerless posture tracking},
|
149 |
+
journal = {eLife},
|
150 |
+
year = {2020},
|
151 |
+
}
|
152 |
+
```
|
153 |
+
|
Repositories/DeepLabCut-live/benchmarking/run_dlclive_benchmark.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
DeepLabCut Toolbox (deeplabcut.org)
|
3 |
+
© A. & M. Mathis Labs
|
4 |
+
|
5 |
+
Licensed under GNU Lesser General Public License v3.0
|
6 |
+
"""
|
7 |
+
|
8 |
+
# Script for running the official benchmark from Kane et al, 2020.
|
9 |
+
# Please share your results at https://github.com/DeepLabCut/DLC-inferencespeed-benchmark
|
10 |
+
|
11 |
+
import os, pathlib
|
12 |
+
import glob
|
13 |
+
|
14 |
+
from dlclive import benchmark_videos, download_benchmarking_data
|
15 |
+
|
16 |
+
datafolder = os.path.join(
|
17 |
+
pathlib.Path(__file__).parent.absolute(), "Data-DLC-live-benchmark"
|
18 |
+
)
|
19 |
+
|
20 |
+
if not os.path.isdir(datafolder): # only download if data doesn't exist!
|
21 |
+
# Downloading data.... this takes a while (see terminal)
|
22 |
+
download_benchmarking_data(datafolder)
|
23 |
+
|
24 |
+
n_frames = 10000 # change to 10000 for testing on a GPU!
|
25 |
+
pixels = [2500, 10000, 40000, 160000, 320000, 640000]
|
26 |
+
|
27 |
+
dog_models = glob.glob(datafolder + "/dog/*[!avi]")
|
28 |
+
dog_video = glob.glob(datafolder + "/dog/*.avi")[0]
|
29 |
+
mouse_models = glob.glob(datafolder + "/mouse_lick/*[!avi]")
|
30 |
+
mouse_video = glob.glob(datafolder + "/mouse_lick/*.avi")[0]
|
31 |
+
|
32 |
+
this_dir = os.path.dirname(os.path.realpath(__file__))
|
33 |
+
# storing results in /benchmarking/results: (for your PR)
|
34 |
+
out_dir = os.path.normpath(this_dir + "/results")
|
35 |
+
|
36 |
+
if not os.path.isdir(out_dir):
|
37 |
+
os.mkdir(out_dir)
|
38 |
+
|
39 |
+
for m in dog_models:
|
40 |
+
benchmark_videos(m, dog_video, output=out_dir, n_frames=n_frames, pixels=pixels)
|
41 |
+
|
42 |
+
for m in mouse_models:
|
43 |
+
benchmark_videos(m, mouse_video, output=out_dir, n_frames=n_frames, pixels=pixels)
|
Repositories/DeepLabCut-live/dlclive/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
DeepLabCut Toolbox (deeplabcut.org)
|
3 |
+
© A. & M. Mathis Labs
|
4 |
+
|
5 |
+
Licensed under GNU Lesser General Public License v3.0
|
6 |
+
"""
|
7 |
+
|
8 |
+
from dlclive.version import __version__, VERSION
|
9 |
+
from dlclive.dlclive import DLCLive
|
10 |
+
from dlclive.processor import Processor
|
11 |
+
from dlclive.benchmark import benchmark, benchmark_videos, download_benchmarking_data
|
Repositories/DeepLabCut-live/dlclive/benchmark.py
ADDED
@@ -0,0 +1,726 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
DeepLabCut Toolbox (deeplabcut.org)
|
3 |
+
© A. & M. Mathis Labs
|
4 |
+
|
5 |
+
Licensed under GNU Lesser General Public License v3.0
|
6 |
+
"""
|
7 |
+
|
8 |
+
|
9 |
+
import platform
|
10 |
+
import os
|
11 |
+
import time
|
12 |
+
import sys
|
13 |
+
import warnings
|
14 |
+
import subprocess
|
15 |
+
import typing
|
16 |
+
import pickle
|
17 |
+
import colorcet as cc
|
18 |
+
from PIL import ImageColor
|
19 |
+
import ruamel
|
20 |
+
|
21 |
+
try:
|
22 |
+
from pip._internal.operations import freeze
|
23 |
+
except ImportError:
|
24 |
+
from pip.operations import freeze
|
25 |
+
|
26 |
+
from tqdm import tqdm
|
27 |
+
import numpy as np
|
28 |
+
import tensorflow as tf
|
29 |
+
import cv2
|
30 |
+
|
31 |
+
from dlclive import DLCLive
|
32 |
+
from dlclive import VERSION
|
33 |
+
from dlclive import __file__ as dlcfile
|
34 |
+
|
35 |
+
from dlclive.utils import decode_fourcc
|
36 |
+
|
37 |
+
|
38 |
+
def download_benchmarking_data(
|
39 |
+
target_dir=".",
|
40 |
+
url="http://deeplabcut.rowland.harvard.edu/datasets/dlclivebenchmark.tar.gz",
|
41 |
+
):
|
42 |
+
"""
|
43 |
+
Downloads a DeepLabCut-Live benchmarking Data (videos & DLC models).
|
44 |
+
"""
|
45 |
+
import urllib.request
|
46 |
+
import tarfile
|
47 |
+
from tqdm import tqdm
|
48 |
+
|
49 |
+
def show_progress(count, block_size, total_size):
|
50 |
+
pbar.update(block_size)
|
51 |
+
|
52 |
+
def tarfilenamecutting(tarf):
|
53 |
+
"""' auxfun to extract folder path
|
54 |
+
ie. /xyz-trainsetxyshufflez/
|
55 |
+
"""
|
56 |
+
for memberid, member in enumerate(tarf.getmembers()):
|
57 |
+
if memberid == 0:
|
58 |
+
parent = str(member.path)
|
59 |
+
l = len(parent) + 1
|
60 |
+
if member.path.startswith(parent):
|
61 |
+
member.path = member.path[l:]
|
62 |
+
yield member
|
63 |
+
|
64 |
+
response = urllib.request.urlopen(url)
|
65 |
+
print(
|
66 |
+
"Downloading the benchmarking data from the DeepLabCut server @Harvard -> Go Crimson!!! {}....".format(
|
67 |
+
url
|
68 |
+
)
|
69 |
+
)
|
70 |
+
total_size = int(response.getheader("Content-Length"))
|
71 |
+
pbar = tqdm(unit="B", total=total_size, position=0)
|
72 |
+
filename, _ = urllib.request.urlretrieve(url, reporthook=show_progress)
|
73 |
+
with tarfile.open(filename, mode="r:gz") as tar:
|
74 |
+
tar.extractall(target_dir, members=tarfilenamecutting(tar))
|
75 |
+
|
76 |
+
|
77 |
+
def get_system_info() -> dict:
|
78 |
+
""" Return summary info for system running benchmark
|
79 |
+
Returns
|
80 |
+
-------
|
81 |
+
dict
|
82 |
+
Dictionary containing the following system information:
|
83 |
+
* ``host_name`` (str): name of machine
|
84 |
+
* ``op_sys`` (str): operating system
|
85 |
+
* ``python`` (str): path to python (which conda/virtual environment)
|
86 |
+
* ``device`` (tuple): (device type (``'GPU'`` or ``'CPU'```), device information)
|
87 |
+
* ``freeze`` (list): list of installed packages and versions
|
88 |
+
* ``python_version`` (str): python version
|
89 |
+
* ``git_hash`` (str, None): If installed from git repository, hash of HEAD commit
|
90 |
+
* ``dlclive_version`` (str): dlclive version from :data:`dlclive.VERSION`
|
91 |
+
"""
|
92 |
+
|
93 |
+
# get os
|
94 |
+
|
95 |
+
op_sys = platform.platform()
|
96 |
+
host_name = platform.node().replace(" ", "")
|
97 |
+
|
98 |
+
# A string giving the absolute path of the executable binary for the Python interpreter, on systems where this makes sense.
|
99 |
+
if platform.system() == "Windows":
|
100 |
+
host_python = sys.executable.split(os.path.sep)[-2]
|
101 |
+
else:
|
102 |
+
host_python = sys.executable.split(os.path.sep)[-3]
|
103 |
+
|
104 |
+
# try to get git hash if possible
|
105 |
+
dlc_basedir = os.path.dirname(os.path.dirname(dlcfile))
|
106 |
+
git_hash = None
|
107 |
+
try:
|
108 |
+
git_hash = subprocess.check_output(
|
109 |
+
["git", "rev-parse", "HEAD"], cwd=dlc_basedir
|
110 |
+
)
|
111 |
+
git_hash = git_hash.decode("utf-8").rstrip("\n")
|
112 |
+
except subprocess.CalledProcessError:
|
113 |
+
# not installed from git repo, eg. pypi
|
114 |
+
# fine, pass quietly
|
115 |
+
pass
|
116 |
+
|
117 |
+
# get device info (GPU or CPU)
|
118 |
+
dev = None
|
119 |
+
if tf.test.is_gpu_available():
|
120 |
+
gpu_name = tf.test.gpu_device_name()
|
121 |
+
from tensorflow.python.client import device_lib
|
122 |
+
|
123 |
+
dev_desc = [
|
124 |
+
d.physical_device_desc
|
125 |
+
for d in device_lib.list_local_devices()
|
126 |
+
if d.name == gpu_name
|
127 |
+
]
|
128 |
+
dev = [d.split(",")[1].split(":")[1].strip() for d in dev_desc]
|
129 |
+
dev_type = "GPU"
|
130 |
+
else:
|
131 |
+
from cpuinfo import get_cpu_info
|
132 |
+
|
133 |
+
dev = [get_cpu_info()["brand"]]
|
134 |
+
dev_type = "CPU"
|
135 |
+
|
136 |
+
return {
|
137 |
+
"host_name": host_name,
|
138 |
+
"op_sys": op_sys,
|
139 |
+
"python": host_python,
|
140 |
+
"device_type": dev_type,
|
141 |
+
"device": dev,
|
142 |
+
# pip freeze to get versions of all packages
|
143 |
+
"freeze": list(freeze.freeze()),
|
144 |
+
"python_version": sys.version,
|
145 |
+
"git_hash": git_hash,
|
146 |
+
"dlclive_version": VERSION,
|
147 |
+
}
|
148 |
+
|
149 |
+
|
150 |
+
def benchmark(
|
151 |
+
model_path,
|
152 |
+
video_path,
|
153 |
+
tf_config=None,
|
154 |
+
resize=None,
|
155 |
+
pixels=None,
|
156 |
+
cropping=None,
|
157 |
+
dynamic=(False, 0.5, 10),
|
158 |
+
n_frames=1000,
|
159 |
+
print_rate=False,
|
160 |
+
display=False,
|
161 |
+
pcutoff=0.0,
|
162 |
+
display_radius=3,
|
163 |
+
cmap="bmy",
|
164 |
+
save_poses=False,
|
165 |
+
save_video=False,
|
166 |
+
output=None,
|
167 |
+
) -> typing.Tuple[np.ndarray, tuple, bool, dict]:
|
168 |
+
""" Analyze DeepLabCut-live exported model on a video:
|
169 |
+
Calculate inference time,
|
170 |
+
display keypoints, or
|
171 |
+
get poses/create a labeled video
|
172 |
+
|
173 |
+
Parameters
|
174 |
+
----------
|
175 |
+
model_path : str
|
176 |
+
path to exported DeepLabCut model
|
177 |
+
video_path : str
|
178 |
+
path to video file
|
179 |
+
tf_config : :class:`tensorflow.ConfigProto`
|
180 |
+
tensorflow session configuration
|
181 |
+
resize : int, optional
|
182 |
+
resize factor. Can only use one of resize or pixels. If both are provided, will use pixels. by default None
|
183 |
+
pixels : int, optional
|
184 |
+
downsize image to this number of pixels, maintaining aspect ratio. Can only use one of resize or pixels. If both are provided, will use pixels. by default None
|
185 |
+
cropping : list of int
|
186 |
+
cropping parameters in pixel number: [x1, x2, y1, y2]
|
187 |
+
dynamic: triple containing (state, detectiontreshold, margin)
|
188 |
+
If the state is true, then dynamic cropping will be performed. That means that if an object is detected (i.e. any body part > detectiontreshold),
|
189 |
+
then object boundaries are computed according to the smallest/largest x position and smallest/largest y position of all body parts. This window is
|
190 |
+
expanded by the margin and from then on only the posture within this crop is analyzed (until the object is lost, i.e. <detectiontreshold). The
|
191 |
+
current position is utilized for updating the crop window for the next frame (this is why the margin is important and should be set large
|
192 |
+
enough given the movement of the animal)
|
193 |
+
n_frames : int, optional
|
194 |
+
number of frames to run inference on, by default 1000
|
195 |
+
print_rate : bool, optional
|
196 |
+
flat to print inference rate frame by frame, by default False
|
197 |
+
display : bool, optional
|
198 |
+
flag to display keypoints on images. Useful for checking the accuracy of exported models.
|
199 |
+
pcutoff : float, optional
|
200 |
+
likelihood threshold to display keypoints
|
201 |
+
display_radius : int, optional
|
202 |
+
size (radius in pixels) of keypoint to display
|
203 |
+
cmap : str, optional
|
204 |
+
a string indicating the :package:`colorcet` colormap, `options here <https://colorcet.holoviz.org/>`, by default "bmy"
|
205 |
+
save_poses : bool, optional
|
206 |
+
flag to save poses to an hdf5 file. If True, operates similar to :function:`DeepLabCut.benchmark_videos`, by default False
|
207 |
+
save_video : bool, optional
|
208 |
+
flag to save a labeled video. If True, operates similar to :function:`DeepLabCut.create_labeled_video`, by default False
|
209 |
+
output : str, optional
|
210 |
+
path to directory to save pose and/or video file. If not specified, will use the directory of video_path, by default None
|
211 |
+
|
212 |
+
Returns
|
213 |
+
-------
|
214 |
+
:class:`numpy.ndarray`
|
215 |
+
vector of inference times
|
216 |
+
tuple
|
217 |
+
(image width, image height)
|
218 |
+
bool
|
219 |
+
tensorflow inference flag
|
220 |
+
dict
|
221 |
+
metadata for video
|
222 |
+
|
223 |
+
Example
|
224 |
+
-------
|
225 |
+
Return a vector of inference times for 10000 frames:
|
226 |
+
dlclive.benchmark('/my/exported/model', 'my_video.avi', n_frames=10000)
|
227 |
+
|
228 |
+
Return a vector of inference times, resizing images to half the width and height for inference
|
229 |
+
dlclive.benchmark('/my/exported/model', 'my_video.avi', n_frames=10000, resize=0.5)
|
230 |
+
|
231 |
+
Display keypoints to check the accuracy of an exported model
|
232 |
+
dlclive.benchmark('/my/exported/model', 'my_video.avi', display=True)
|
233 |
+
|
234 |
+
Analyze a video (save poses to hdf5) and create a labeled video, similar to :function:`DeepLabCut.benchmark_videos` and :function:`create_labeled_video`
|
235 |
+
dlclive.benchmark('/my/exported/model', 'my_video.avi', save_poses=True, save_video=True)
|
236 |
+
"""
|
237 |
+
|
238 |
+
### load video
|
239 |
+
|
240 |
+
cap = cv2.VideoCapture(video_path)
|
241 |
+
ret, frame = cap.read()
|
242 |
+
n_frames = (
|
243 |
+
n_frames
|
244 |
+
if (n_frames > 0) and (n_frames < cap.get(cv2.CAP_PROP_FRAME_COUNT) - 1)
|
245 |
+
else (cap.get(cv2.CAP_PROP_FRAME_COUNT) - 1)
|
246 |
+
)
|
247 |
+
n_frames = int(n_frames)
|
248 |
+
im_size = (cap.get(cv2.CAP_PROP_FRAME_WIDTH), cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
249 |
+
|
250 |
+
### get resize factor
|
251 |
+
|
252 |
+
if pixels is not None:
|
253 |
+
resize = np.sqrt(pixels / (im_size[0] * im_size[1]))
|
254 |
+
if resize is not None:
|
255 |
+
im_size = (int(im_size[0] * resize), int(im_size[1] * resize))
|
256 |
+
|
257 |
+
### create video writer
|
258 |
+
|
259 |
+
if save_video:
|
260 |
+
colors = None
|
261 |
+
out_dir = (
|
262 |
+
output
|
263 |
+
if output is not None
|
264 |
+
else os.path.dirname(os.path.realpath(video_path))
|
265 |
+
)
|
266 |
+
out_vid_base = os.path.basename(video_path)
|
267 |
+
out_vid_file = os.path.normpath(
|
268 |
+
f"{out_dir}/{os.path.splitext(out_vid_base)[0]}_DLCLIVE_LABELED.avi"
|
269 |
+
)
|
270 |
+
fourcc = cv2.VideoWriter_fourcc(*"DIVX")
|
271 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
272 |
+
vwriter = cv2.VideoWriter(out_vid_file, fourcc, fps, im_size)
|
273 |
+
|
274 |
+
### check for pandas installation if using save_poses flag
|
275 |
+
|
276 |
+
if save_poses:
|
277 |
+
try:
|
278 |
+
import pandas as pd
|
279 |
+
|
280 |
+
use_pandas = True
|
281 |
+
except:
|
282 |
+
use_pandas = False
|
283 |
+
warnings.warn(
|
284 |
+
"Could not find installation of pandas; saving poses as a numpy array with the dimensions (n_frames, n_keypoints, [x, y, likelihood])."
|
285 |
+
)
|
286 |
+
|
287 |
+
### initialize DLCLive and perform inference
|
288 |
+
|
289 |
+
inf_times = np.zeros(n_frames)
|
290 |
+
poses = []
|
291 |
+
|
292 |
+
live = DLCLive(
|
293 |
+
model_path,
|
294 |
+
tf_config=tf_config,
|
295 |
+
resize=resize,
|
296 |
+
cropping=cropping,
|
297 |
+
dynamic=dynamic,
|
298 |
+
display=display,
|
299 |
+
pcutoff=pcutoff,
|
300 |
+
display_radius=display_radius,
|
301 |
+
display_cmap=cmap,
|
302 |
+
)
|
303 |
+
|
304 |
+
poses.append(live.init_inference(frame))
|
305 |
+
TFGPUinference = True if len(live.outputs) == 1 else False
|
306 |
+
|
307 |
+
iterator = range(n_frames) if (print_rate) or (display) else tqdm(range(n_frames))
|
308 |
+
for i in iterator:
|
309 |
+
|
310 |
+
ret, frame = cap.read()
|
311 |
+
|
312 |
+
if not ret:
|
313 |
+
warnings.warn(
|
314 |
+
"Did not complete {:d} frames. There probably were not enough frames in the video {}.".format(
|
315 |
+
n_frames, video_path
|
316 |
+
)
|
317 |
+
)
|
318 |
+
break
|
319 |
+
|
320 |
+
start_pose = time.time()
|
321 |
+
poses.append(live.get_pose(frame))
|
322 |
+
inf_times[i] = time.time() - start_pose
|
323 |
+
|
324 |
+
if save_video:
|
325 |
+
|
326 |
+
if colors is None:
|
327 |
+
all_colors = getattr(cc, cmap)
|
328 |
+
colors = [
|
329 |
+
ImageColor.getcolor(c, "RGB")[::-1]
|
330 |
+
for c in all_colors[:: int(len(all_colors) / poses[-1].shape[0])]
|
331 |
+
]
|
332 |
+
|
333 |
+
this_pose = poses[-1]
|
334 |
+
for j in range(this_pose.shape[0]):
|
335 |
+
if this_pose[j, 2] > pcutoff:
|
336 |
+
x = int(this_pose[j, 0])
|
337 |
+
y = int(this_pose[j, 1])
|
338 |
+
frame = cv2.circle(
|
339 |
+
frame, (x, y), display_radius, colors[j], thickness=-1
|
340 |
+
)
|
341 |
+
|
342 |
+
if resize is not None:
|
343 |
+
frame = cv2.resize(frame, im_size)
|
344 |
+
vwriter.write(frame)
|
345 |
+
|
346 |
+
if print_rate:
|
347 |
+
print("pose rate = {:d}".format(int(1 / inf_times[i])))
|
348 |
+
|
349 |
+
if print_rate:
|
350 |
+
print("mean pose rate = {:d}".format(int(np.mean(1 / inf_times))))
|
351 |
+
|
352 |
+
### gather video and test parameterization
|
353 |
+
|
354 |
+
# dont want to fail here so gracefully failing on exception --
|
355 |
+
# eg. some packages of cv2 don't have CAP_PROP_CODEC_PIXEL_FORMAT
|
356 |
+
try:
|
357 |
+
fourcc = decode_fourcc(cap.get(cv2.CAP_PROP_FOURCC))
|
358 |
+
except:
|
359 |
+
fourcc = ""
|
360 |
+
|
361 |
+
try:
|
362 |
+
fps = round(cap.get(cv2.CAP_PROP_FPS))
|
363 |
+
except:
|
364 |
+
fps = None
|
365 |
+
|
366 |
+
try:
|
367 |
+
pix_fmt = decode_fourcc(cap.get(cv2.CAP_PROP_CODEC_PIXEL_FORMAT))
|
368 |
+
except:
|
369 |
+
pix_fmt = ""
|
370 |
+
|
371 |
+
try:
|
372 |
+
frame_count = round(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
373 |
+
except:
|
374 |
+
frame_count = None
|
375 |
+
|
376 |
+
try:
|
377 |
+
orig_im_size = (
|
378 |
+
round(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
|
379 |
+
round(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)),
|
380 |
+
)
|
381 |
+
except:
|
382 |
+
orig_im_size = None
|
383 |
+
|
384 |
+
meta = {
|
385 |
+
"video_path": video_path,
|
386 |
+
"video_codec": fourcc,
|
387 |
+
"video_pixel_format": pix_fmt,
|
388 |
+
"video_fps": fps,
|
389 |
+
"video_total_frames": frame_count,
|
390 |
+
"original_frame_size": orig_im_size,
|
391 |
+
"dlclive_params": live.parameterization,
|
392 |
+
}
|
393 |
+
|
394 |
+
### close video and tensorflow session
|
395 |
+
|
396 |
+
cap.release()
|
397 |
+
live.close()
|
398 |
+
|
399 |
+
if save_video:
|
400 |
+
vwriter.release()
|
401 |
+
|
402 |
+
if save_poses:
|
403 |
+
|
404 |
+
cfg_path = os.path.normpath(f"{model_path}/pose_cfg.yaml")
|
405 |
+
ruamel_file = ruamel.yaml.YAML()
|
406 |
+
dlc_cfg = ruamel_file.load(open(cfg_path, "r"))
|
407 |
+
bodyparts = dlc_cfg["all_joints_names"]
|
408 |
+
poses = np.array(poses)
|
409 |
+
|
410 |
+
if use_pandas:
|
411 |
+
|
412 |
+
poses = poses.reshape((poses.shape[0], poses.shape[1] * poses.shape[2]))
|
413 |
+
pdindex = pd.MultiIndex.from_product(
|
414 |
+
[bodyparts, ["x", "y", "likelihood"]], names=["bodyparts", "coords"]
|
415 |
+
)
|
416 |
+
pose_df = pd.DataFrame(poses, columns=pdindex)
|
417 |
+
|
418 |
+
out_dir = (
|
419 |
+
output
|
420 |
+
if output is not None
|
421 |
+
else os.path.dirname(os.path.realpath(video_path))
|
422 |
+
)
|
423 |
+
out_vid_base = os.path.basename(video_path)
|
424 |
+
out_dlc_file = os.path.normpath(
|
425 |
+
f"{out_dir}/{os.path.splitext(out_vid_base)[0]}_DLCLIVE_POSES.h5"
|
426 |
+
)
|
427 |
+
pose_df.to_hdf(out_dlc_file, key="df_with_missing", mode="w")
|
428 |
+
|
429 |
+
else:
|
430 |
+
|
431 |
+
out_vid_base = os.path.basename(video_path)
|
432 |
+
out_dlc_file = os.path.normpath(
|
433 |
+
f"{out_dir}/{os.path.splitext(out_vid_base)[0]}_DLCLIVE_POSES.npy"
|
434 |
+
)
|
435 |
+
np.save(out_dlc_file, poses)
|
436 |
+
|
437 |
+
return inf_times, im_size, TFGPUinference, meta
|
438 |
+
|
439 |
+
|
440 |
+
def save_inf_times(
|
441 |
+
sys_info, inf_times, im_size, TFGPUinference, model=None, meta=None, output=None
|
442 |
+
):
|
443 |
+
""" Save inference time data collected using :function:`benchmark` with system information to a pickle file.
|
444 |
+
This is primarily used through :function:`benchmark_videos`
|
445 |
+
|
446 |
+
|
447 |
+
Parameters
|
448 |
+
----------
|
449 |
+
sys_info : tuple
|
450 |
+
system information generated by :func:`get_system_info`
|
451 |
+
inf_times : :class:`numpy.ndarray`
|
452 |
+
array of inference times generated by :func:`benchmark`
|
453 |
+
im_size : tuple or :class:`numpy.ndarray`
|
454 |
+
image size (width, height) for each benchmark run. If an array, each row corresponds to a row in inf_times
|
455 |
+
TFGPUinference: bool
|
456 |
+
flag if using tensorflow inference or numpy inference DLC model
|
457 |
+
model: str, optional
|
458 |
+
name of model
|
459 |
+
meta : dict, optional
|
460 |
+
metadata returned by :func:`benchmark`
|
461 |
+
output : str, optional
|
462 |
+
path to directory to save data. If None, uses pwd, by default None
|
463 |
+
|
464 |
+
Returns
|
465 |
+
-------
|
466 |
+
bool
|
467 |
+
flag indicating successful save
|
468 |
+
"""
|
469 |
+
|
470 |
+
output = output if output is not None else os.getcwd()
|
471 |
+
model_type = None
|
472 |
+
if model is not None:
|
473 |
+
if "resnet" in model:
|
474 |
+
model_type = "resnet"
|
475 |
+
elif "mobilenet" in model:
|
476 |
+
model_type = "mobilenet"
|
477 |
+
else:
|
478 |
+
model_type = None
|
479 |
+
|
480 |
+
fn_ind = 0
|
481 |
+
base_name = (
|
482 |
+
f"benchmark_{sys_info['host_name']}_{sys_info['device_type']}_{fn_ind}.pickle"
|
483 |
+
)
|
484 |
+
out_file = os.path.normpath(f"{output}/{base_name}")
|
485 |
+
while os.path.isfile(out_file):
|
486 |
+
fn_ind += 1
|
487 |
+
base_name = f"benchmark_{sys_info['host_name']}_{sys_info['device_type']}_{fn_ind}.pickle"
|
488 |
+
out_file = os.path.normpath(f"{output}/{base_name}")
|
489 |
+
|
490 |
+
# summary stats (mean inference time & standard error of mean)
|
491 |
+
stats = zip(
|
492 |
+
np.mean(inf_times, 1),
|
493 |
+
np.std(inf_times, 1) * 1.0 / np.sqrt(np.shape(inf_times)[1]),
|
494 |
+
)
|
495 |
+
|
496 |
+
# for stat in stats:
|
497 |
+
# print("Stats:", stat)
|
498 |
+
|
499 |
+
data = {
|
500 |
+
"model": model,
|
501 |
+
"model_type": model_type,
|
502 |
+
"TFGPUinference": TFGPUinference,
|
503 |
+
"im_size": im_size,
|
504 |
+
"inference_times": inf_times,
|
505 |
+
"stats": stats,
|
506 |
+
}
|
507 |
+
|
508 |
+
data.update(sys_info)
|
509 |
+
if meta:
|
510 |
+
data.update(meta)
|
511 |
+
|
512 |
+
os.makedirs(os.path.normpath(output), exist_ok=True)
|
513 |
+
pickle.dump(data, open(out_file, "wb"))
|
514 |
+
|
515 |
+
return True
|
516 |
+
|
517 |
+
|
518 |
+
def benchmark_videos(
|
519 |
+
model_path,
|
520 |
+
video_path,
|
521 |
+
output=None,
|
522 |
+
n_frames=1000,
|
523 |
+
tf_config=None,
|
524 |
+
resize=None,
|
525 |
+
pixels=None,
|
526 |
+
cropping=None,
|
527 |
+
dynamic=(False, 0.5, 10),
|
528 |
+
print_rate=False,
|
529 |
+
display=False,
|
530 |
+
pcutoff=0.5,
|
531 |
+
display_radius=3,
|
532 |
+
cmap="bmy",
|
533 |
+
save_poses=False,
|
534 |
+
save_video=False,
|
535 |
+
):
|
536 |
+
"""Analyze videos using DeepLabCut-live exported models.
|
537 |
+
Analyze multiple videos and/or multiple options for the size of the video
|
538 |
+
by specifying a resizing factor or the number of pixels to use in the image (keeping aspect ratio constant).
|
539 |
+
Options to record inference times (to examine inference speed),
|
540 |
+
display keypoints to visually check the accuracy,
|
541 |
+
or save poses to an hdf5 file as in :function:`deeplabcut.benchmark_videos` and
|
542 |
+
create a labeled video as in :function:`deeplabcut.create_labeled_video`.
|
543 |
+
|
544 |
+
Parameters
|
545 |
+
----------
|
546 |
+
model_path : str
|
547 |
+
path to exported DeepLabCut model
|
548 |
+
video_path : str or list
|
549 |
+
path to video file or list of paths to video files
|
550 |
+
output : str
|
551 |
+
path to directory to save results
|
552 |
+
tf_config : :class:`tensorflow.ConfigProto`
|
553 |
+
tensorflow session configuration
|
554 |
+
resize : int, optional
|
555 |
+
resize factor. Can only use one of resize or pixels. If both are provided, will use pixels. by default None
|
556 |
+
pixels : int, optional
|
557 |
+
downsize image to this number of pixels, maintaining aspect ratio. Can only use one of resize or pixels. If both are provided, will use pixels. by default None
|
558 |
+
cropping : list of int
|
559 |
+
cropping parameters in pixel number: [x1, x2, y1, y2]
|
560 |
+
dynamic: triple containing (state, detectiontreshold, margin)
|
561 |
+
If the state is true, then dynamic cropping will be performed. That means that if an object is detected (i.e. any body part > detectiontreshold),
|
562 |
+
then object boundaries are computed according to the smallest/largest x position and smallest/largest y position of all body parts. This window is
|
563 |
+
expanded by the margin and from then on only the posture within this crop is analyzed (until the object is lost, i.e. <detectiontreshold). The
|
564 |
+
current position is utilized for updating the crop window for the next frame (this is why the margin is important and should be set large
|
565 |
+
enough given the movement of the animal)
|
566 |
+
n_frames : int, optional
|
567 |
+
number of frames to run inference on, by default 1000
|
568 |
+
print_rate : bool, optional
|
569 |
+
flat to print inference rate frame by frame, by default False
|
570 |
+
display : bool, optional
|
571 |
+
flag to display keypoints on images. Useful for checking the accuracy of exported models.
|
572 |
+
pcutoff : float, optional
|
573 |
+
likelihood threshold to display keypoints
|
574 |
+
display_radius : int, optional
|
575 |
+
size (radius in pixels) of keypoint to display
|
576 |
+
cmap : str, optional
|
577 |
+
a string indicating the :package:`colorcet` colormap, `options here <https://colorcet.holoviz.org/>`, by default "bmy"
|
578 |
+
save_poses : bool, optional
|
579 |
+
flag to save poses to an hdf5 file. If True, operates similar to :function:`DeepLabCut.benchmark_videos`, by default False
|
580 |
+
save_video : bool, optional
|
581 |
+
flag to save a labeled video. If True, operates similar to :function:`DeepLabCut.create_labeled_video`, by default False
|
582 |
+
|
583 |
+
Example
|
584 |
+
-------
|
585 |
+
Return a vector of inference times for 10000 frames on one video or two videos:
|
586 |
+
dlclive.benchmark_videos('/my/exported/model', 'my_video.avi', n_frames=10000)
|
587 |
+
dlclive.benchmark_videos('/my/exported/model', ['my_video1.avi', 'my_video2.avi'], n_frames=10000)
|
588 |
+
|
589 |
+
Return a vector of inference times, testing full size and resizing images to half the width and height for inference, for two videos
|
590 |
+
dlclive.benchmark_videos('/my/exported/model', ['my_video1.avi', 'my_video2.avi'], n_frames=10000, resize=[1.0, 0.5])
|
591 |
+
|
592 |
+
Display keypoints to check the accuracy of an exported model
|
593 |
+
dlclive.benchmark_videos('/my/exported/model', 'my_video.avi', display=True)
|
594 |
+
|
595 |
+
Analyze a video (save poses to hdf5) and create a labeled video, similar to :function:`DeepLabCut.benchmark_videos` and :function:`create_labeled_video`
|
596 |
+
dlclive.benchmark_videos('/my/exported/model', 'my_video.avi', save_poses=True, save_video=True)
|
597 |
+
"""
|
598 |
+
|
599 |
+
# convert video_paths to list
|
600 |
+
|
601 |
+
video_path = video_path if type(video_path) is list else [video_path]
|
602 |
+
|
603 |
+
# fix resize
|
604 |
+
|
605 |
+
if pixels:
|
606 |
+
pixels = pixels if type(pixels) is list else [pixels]
|
607 |
+
resize = [None for p in pixels]
|
608 |
+
elif resize:
|
609 |
+
resize = resize if type(resize) is list else [resize]
|
610 |
+
pixels = [None for r in resize]
|
611 |
+
else:
|
612 |
+
resize = [None]
|
613 |
+
pixels = [None]
|
614 |
+
|
615 |
+
# loop over videos
|
616 |
+
|
617 |
+
for v in video_path:
|
618 |
+
|
619 |
+
# initialize full inference times
|
620 |
+
|
621 |
+
inf_times = []
|
622 |
+
im_size_out = []
|
623 |
+
|
624 |
+
for i in range(len(resize)):
|
625 |
+
|
626 |
+
print(f"\nRun {i+1} / {len(resize)}\n")
|
627 |
+
|
628 |
+
this_inf_times, this_im_size, TFGPUinference, meta = benchmark(
|
629 |
+
model_path,
|
630 |
+
v,
|
631 |
+
tf_config=tf_config,
|
632 |
+
resize=resize[i],
|
633 |
+
pixels=pixels[i],
|
634 |
+
cropping=cropping,
|
635 |
+
dynamic=dynamic,
|
636 |
+
n_frames=n_frames,
|
637 |
+
print_rate=print_rate,
|
638 |
+
display=display,
|
639 |
+
pcutoff=pcutoff,
|
640 |
+
display_radius=display_radius,
|
641 |
+
cmap=cmap,
|
642 |
+
save_poses=save_poses,
|
643 |
+
save_video=save_video,
|
644 |
+
output=output,
|
645 |
+
)
|
646 |
+
|
647 |
+
inf_times.append(this_inf_times)
|
648 |
+
im_size_out.append(this_im_size)
|
649 |
+
|
650 |
+
inf_times = np.array(inf_times)
|
651 |
+
im_size_out = np.array(im_size_out)
|
652 |
+
|
653 |
+
# save results
|
654 |
+
|
655 |
+
if output is not None:
|
656 |
+
sys_info = get_system_info()
|
657 |
+
save_inf_times(
|
658 |
+
sys_info,
|
659 |
+
inf_times,
|
660 |
+
im_size_out,
|
661 |
+
TFGPUinference,
|
662 |
+
model=os.path.basename(model_path),
|
663 |
+
meta=meta,
|
664 |
+
output=output,
|
665 |
+
)
|
666 |
+
|
667 |
+
|
668 |
+
def main():
|
669 |
+
"""Provides a command line interface :function:`benchmark_videos`
|
670 |
+
"""
|
671 |
+
|
672 |
+
import argparse
|
673 |
+
|
674 |
+
parser = argparse.ArgumentParser()
|
675 |
+
parser.add_argument("model_path", type=str)
|
676 |
+
parser.add_argument("video_path", type=str, nargs="+")
|
677 |
+
parser.add_argument("-o", "--output", type=str, default=None)
|
678 |
+
parser.add_argument("-n", "--n-frames", type=int, default=1000)
|
679 |
+
parser.add_argument("-r", "--resize", type=float, nargs="+")
|
680 |
+
parser.add_argument("-p", "--pixels", type=float, nargs="+")
|
681 |
+
parser.add_argument("-v", "--print-rate", default=False, action="store_true")
|
682 |
+
parser.add_argument("-d", "--display", default=False, action="store_true")
|
683 |
+
parser.add_argument("-l", "--pcutoff", default=0.5, type=float)
|
684 |
+
parser.add_argument("-s", "--display-radius", default=3, type=int)
|
685 |
+
parser.add_argument("-c", "--cmap", type=str, default="bmy")
|
686 |
+
parser.add_argument("--cropping", nargs="+", type=int, default=None)
|
687 |
+
parser.add_argument("--dynamic", nargs="+", type=float, default=[])
|
688 |
+
parser.add_argument("--save-poses", action="store_true")
|
689 |
+
parser.add_argument("--save-video", action="store_true")
|
690 |
+
args = parser.parse_args()
|
691 |
+
|
692 |
+
if (args.cropping) and (len(args.cropping) < 4):
|
693 |
+
raise Exception(
|
694 |
+
"Cropping not properly specified. Must provide 4 values: x1, x2, y1, y2"
|
695 |
+
)
|
696 |
+
|
697 |
+
if not args.dynamic:
|
698 |
+
args.dynamic = (False, 0.5, 10)
|
699 |
+
elif len(args.dynamic) < 3:
|
700 |
+
raise Exception(
|
701 |
+
"Dynamic cropping not properly specified. Must provide three values: 0 or 1 as boolean flag, pcutoff, and margin"
|
702 |
+
)
|
703 |
+
else:
|
704 |
+
args.dynamic = (bool(args.dynamic[0]), args.dynamic[1], args.dynamic[2])
|
705 |
+
|
706 |
+
benchmark_videos(
|
707 |
+
args.model_path,
|
708 |
+
args.video_path,
|
709 |
+
output=args.output,
|
710 |
+
resize=args.resize,
|
711 |
+
pixels=args.pixels,
|
712 |
+
cropping=args.cropping,
|
713 |
+
dynamic=args.dynamic,
|
714 |
+
n_frames=args.n_frames,
|
715 |
+
print_rate=args.print_rate,
|
716 |
+
display=args.display,
|
717 |
+
pcutoff=args.pcutoff,
|
718 |
+
display_radius=args.display_radius,
|
719 |
+
cmap=args.cmap,
|
720 |
+
save_poses=args.save_poses,
|
721 |
+
save_video=args.save_video,
|
722 |
+
)
|
723 |
+
|
724 |
+
|
725 |
+
if __name__ == "__main__":
|
726 |
+
main()
|
Repositories/DeepLabCut-live/dlclive/check_install/check_install.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
DeepLabCut Toolbox (deeplabcut.org)
|
3 |
+
© A. & M. Mathis Labs
|
4 |
+
|
5 |
+
Licensed under GNU Lesser General Public License v3.0
|
6 |
+
"""
|
7 |
+
|
8 |
+
|
9 |
+
import sys
|
10 |
+
import shutil
|
11 |
+
import warnings
|
12 |
+
|
13 |
+
from dlclive import benchmark_videos
|
14 |
+
import urllib.request
|
15 |
+
import argparse
|
16 |
+
from pathlib import Path
|
17 |
+
from dlclibrary.dlcmodelzoo.modelzoo_download import (
|
18 |
+
download_huggingface_model,
|
19 |
+
)
|
20 |
+
|
21 |
+
|
22 |
+
def urllib_pbar(count, blockSize, totalSize):
|
23 |
+
percent = int(count * blockSize * 100 / totalSize)
|
24 |
+
outstr = f"{round(percent)}%"
|
25 |
+
sys.stdout.write(outstr)
|
26 |
+
sys.stdout.write("\b"*len(outstr))
|
27 |
+
sys.stdout.flush()
|
28 |
+
|
29 |
+
|
30 |
+
def main(display:bool=None):
|
31 |
+
parser = argparse.ArgumentParser(
|
32 |
+
description="Test DLC-Live installation by downloading and evaluating a demo DLC project!")
|
33 |
+
parser.add_argument('--nodisplay', action='store_false', help="Run the test without displaying tracking")
|
34 |
+
args = parser.parse_args()
|
35 |
+
|
36 |
+
if display is None:
|
37 |
+
display = args.nodisplay
|
38 |
+
|
39 |
+
if not display:
|
40 |
+
print('Running without displaying video')
|
41 |
+
|
42 |
+
# make temporary directory in $HOME
|
43 |
+
print("\nCreating temporary directory...\n")
|
44 |
+
tmp_dir = Path().home() / 'dlc-live-tmp'
|
45 |
+
tmp_dir.mkdir(mode=0o775,exist_ok=True)
|
46 |
+
|
47 |
+
video_file = str(tmp_dir / 'dog_clip.avi')
|
48 |
+
model_dir = tmp_dir / 'DLC_Dog_resnet_50_iteration-0_shuffle-0'
|
49 |
+
|
50 |
+
# download dog test video from github:
|
51 |
+
print(f"Downloading Video to {video_file}")
|
52 |
+
url_link = "https://github.com/DeepLabCut/DeepLabCut-live/blob/master/check_install/dog_clip.avi?raw=True"
|
53 |
+
urllib.request.urlretrieve(url_link, video_file, reporthook=urllib_pbar)
|
54 |
+
|
55 |
+
# download exported dog model from DeepLabCut Model Zoo
|
56 |
+
if Path(model_dir / 'snapshot-75000.pb').exists():
|
57 |
+
print('Model already downloaded, using cached version')
|
58 |
+
else:
|
59 |
+
print("Downloading full_dog model from the DeepLabCut Model Zoo...")
|
60 |
+
download_huggingface_model("full_dog", model_dir)
|
61 |
+
|
62 |
+
# assert these things exist so we can give informative error messages
|
63 |
+
assert Path(video_file).exists()
|
64 |
+
assert Path(model_dir / 'snapshot-75000.pb').exists()
|
65 |
+
|
66 |
+
# run benchmark videos
|
67 |
+
print("\n Running inference...\n")
|
68 |
+
# model_dir = "DLC_Dog_resnet_50_iteration-0_shuffle-0"
|
69 |
+
# print(video_file)
|
70 |
+
benchmark_videos(str(model_dir), video_file, display=display, resize=0.5, pcutoff=0.25)
|
71 |
+
|
72 |
+
# deleting temporary files
|
73 |
+
print("\n Deleting temporary files...\n")
|
74 |
+
try:
|
75 |
+
shutil.rmtree(tmp_dir)
|
76 |
+
except PermissionError:
|
77 |
+
warnings.warn(f'Could not delete temporary directory {str(tmp_dir)} due to a permissions error, but otherwise dlc-live seems to be working fine!')
|
78 |
+
|
79 |
+
print("\nDone!\n")
|
80 |
+
|
81 |
+
|
82 |
+
if __name__ == "__main__":
|
83 |
+
|
84 |
+
|
85 |
+
display = args.nodisplay
|
86 |
+
|
87 |
+
|
88 |
+
main(display=args.nodisplay)
|
Repositories/DeepLabCut-live/dlclive/display.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
DeepLabCut Toolbox (deeplabcut.org)
|
3 |
+
© A. & M. Mathis Labs
|
4 |
+
|
5 |
+
Licensed under GNU Lesser General Public License v3.0
|
6 |
+
"""
|
7 |
+
|
8 |
+
|
9 |
+
from tkinter import Tk, Label
|
10 |
+
import colorcet as cc
|
11 |
+
from PIL import Image, ImageTk, ImageDraw
|
12 |
+
|
13 |
+
|
14 |
+
class Display(object):
|
15 |
+
"""
|
16 |
+
Simple object to display frames with DLC labels.
|
17 |
+
|
18 |
+
Parameters
|
19 |
+
-----------
|
20 |
+
cmap : string
|
21 |
+
string indicating the Matoplotlib colormap to use.
|
22 |
+
pcutoff : float
|
23 |
+
likelihood threshold to display points
|
24 |
+
"""
|
25 |
+
|
26 |
+
def __init__(self, cmap="bmy", radius=3, pcutoff=0.5):
|
27 |
+
""" Constructor method
|
28 |
+
"""
|
29 |
+
|
30 |
+
self.cmap = cmap
|
31 |
+
self.colors = None
|
32 |
+
self.radius = radius
|
33 |
+
self.pcutoff = pcutoff
|
34 |
+
self.window = None
|
35 |
+
|
36 |
+
def set_display(self, im_size, bodyparts):
|
37 |
+
""" Create tkinter window to display image
|
38 |
+
|
39 |
+
Parameters
|
40 |
+
----------
|
41 |
+
im_size : tuple
|
42 |
+
(width, height) of image
|
43 |
+
bodyparts : int
|
44 |
+
number of bodyparts
|
45 |
+
"""
|
46 |
+
|
47 |
+
self.window = Tk()
|
48 |
+
self.window.title("DLC Live")
|
49 |
+
self.lab = Label(self.window)
|
50 |
+
self.lab.pack()
|
51 |
+
|
52 |
+
all_colors = getattr(cc, self.cmap)
|
53 |
+
self.colors = all_colors[:: int(len(all_colors) / bodyparts)]
|
54 |
+
|
55 |
+
def display_frame(self, frame, pose=None):
|
56 |
+
"""
|
57 |
+
Display the image with DeepLabCut labels using opencv imshow
|
58 |
+
|
59 |
+
Parameters
|
60 |
+
-----------
|
61 |
+
frame :class:`numpy.ndarray`
|
62 |
+
an image as a numpy array
|
63 |
+
|
64 |
+
pose :class:`numpy.ndarray`
|
65 |
+
the pose estimated by DeepLabCut for the image
|
66 |
+
"""
|
67 |
+
|
68 |
+
im_size = (frame.shape[1], frame.shape[0])
|
69 |
+
|
70 |
+
if pose is not None:
|
71 |
+
|
72 |
+
if self.window is None:
|
73 |
+
self.set_display(im_size, pose.shape[0])
|
74 |
+
|
75 |
+
img = Image.fromarray(frame)
|
76 |
+
draw = ImageDraw.Draw(img)
|
77 |
+
|
78 |
+
for i in range(pose.shape[0]):
|
79 |
+
if pose[i, 2] > self.pcutoff:
|
80 |
+
try:
|
81 |
+
x0 = (
|
82 |
+
pose[i, 0] - self.radius
|
83 |
+
if pose[i, 0] - self.radius > 0
|
84 |
+
else 0
|
85 |
+
)
|
86 |
+
x1 = (
|
87 |
+
pose[i, 0] + self.radius
|
88 |
+
if pose[i, 0] + self.radius < im_size[0]
|
89 |
+
else im_size[1]
|
90 |
+
)
|
91 |
+
y0 = (
|
92 |
+
pose[i, 1] - self.radius
|
93 |
+
if pose[i, 1] - self.radius > 0
|
94 |
+
else 0
|
95 |
+
)
|
96 |
+
y1 = (
|
97 |
+
pose[i, 1] + self.radius
|
98 |
+
if pose[i, 1] + self.radius < im_size[1]
|
99 |
+
else im_size[0]
|
100 |
+
)
|
101 |
+
coords = [x0, y0, x1, y1]
|
102 |
+
draw.ellipse(
|
103 |
+
coords, fill=self.colors[i], outline=self.colors[i]
|
104 |
+
)
|
105 |
+
except Exception as e:
|
106 |
+
print(e)
|
107 |
+
|
108 |
+
img_tk = ImageTk.PhotoImage(image=img, master=self.window)
|
109 |
+
self.lab.configure(image=img_tk)
|
110 |
+
self.window.update()
|
111 |
+
|
112 |
+
def destroy(self):
|
113 |
+
"""
|
114 |
+
Destroys the opencv image window
|
115 |
+
"""
|
116 |
+
|
117 |
+
self.window.destroy()
|
Repositories/DeepLabCut-live/dlclive/dlclive.py
ADDED
@@ -0,0 +1,480 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
DeepLabCut Toolbox (deeplabcut.org)
|
3 |
+
© A. & M. Mathis Labs
|
4 |
+
|
5 |
+
Licensed under GNU Lesser General Public License v3.0
|
6 |
+
"""
|
7 |
+
|
8 |
+
import os
|
9 |
+
import ruamel.yaml
|
10 |
+
import glob
|
11 |
+
import warnings
|
12 |
+
import numpy as np
|
13 |
+
import tensorflow as tf
|
14 |
+
import typing
|
15 |
+
from pathlib import Path
|
16 |
+
from typing import Optional, Tuple, List
|
17 |
+
|
18 |
+
try:
|
19 |
+
TFVER = [int(v) for v in tf.__version__.split(".")]
|
20 |
+
if TFVER[1] < 14:
|
21 |
+
from tensorflow.contrib.tensorrt import trt_convert as trt
|
22 |
+
else:
|
23 |
+
from tensorflow.python.compiler.tensorrt import trt_convert as trt
|
24 |
+
except Exception:
|
25 |
+
pass
|
26 |
+
|
27 |
+
from dlclive.graph import (
|
28 |
+
read_graph,
|
29 |
+
finalize_graph,
|
30 |
+
get_output_nodes,
|
31 |
+
get_output_tensors,
|
32 |
+
extract_graph,
|
33 |
+
)
|
34 |
+
from dlclive.pose import extract_cnn_output, argmax_pose_predict, multi_pose_predict
|
35 |
+
from dlclive.display import Display
|
36 |
+
from dlclive import utils
|
37 |
+
from dlclive.exceptions import DLCLiveError, DLCLiveWarning
|
38 |
+
if typing.TYPE_CHECKING:
|
39 |
+
from dlclive.processor import Processor
|
40 |
+
|
41 |
+
class DLCLive(object):
|
42 |
+
"""
|
43 |
+
Object that loads a DLC network and performs inference on single images (e.g. images captured from a camera feed)
|
44 |
+
|
45 |
+
Parameters
|
46 |
+
-----------
|
47 |
+
|
48 |
+
path : string
|
49 |
+
Full path to exported model directory
|
50 |
+
|
51 |
+
model_type: string, optional
|
52 |
+
which model to use: 'base', 'tensorrt' for tensorrt optimized graph, 'lite' for tensorflow lite optimized graph
|
53 |
+
|
54 |
+
precision : string, optional
|
55 |
+
precision of model weights, only for model_type='tensorrt'. Can be 'FP16' (default), 'FP32', or 'INT8'
|
56 |
+
|
57 |
+
cropping : list of int
|
58 |
+
cropping parameters in pixel number: [x1, x2, y1, y2]
|
59 |
+
|
60 |
+
dynamic: triple containing (state, detectiontreshold, margin)
|
61 |
+
If the state is true, then dynamic cropping will be performed. That means that if an object is detected (i.e. any body part > detectiontreshold),
|
62 |
+
then object boundaries are computed according to the smallest/largest x position and smallest/largest y position of all body parts. This window is
|
63 |
+
expanded by the margin and from then on only the posture within this crop is analyzed (until the object is lost, i.e. <detectiontreshold). The
|
64 |
+
current position is utilized for updating the crop window for the next frame (this is why the margin is important and should be set large
|
65 |
+
enough given the movement of the animal).
|
66 |
+
|
67 |
+
resize : float, optional
|
68 |
+
Factor to resize the image.
|
69 |
+
For example, resize=0.5 will downsize both the height and width of the image by a factor of 2.
|
70 |
+
|
71 |
+
processor: dlc pose processor object, optional
|
72 |
+
User-defined processor object. Must contain two methods: process and save.
|
73 |
+
The 'process' method takes in a pose, performs some processing, and returns processed pose.
|
74 |
+
The 'save' method saves any valuable data created by or used by the processor
|
75 |
+
Processors can be used for two main purposes:
|
76 |
+
i) to run a forward predicting model that will predict the future pose from past history of poses (history can be stored in the processor object, but is not stored in this DLCLive object)
|
77 |
+
ii) to trigger external hardware based on pose estimation (e.g. see 'TeensyLaser' processor)
|
78 |
+
|
79 |
+
convert2rgb : bool, optional
|
80 |
+
boolean flag to convert frames from BGR to RGB color scheme
|
81 |
+
|
82 |
+
display : bool, optional
|
83 |
+
Display frames with DeepLabCut labels?
|
84 |
+
This is useful for testing model accuracy and cropping parameters, but it is very slow.
|
85 |
+
|
86 |
+
display_lik : float, optional
|
87 |
+
Likelihood threshold for display
|
88 |
+
|
89 |
+
display_raidus : int, optional
|
90 |
+
radius for keypoint display in pixels, default=3
|
91 |
+
"""
|
92 |
+
|
93 |
+
PARAMETERS = (
|
94 |
+
"path",
|
95 |
+
"cfg",
|
96 |
+
"model_type",
|
97 |
+
"precision",
|
98 |
+
"cropping",
|
99 |
+
"dynamic",
|
100 |
+
"resize",
|
101 |
+
"processor",
|
102 |
+
)
|
103 |
+
|
104 |
+
def __init__(
|
105 |
+
self,
|
106 |
+
model_path:str,
|
107 |
+
model_type:str="base",
|
108 |
+
precision:str="FP32",
|
109 |
+
tf_config=None,
|
110 |
+
cropping:Optional[List[int]]=None,
|
111 |
+
dynamic:Tuple[bool, float, float]=(False, 0.5, 10),
|
112 |
+
resize:Optional[float]=None,
|
113 |
+
convert2rgb:bool=True,
|
114 |
+
processor:Optional['Processor']=None,
|
115 |
+
display:typing.Union[bool, Display]=False,
|
116 |
+
pcutoff:float=0.5,
|
117 |
+
display_radius:int=3,
|
118 |
+
display_cmap:str="bmy",
|
119 |
+
):
|
120 |
+
|
121 |
+
self.path = model_path
|
122 |
+
self.cfg = None # type: typing.Optional[dict]
|
123 |
+
self.model_type = model_type
|
124 |
+
self.tf_config = tf_config
|
125 |
+
self.precision = precision
|
126 |
+
self.cropping = cropping
|
127 |
+
self.dynamic = dynamic
|
128 |
+
self.dynamic_cropping = None
|
129 |
+
self.resize = resize
|
130 |
+
self.processor = processor
|
131 |
+
self.convert2rgb = convert2rgb
|
132 |
+
if isinstance(display, Display):
|
133 |
+
self.display = display
|
134 |
+
elif display:
|
135 |
+
self.display = Display(pcutoff=pcutoff, radius=display_radius, cmap=display_cmap)
|
136 |
+
else:
|
137 |
+
self.display = None
|
138 |
+
|
139 |
+
self.sess = None
|
140 |
+
self.inputs = None
|
141 |
+
self.outputs = None
|
142 |
+
self.tflite_interpreter = None
|
143 |
+
self.pose = None
|
144 |
+
self.is_initialized = False
|
145 |
+
|
146 |
+
# checks
|
147 |
+
|
148 |
+
if self.model_type == "tflite" and self.dynamic[0]:
|
149 |
+
self.dynamic = (False, *self.dynamic[1:])
|
150 |
+
warnings.warn(
|
151 |
+
"Dynamic cropping is not supported for tensorflow lite inference. Dynamic cropping will not be used...",
|
152 |
+
DLCLiveWarning,
|
153 |
+
)
|
154 |
+
|
155 |
+
self.read_config()
|
156 |
+
|
157 |
+
def read_config(self):
|
158 |
+
""" Reads configuration yaml file
|
159 |
+
|
160 |
+
Raises
|
161 |
+
------
|
162 |
+
FileNotFoundError
|
163 |
+
error thrown if pose configuration file does nott exist
|
164 |
+
"""
|
165 |
+
|
166 |
+
cfg_path = Path(self.path).resolve() / "pose_cfg.yaml"
|
167 |
+
if not cfg_path.exists():
|
168 |
+
raise FileNotFoundError(
|
169 |
+
f"The pose configuration file for the exported model at {str(cfg_path)} was not found. Please check the path to the exported model directory"
|
170 |
+
)
|
171 |
+
|
172 |
+
ruamel_file = ruamel.yaml.YAML()
|
173 |
+
self.cfg = ruamel_file.load(open(str(cfg_path), "r"))
|
174 |
+
|
175 |
+
@property
|
176 |
+
def parameterization(self) -> dict:
|
177 |
+
"""
|
178 |
+
Return
|
179 |
+
Returns
|
180 |
+
-------
|
181 |
+
"""
|
182 |
+
return {param: getattr(self, param) for param in self.PARAMETERS}
|
183 |
+
|
184 |
+
def process_frame(self, frame):
|
185 |
+
"""
|
186 |
+
Crops an image according to the object's cropping and dynamic properties.
|
187 |
+
|
188 |
+
Parameters
|
189 |
+
-----------
|
190 |
+
frame :class:`numpy.ndarray`
|
191 |
+
image as a numpy array
|
192 |
+
|
193 |
+
Returns
|
194 |
+
----------
|
195 |
+
frame :class:`numpy.ndarray`
|
196 |
+
processed frame: convert type, crop, convert color
|
197 |
+
"""
|
198 |
+
|
199 |
+
if frame.dtype != np.uint8:
|
200 |
+
|
201 |
+
frame = utils.convert_to_ubyte(frame)
|
202 |
+
|
203 |
+
if self.cropping:
|
204 |
+
|
205 |
+
frame = frame[
|
206 |
+
self.cropping[2] : self.cropping[3], self.cropping[0] : self.cropping[1]
|
207 |
+
]
|
208 |
+
|
209 |
+
if self.dynamic[0]:
|
210 |
+
|
211 |
+
if self.pose is not None:
|
212 |
+
|
213 |
+
detected = self.pose[:, 2] > self.dynamic[1]
|
214 |
+
|
215 |
+
if np.any(detected):
|
216 |
+
|
217 |
+
x = self.pose[detected, 0]
|
218 |
+
y = self.pose[detected, 1]
|
219 |
+
|
220 |
+
x1 = int(max([0, int(np.amin(x)) - self.dynamic[2]]))
|
221 |
+
x2 = int(min([frame.shape[1], int(np.amax(x)) + self.dynamic[2]]))
|
222 |
+
y1 = int(max([0, int(np.amin(y)) - self.dynamic[2]]))
|
223 |
+
y2 = int(min([frame.shape[0], int(np.amax(y)) + self.dynamic[2]]))
|
224 |
+
self.dynamic_cropping = [x1, x2, y1, y2]
|
225 |
+
|
226 |
+
frame = frame[y1:y2, x1:x2]
|
227 |
+
|
228 |
+
else:
|
229 |
+
|
230 |
+
self.dynamic_cropping = None
|
231 |
+
|
232 |
+
if self.resize != 1:
|
233 |
+
frame = utils.resize_frame(frame, self.resize)
|
234 |
+
|
235 |
+
if self.convert2rgb:
|
236 |
+
frame = utils.img_to_rgb(frame)
|
237 |
+
|
238 |
+
return frame
|
239 |
+
|
240 |
+
def init_inference(self, frame=None, **kwargs):
|
241 |
+
"""
|
242 |
+
Load model and perform inference on first frame -- the first inference is usually very slow.
|
243 |
+
|
244 |
+
Parameters
|
245 |
+
-----------
|
246 |
+
frame :class:`numpy.ndarray`
|
247 |
+
image as a numpy array
|
248 |
+
|
249 |
+
Returns
|
250 |
+
--------
|
251 |
+
pose :class:`numpy.ndarray`
|
252 |
+
the pose estimated by DeepLabCut for the input image
|
253 |
+
"""
|
254 |
+
|
255 |
+
# get model file
|
256 |
+
|
257 |
+
model_file = glob.glob(os.path.normpath(self.path + "/*.pb"))[0]
|
258 |
+
if not os.path.isfile(model_file):
|
259 |
+
raise FileNotFoundError(
|
260 |
+
"The model file {} does not exist.".format(model_file)
|
261 |
+
)
|
262 |
+
|
263 |
+
# process frame
|
264 |
+
|
265 |
+
if frame is None and (self.model_type == "tflite"):
|
266 |
+
raise DLCLiveError(
|
267 |
+
"No image was passed to initialize inference. An image must be passed to the init_inference method"
|
268 |
+
)
|
269 |
+
|
270 |
+
if frame is not None:
|
271 |
+
if frame.ndim == 2:
|
272 |
+
self.convert2rgb = True
|
273 |
+
processed_frame = self.process_frame(frame)
|
274 |
+
|
275 |
+
# load model
|
276 |
+
|
277 |
+
if self.model_type == "base":
|
278 |
+
|
279 |
+
graph_def = read_graph(model_file)
|
280 |
+
graph = finalize_graph(graph_def)
|
281 |
+
self.sess, self.inputs, self.outputs = extract_graph(
|
282 |
+
graph, tf_config=self.tf_config
|
283 |
+
)
|
284 |
+
|
285 |
+
elif self.model_type == "tflite":
|
286 |
+
|
287 |
+
###
|
288 |
+
# the frame size needed to initialize the tflite model as
|
289 |
+
# tflite does not support saving a model with dynamic input size
|
290 |
+
###
|
291 |
+
|
292 |
+
# get input and output tensor names from graph_def
|
293 |
+
graph_def = read_graph(model_file)
|
294 |
+
graph = finalize_graph(graph_def)
|
295 |
+
output_nodes = get_output_nodes(graph)
|
296 |
+
output_nodes = [on.replace("DLC/", "") for on in output_nodes]
|
297 |
+
|
298 |
+
tf_version_2 = tf.__version__[0] == '2'
|
299 |
+
|
300 |
+
if tf_version_2:
|
301 |
+
converter = tf.compat.v1.lite.TFLiteConverter.from_frozen_graph(
|
302 |
+
model_file,
|
303 |
+
["Placeholder"],
|
304 |
+
output_nodes,
|
305 |
+
input_shapes={"Placeholder": [1, processed_frame.shape[0], processed_frame.shape[1], 3]},
|
306 |
+
)
|
307 |
+
else:
|
308 |
+
converter = tf.lite.TFLiteConverter.from_frozen_graph(
|
309 |
+
model_file,
|
310 |
+
["Placeholder"],
|
311 |
+
output_nodes,
|
312 |
+
input_shapes={"Placeholder": [1, processed_frame.shape[0], processed_frame.shape[1], 3]},
|
313 |
+
)
|
314 |
+
|
315 |
+
try:
|
316 |
+
tflite_model = converter.convert()
|
317 |
+
except Exception:
|
318 |
+
raise DLCLiveError(
|
319 |
+
(
|
320 |
+
"This model cannot be converted to tensorflow lite format. "
|
321 |
+
"To use tensorflow lite for live inference, "
|
322 |
+
"make sure to set TFGPUinference=False "
|
323 |
+
"when exporting the model from DeepLabCut"
|
324 |
+
)
|
325 |
+
)
|
326 |
+
|
327 |
+
self.tflite_interpreter = tf.lite.Interpreter(model_content=tflite_model)
|
328 |
+
self.tflite_interpreter.allocate_tensors()
|
329 |
+
self.inputs = self.tflite_interpreter.get_input_details()
|
330 |
+
self.outputs = self.tflite_interpreter.get_output_details()
|
331 |
+
|
332 |
+
elif self.model_type == "tensorrt":
|
333 |
+
|
334 |
+
graph_def = read_graph(model_file)
|
335 |
+
graph = finalize_graph(graph_def)
|
336 |
+
output_tensors = get_output_tensors(graph)
|
337 |
+
output_tensors = [ot.replace("DLC/", "") for ot in output_tensors]
|
338 |
+
|
339 |
+
if (TFVER[0] > 1) | (TFVER[0] == 1 & TFVER[1] >= 14):
|
340 |
+
converter = trt.TrtGraphConverter(
|
341 |
+
input_graph_def=graph_def,
|
342 |
+
nodes_blacklist=output_tensors,
|
343 |
+
is_dynamic_op=True,
|
344 |
+
)
|
345 |
+
graph_def = converter.convert()
|
346 |
+
else:
|
347 |
+
graph_def = trt.create_inference_graph(
|
348 |
+
input_graph_def=graph_def,
|
349 |
+
outputs=output_tensors,
|
350 |
+
max_batch_size=1,
|
351 |
+
precision_mode=self.precision,
|
352 |
+
is_dynamic_op=True,
|
353 |
+
)
|
354 |
+
|
355 |
+
graph = finalize_graph(graph_def)
|
356 |
+
self.sess, self.inputs, self.outputs = extract_graph(
|
357 |
+
graph, tf_config=self.tf_config
|
358 |
+
)
|
359 |
+
|
360 |
+
else:
|
361 |
+
|
362 |
+
raise DLCLiveError(
|
363 |
+
"model_type = {} is not supported. model_type must be 'base', 'tflite', or 'tensorrt'".format(
|
364 |
+
self.model_type
|
365 |
+
)
|
366 |
+
)
|
367 |
+
|
368 |
+
# get pose of first frame (first inference is often very slow)
|
369 |
+
|
370 |
+
if frame is not None:
|
371 |
+
pose = self.get_pose(frame, **kwargs)
|
372 |
+
else:
|
373 |
+
pose = None
|
374 |
+
|
375 |
+
self.is_initialized = True
|
376 |
+
|
377 |
+
return pose
|
378 |
+
|
379 |
+
def get_pose(self, frame=None, **kwargs):
|
380 |
+
"""
|
381 |
+
Get the pose of an image
|
382 |
+
|
383 |
+
Parameters
|
384 |
+
-----------
|
385 |
+
frame :class:`numpy.ndarray`
|
386 |
+
image as a numpy array
|
387 |
+
|
388 |
+
Returns
|
389 |
+
--------
|
390 |
+
pose :class:`numpy.ndarray`
|
391 |
+
the pose estimated by DeepLabCut for the input image
|
392 |
+
"""
|
393 |
+
|
394 |
+
if frame is None:
|
395 |
+
raise DLCLiveError("No frame provided for live pose estimation")
|
396 |
+
|
397 |
+
frame = self.process_frame(frame)
|
398 |
+
|
399 |
+
if self.model_type in ["base", "tensorrt"]:
|
400 |
+
|
401 |
+
pose_output = self.sess.run(
|
402 |
+
self.outputs, feed_dict={self.inputs: np.expand_dims(frame, axis=0)}
|
403 |
+
)
|
404 |
+
|
405 |
+
elif self.model_type == "tflite":
|
406 |
+
|
407 |
+
self.tflite_interpreter.set_tensor(
|
408 |
+
self.inputs[0]["index"],
|
409 |
+
np.expand_dims(frame, axis=0).astype(np.float32),
|
410 |
+
)
|
411 |
+
self.tflite_interpreter.invoke()
|
412 |
+
|
413 |
+
if len(self.outputs) > 1:
|
414 |
+
pose_output = [
|
415 |
+
self.tflite_interpreter.get_tensor(self.outputs[0]["index"]),
|
416 |
+
self.tflite_interpreter.get_tensor(self.outputs[1]["index"]),
|
417 |
+
]
|
418 |
+
else:
|
419 |
+
pose_output = self.tflite_interpreter.get_tensor(
|
420 |
+
self.outputs[0]["index"]
|
421 |
+
)
|
422 |
+
|
423 |
+
else:
|
424 |
+
|
425 |
+
raise DLCLiveError(
|
426 |
+
"model_type = {} is not supported. model_type must be 'base', 'tflite', or 'tensorrt'".format(
|
427 |
+
self.model_type
|
428 |
+
)
|
429 |
+
)
|
430 |
+
|
431 |
+
# check if using TFGPUinference flag
|
432 |
+
# if not, get pose from network output
|
433 |
+
|
434 |
+
if len(pose_output) > 1:
|
435 |
+
scmap, locref = extract_cnn_output(pose_output, self.cfg)
|
436 |
+
num_outputs = self.cfg.get("num_outputs", 1)
|
437 |
+
if num_outputs > 1:
|
438 |
+
self.pose = multi_pose_predict(
|
439 |
+
scmap, locref, self.cfg["stride"], num_outputs
|
440 |
+
)
|
441 |
+
else:
|
442 |
+
self.pose = argmax_pose_predict(scmap, locref, self.cfg["stride"])
|
443 |
+
else:
|
444 |
+
pose = np.array(pose_output[0])
|
445 |
+
self.pose = pose[:, [1, 0, 2]]
|
446 |
+
|
447 |
+
# display image if display=True before correcting pose for cropping/resizing
|
448 |
+
|
449 |
+
if self.display is not None:
|
450 |
+
self.display.display_frame(frame, self.pose)
|
451 |
+
|
452 |
+
# if frame is cropped, convert pose coordinates to original frame coordinates
|
453 |
+
|
454 |
+
if self.resize is not None:
|
455 |
+
self.pose[:, :2] *= 1 / self.resize
|
456 |
+
|
457 |
+
if self.cropping is not None:
|
458 |
+
self.pose[:, 0] += self.cropping[0]
|
459 |
+
self.pose[:, 1] += self.cropping[2]
|
460 |
+
|
461 |
+
if self.dynamic_cropping is not None:
|
462 |
+
self.pose[:, 0] += self.dynamic_cropping[0]
|
463 |
+
self.pose[:, 1] += self.dynamic_cropping[2]
|
464 |
+
|
465 |
+
# process the pose
|
466 |
+
|
467 |
+
if self.processor:
|
468 |
+
self.pose = self.processor.process(self.pose, **kwargs)
|
469 |
+
|
470 |
+
return self.pose
|
471 |
+
|
472 |
+
def close(self):
|
473 |
+
""" Close tensorflow session
|
474 |
+
"""
|
475 |
+
|
476 |
+
self.sess.close()
|
477 |
+
self.sess = None
|
478 |
+
self.is_initialized = False
|
479 |
+
if self.display is not None:
|
480 |
+
self.display.destroy()
|
Repositories/DeepLabCut-live/dlclive/exceptions.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
DeepLabCut Toolbox (deeplabcut.org)
|
3 |
+
© A. & M. Mathis Labs
|
4 |
+
|
5 |
+
Licensed under GNU Lesser General Public License v3.0
|
6 |
+
"""
|
7 |
+
|
8 |
+
|
9 |
+
class DLCLiveError(Exception):
|
10 |
+
""" Generic error type for incorrect use of the DLCLive class """
|
11 |
+
|
12 |
+
pass
|
13 |
+
|
14 |
+
|
15 |
+
class DLCLiveWarning(Warning):
|
16 |
+
""" Generic warning for incorrect use of the DLCLive class """
|
17 |
+
|
18 |
+
pass
|
Repositories/DeepLabCut-live/dlclive/graph.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
DeepLabCut Toolbox (deeplabcut.org)
|
3 |
+
© A. & M. Mathis Labs
|
4 |
+
|
5 |
+
Licensed under GNU Lesser General Public License v3.0
|
6 |
+
"""
|
7 |
+
|
8 |
+
|
9 |
+
import tensorflow as tf
|
10 |
+
|
11 |
+
vers = (tf.__version__).split(".")
|
12 |
+
if int(vers[0]) == 2 or int(vers[0]) == 1 and int(vers[1]) > 12:
|
13 |
+
tf = tf.compat.v1
|
14 |
+
else:
|
15 |
+
tf = tf
|
16 |
+
|
17 |
+
|
18 |
+
def read_graph(file):
|
19 |
+
"""
|
20 |
+
Loads the graph from a protobuf file
|
21 |
+
|
22 |
+
Parameters
|
23 |
+
-----------
|
24 |
+
file : string
|
25 |
+
path to the protobuf file
|
26 |
+
|
27 |
+
Returns
|
28 |
+
--------
|
29 |
+
graph_def :class:`tensorflow.tf.compat.v1.GraphDef`
|
30 |
+
The graph definition of the DeepLabCut model found at the object's path
|
31 |
+
"""
|
32 |
+
|
33 |
+
with tf.io.gfile.GFile(file, "rb") as f:
|
34 |
+
graph_def = tf.GraphDef()
|
35 |
+
graph_def.ParseFromString(f.read())
|
36 |
+
return graph_def
|
37 |
+
|
38 |
+
|
39 |
+
def finalize_graph(graph_def):
|
40 |
+
"""
|
41 |
+
Finalize the graph and get inputs to model
|
42 |
+
|
43 |
+
Parameters
|
44 |
+
-----------
|
45 |
+
graph_def :class:`tensorflow.compat.v1.GraphDef`
|
46 |
+
The graph of the DeepLabCut model, read using the :func:`read_graph` method
|
47 |
+
|
48 |
+
Returns
|
49 |
+
--------
|
50 |
+
graph :class:`tensorflow.compat.v1.GraphDef`
|
51 |
+
The finalized graph of the DeepLabCut model
|
52 |
+
inputs :class:`tensorflow.Tensor`
|
53 |
+
Input tensor(s) for the model
|
54 |
+
"""
|
55 |
+
|
56 |
+
graph = tf.Graph()
|
57 |
+
with graph.as_default():
|
58 |
+
tf.import_graph_def(graph_def, name="DLC")
|
59 |
+
graph.finalize()
|
60 |
+
|
61 |
+
return graph
|
62 |
+
|
63 |
+
|
64 |
+
def get_output_nodes(graph):
|
65 |
+
"""
|
66 |
+
Get the output node names from a graph
|
67 |
+
|
68 |
+
Parameters
|
69 |
+
-----------
|
70 |
+
graph :class:`tensorflow.Graph`
|
71 |
+
The graph of the DeepLabCut model
|
72 |
+
|
73 |
+
Returns
|
74 |
+
--------
|
75 |
+
output : list
|
76 |
+
the output node names as a list of strings
|
77 |
+
"""
|
78 |
+
|
79 |
+
op_names = [str(op.name) for op in graph.get_operations()]
|
80 |
+
if "concat_1" in op_names[-1]:
|
81 |
+
output = [op_names[-1]]
|
82 |
+
else:
|
83 |
+
output = [op_names[-1], op_names[-2]]
|
84 |
+
|
85 |
+
return output
|
86 |
+
|
87 |
+
|
88 |
+
def get_output_tensors(graph):
|
89 |
+
"""
|
90 |
+
Get the names of the output tensors from a graph
|
91 |
+
|
92 |
+
Parameters
|
93 |
+
-----------
|
94 |
+
graph :class:`tensorflow.Graph`
|
95 |
+
The graph of the DeepLabCut model
|
96 |
+
|
97 |
+
Returns
|
98 |
+
--------
|
99 |
+
output : list
|
100 |
+
the output tensor names as a list of strings
|
101 |
+
"""
|
102 |
+
|
103 |
+
output_nodes = get_output_nodes(graph)
|
104 |
+
output_tensor = [out + ":0" for out in output_nodes]
|
105 |
+
return output_tensor
|
106 |
+
|
107 |
+
|
108 |
+
def get_input_tensor(graph):
|
109 |
+
|
110 |
+
input_tensor = str(graph.get_operations()[0].name) + ":0"
|
111 |
+
return input_tensor
|
112 |
+
|
113 |
+
|
114 |
+
def extract_graph(graph, tf_config=None):
|
115 |
+
"""
|
116 |
+
Initializes a tensorflow session with the specified graph and extracts the model's inputs and outputs
|
117 |
+
|
118 |
+
Parameters
|
119 |
+
-----------
|
120 |
+
graph :class:`tensorflow.Graph`
|
121 |
+
a tensorflow graph containing the desired model
|
122 |
+
tf_config :class:`tensorflow.ConfigProto`
|
123 |
+
|
124 |
+
Returns
|
125 |
+
--------
|
126 |
+
sess :class:`tensorflow.Session`
|
127 |
+
a tensorflow session with the specified graph definition
|
128 |
+
outputs :class:`tensorflow.Tensor`
|
129 |
+
the output tensor(s) for the model
|
130 |
+
"""
|
131 |
+
|
132 |
+
input_tensor = get_input_tensor(graph)
|
133 |
+
output_tensor = get_output_tensors(graph)
|
134 |
+
sess = tf.Session(graph=graph, config=tf_config)
|
135 |
+
inputs = graph.get_tensor_by_name(input_tensor)
|
136 |
+
outputs = [graph.get_tensor_by_name(out) for out in output_tensor]
|
137 |
+
|
138 |
+
return sess, inputs, outputs
|
Repositories/DeepLabCut-live/dlclive/pose.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
DeepLabCut Toolbox (deeplabcut.org)
|
3 |
+
© A. & M. Mathis Labs
|
4 |
+
|
5 |
+
Licensed under GNU Lesser General Public License v3.0
|
6 |
+
"""
|
7 |
+
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
|
12 |
+
def extract_cnn_output(outputs, cfg):
|
13 |
+
"""
|
14 |
+
Extract location refinement and score map from DeepLabCut network
|
15 |
+
|
16 |
+
Parameters
|
17 |
+
-----------
|
18 |
+
outputs : list
|
19 |
+
List of outputs from DeepLabCut network.
|
20 |
+
Requires 2 entries:
|
21 |
+
index 0 is output from Sigmoid
|
22 |
+
index 1 is output from pose/locref_pred/block4/BiasAdd
|
23 |
+
|
24 |
+
cfg : dict
|
25 |
+
Dictionary read from the pose_cfg.yaml file for the network.
|
26 |
+
|
27 |
+
Returns
|
28 |
+
--------
|
29 |
+
scmap : ?
|
30 |
+
score map
|
31 |
+
|
32 |
+
locref : ?
|
33 |
+
location refinement
|
34 |
+
"""
|
35 |
+
|
36 |
+
scmap = outputs[0]
|
37 |
+
scmap = np.squeeze(scmap)
|
38 |
+
locref = None
|
39 |
+
if cfg["location_refinement"]:
|
40 |
+
locref = np.squeeze(outputs[1])
|
41 |
+
shape = locref.shape
|
42 |
+
locref = np.reshape(locref, (shape[0], shape[1], -1, 2))
|
43 |
+
locref *= cfg["locref_stdev"]
|
44 |
+
if len(scmap.shape) == 2: # for single body part!
|
45 |
+
scmap = np.expand_dims(scmap, axis=2)
|
46 |
+
return scmap, locref
|
47 |
+
|
48 |
+
|
49 |
+
def argmax_pose_predict(scmap, offmat, stride):
|
50 |
+
"""
|
51 |
+
Combines score map and offsets to the final pose
|
52 |
+
|
53 |
+
Parameters
|
54 |
+
-----------
|
55 |
+
scmap : ?
|
56 |
+
score map
|
57 |
+
|
58 |
+
offmat : ?
|
59 |
+
offsets
|
60 |
+
|
61 |
+
stride : ?
|
62 |
+
?
|
63 |
+
|
64 |
+
Returns
|
65 |
+
--------
|
66 |
+
pose :class:`numpy.ndarray`
|
67 |
+
pose as a numpy array
|
68 |
+
"""
|
69 |
+
|
70 |
+
num_joints = scmap.shape[2]
|
71 |
+
pose = []
|
72 |
+
for joint_idx in range(num_joints):
|
73 |
+
maxloc = np.unravel_index(
|
74 |
+
np.argmax(scmap[:, :, joint_idx]), scmap[:, :, joint_idx].shape
|
75 |
+
)
|
76 |
+
offset = np.array(offmat[maxloc][joint_idx])[::-1]
|
77 |
+
pos_f8 = np.array(maxloc).astype("float") * stride + 0.5 * stride + offset
|
78 |
+
pose.append(np.hstack((pos_f8[::-1], [scmap[maxloc][joint_idx]])))
|
79 |
+
return np.array(pose)
|
80 |
+
|
81 |
+
|
82 |
+
def get_top_values(scmap, n_top=5):
|
83 |
+
batchsize, ny, nx, num_joints = scmap.shape
|
84 |
+
scmap_flat = scmap.reshape(batchsize, nx * ny, num_joints)
|
85 |
+
if n_top == 1:
|
86 |
+
scmap_top = np.argmax(scmap_flat, axis=1)[None]
|
87 |
+
else:
|
88 |
+
scmap_top = np.argpartition(scmap_flat, -n_top, axis=1)[:, -n_top:]
|
89 |
+
for ix in range(batchsize):
|
90 |
+
vals = scmap_flat[ix, scmap_top[ix], np.arange(num_joints)]
|
91 |
+
arg = np.argsort(-vals, axis=0)
|
92 |
+
scmap_top[ix] = scmap_top[ix, arg, np.arange(num_joints)]
|
93 |
+
scmap_top = scmap_top.swapaxes(0, 1)
|
94 |
+
|
95 |
+
Y, X = np.unravel_index(scmap_top, (ny, nx))
|
96 |
+
return Y, X
|
97 |
+
|
98 |
+
|
99 |
+
def multi_pose_predict(scmap, locref, stride, num_outputs):
|
100 |
+
Y, X = get_top_values(scmap[None], num_outputs)
|
101 |
+
Y, X = Y[:, 0], X[:, 0]
|
102 |
+
num_joints = scmap.shape[2]
|
103 |
+
DZ = np.zeros((num_outputs, num_joints, 3))
|
104 |
+
for m in range(num_outputs):
|
105 |
+
for k in range(num_joints):
|
106 |
+
x = X[m, k]
|
107 |
+
y = Y[m, k]
|
108 |
+
DZ[m, k, :2] = locref[y, x, k, :]
|
109 |
+
DZ[m, k, 2] = scmap[y, x, k]
|
110 |
+
|
111 |
+
X = X.astype("float32") * stride + 0.5 * stride + DZ[:, :, 0]
|
112 |
+
Y = Y.astype("float32") * stride + 0.5 * stride + DZ[:, :, 1]
|
113 |
+
P = DZ[:, :, 2]
|
114 |
+
|
115 |
+
pose = np.empty((num_joints, num_outputs * 3), dtype="float32")
|
116 |
+
pose[:, 0::3] = X.T
|
117 |
+
pose[:, 1::3] = Y.T
|
118 |
+
pose[:, 2::3] = P.T
|
119 |
+
|
120 |
+
return pose
|
Repositories/DeepLabCut-live/dlclive/processor/README.md
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### DeepLabCut-live Processors
|
2 |
+
|
3 |
+
The `Processor` class allows users to implement processing or computation steps after DeepLabCut pose estimation. For example, a `Processor` can detect certain features of a pose and turn on an LED or an optogenetics laser, a `Processor` can implement a forward-prediction model that predicts animal's pose ~10-100 ms into the future to apply feedback with zero latency, or a `Processor` can do both.
|
4 |
+
|
5 |
+
The `Processor` is designed to be extremely flexible: it must only contain two methods: `Processor.process`, whose input and output is a pose as a numpy array, and `Processor.save`, which allows users to implement a method that saves any data the `Processor` acquires, such as the time that desired behavior occured or the times an LED or laser was turned on/off. The save method must be written by the user, so users can choose whether this data is saved as a text/csv, numpy, pickle, or pandas file to provide a few examples.
|
6 |
+
|
7 |
+
To write your own custom `Processor`, your class must inherit the base `Processor` class (see [here](./processor.py)):
|
8 |
+
```
|
9 |
+
from dlclive import Processor
|
10 |
+
class MyCustomProcessor(Processor):
|
11 |
+
...
|
12 |
+
```
|
13 |
+
|
14 |
+
To implement your processing steps, overwrite the `Processor.process` method:
|
15 |
+
```
|
16 |
+
def process(pose, **kwargs):
|
17 |
+
# my processing steps go here
|
18 |
+
return pose
|
19 |
+
```
|
20 |
+
|
21 |
+
For example `Processor` objects that communicate with Teensy microcontrollers to [control an optogenetics laser](../../example_processors/TeensyLaser), [turn on an LED when upond detecting a mouse licking](../../example_processors/MouseLickLED), or [turn on an LED upon detecting a dog's rearing movement](../../example_processors/DogJumpLED), see our [example_teensy](../../example_processors) directory.
|
Repositories/DeepLabCut-live/dlclive/processor/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
DeepLabCut Toolbox (deeplabcut.org)
|
3 |
+
© A. & M. Mathis Labs
|
4 |
+
|
5 |
+
Licensed under GNU Lesser General Public License v3.0
|
6 |
+
"""
|
7 |
+
|
8 |
+
from dlclive.processor.processor import Processor
|
9 |
+
from dlclive.processor.kalmanfilter import KalmanFilterPredictor
|
Repositories/DeepLabCut-live/dlclive/processor/kalmanfilter.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
DeepLabCut Toolbox (deeplabcut.org)
|
3 |
+
© A. & M. Mathis Labs
|
4 |
+
|
5 |
+
Licensed under GNU Lesser General Public License v3.0
|
6 |
+
"""
|
7 |
+
|
8 |
+
|
9 |
+
import time
|
10 |
+
import numpy as np
|
11 |
+
from dlclive.processor import Processor
|
12 |
+
|
13 |
+
|
14 |
+
class KalmanFilterPredictor(Processor):
|
15 |
+
def __init__(
|
16 |
+
self,
|
17 |
+
adapt=True,
|
18 |
+
forward=0.002,
|
19 |
+
fps=30,
|
20 |
+
nderiv=2,
|
21 |
+
priors=[10, 10],
|
22 |
+
initial_var=5,
|
23 |
+
process_var=5,
|
24 |
+
dlc_var=20,
|
25 |
+
lik_thresh=0,
|
26 |
+
**kwargs,
|
27 |
+
):
|
28 |
+
|
29 |
+
super().__init__(**kwargs)
|
30 |
+
|
31 |
+
self.adapt = adapt
|
32 |
+
self.forward = forward
|
33 |
+
self.dt = 1.0 / fps
|
34 |
+
self.nderiv = nderiv
|
35 |
+
self.priors = np.hstack(([1e5], priors))
|
36 |
+
self.initial_var = initial_var
|
37 |
+
self.process_var = process_var
|
38 |
+
self.dlc_var = dlc_var
|
39 |
+
self.lik_thresh = lik_thresh
|
40 |
+
self.is_initialized = False
|
41 |
+
self.last_pose_time = 0
|
42 |
+
|
43 |
+
def _get_forward_model(self, dt):
|
44 |
+
|
45 |
+
F = np.zeros((self.n_states, self.n_states))
|
46 |
+
for d in range(self.nderiv + 1):
|
47 |
+
for i in range(self.n_states - (d * self.bp * 2)):
|
48 |
+
F[i, i + (2 * self.bp * d)] = (dt ** d) / max(1, d)
|
49 |
+
|
50 |
+
return F
|
51 |
+
|
52 |
+
def _init_kf(self, pose):
|
53 |
+
|
54 |
+
# get number of body parts
|
55 |
+
self.bp = pose.shape[0]
|
56 |
+
self.n_states = self.bp * 2 * (self.nderiv + 1)
|
57 |
+
|
58 |
+
# initialize state matrix, set position to first pose
|
59 |
+
self.X = np.zeros((self.n_states, 1))
|
60 |
+
self.X[: (self.bp * 2)] = pose[:, :2].reshape(self.bp * 2, 1)
|
61 |
+
|
62 |
+
# initialize covariance matrix, measurement noise and process noise
|
63 |
+
self.P = np.eye(self.n_states) * self.initial_var
|
64 |
+
self.R = np.eye(self.n_states) * self.dlc_var
|
65 |
+
self.Q = np.eye(self.n_states) * self.process_var
|
66 |
+
|
67 |
+
self.H = np.eye(self.n_states)
|
68 |
+
self.K = np.zeros((self.n_states, self.n_states))
|
69 |
+
self.I = np.eye(self.n_states)
|
70 |
+
|
71 |
+
# initialize priors for forward prediction step only
|
72 |
+
B = np.repeat(self.priors, self.bp * 2)
|
73 |
+
self.B = B.reshape(B.size, 1)
|
74 |
+
|
75 |
+
self.is_initialized = True
|
76 |
+
|
77 |
+
def _predict(self):
|
78 |
+
|
79 |
+
F = self._get_forward_model(time.time() - self.last_pose_time)
|
80 |
+
|
81 |
+
Pd = np.diag(self.P).reshape(self.P.shape[0], 1)
|
82 |
+
X = (1 / ((1 / Pd) + (1 / self.B))) * (self.X / Pd)
|
83 |
+
|
84 |
+
self.Xp = np.dot(F, X)
|
85 |
+
self.Pp = np.dot(np.dot(F, self.P), F.T) + self.Q
|
86 |
+
|
87 |
+
def _get_residuals(self, pose):
|
88 |
+
|
89 |
+
z = np.zeros((self.n_states, 1))
|
90 |
+
z[: (self.bp * 2)] = pose[: self.bp, :2].reshape(self.bp * 2, 1)
|
91 |
+
for i in range(self.bp * 2, self.n_states):
|
92 |
+
z[i] = (z[i - (self.bp * 2)] - self.X[i - (self.bp * 2)]) / self.dt
|
93 |
+
self.y = z - np.dot(self.H, self.Xp)
|
94 |
+
|
95 |
+
def _update(self, liks):
|
96 |
+
|
97 |
+
S = np.dot(self.H, np.dot(self.Pp, self.H.T)) + self.R
|
98 |
+
K = np.dot(np.dot(self.Pp, self.H.T), np.linalg.inv(S))
|
99 |
+
self.X = self.Xp + np.dot(K, self.y)
|
100 |
+
self.X[liks < self.lik_thresh] = self.Xp[liks < self.lik_thresh]
|
101 |
+
self.P = np.dot(self.I - np.dot(K, self.H), self.Pp)
|
102 |
+
|
103 |
+
def _get_future_pose(self, dt):
|
104 |
+
|
105 |
+
Ff = self._get_forward_model(dt)
|
106 |
+
Xf = np.dot(Ff, self.X)
|
107 |
+
future_pose = Xf[: (self.bp * 2)].reshape(self.bp, 2)
|
108 |
+
|
109 |
+
return future_pose
|
110 |
+
|
111 |
+
def _get_state_likelihood(self, pose):
|
112 |
+
|
113 |
+
liks = pose[:, 2]
|
114 |
+
liks_xy = np.repeat(liks, 2)
|
115 |
+
liks_xy_deriv = np.tile(liks_xy, self.nderiv + 1)
|
116 |
+
liks_state = liks_xy_deriv.reshape(liks_xy_deriv.shape[0], 1)
|
117 |
+
return liks_state
|
118 |
+
|
119 |
+
def process(self, pose, **kwargs):
|
120 |
+
|
121 |
+
if not self.is_initialized:
|
122 |
+
|
123 |
+
self._init_kf(pose)
|
124 |
+
self.last_pose_time = time.time()
|
125 |
+
return pose
|
126 |
+
|
127 |
+
else:
|
128 |
+
|
129 |
+
self._predict()
|
130 |
+
self._get_residuals(pose)
|
131 |
+
liks = self._get_state_likelihood(pose)
|
132 |
+
self._update(liks)
|
133 |
+
|
134 |
+
forward_time = (
|
135 |
+
(time.time() - kwargs["frame_time"] + self.forward)
|
136 |
+
if self.adapt
|
137 |
+
else self.forward
|
138 |
+
)
|
139 |
+
|
140 |
+
future_pose = self._get_future_pose(forward_time)
|
141 |
+
future_pose = np.hstack((future_pose, pose[:, 2].reshape(self.bp, 1)))
|
142 |
+
|
143 |
+
self.last_pose_time = time.time()
|
144 |
+
return future_pose
|
Repositories/DeepLabCut-live/dlclive/processor/processor.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
DeepLabCut Toolbox (deeplabcut.org)
|
3 |
+
© A. & M. Mathis Labs
|
4 |
+
|
5 |
+
Licensed under GNU Lesser General Public License v3.0
|
6 |
+
"""
|
7 |
+
|
8 |
+
"""
|
9 |
+
Default processor class. Processors must contain two methods:
|
10 |
+
i) process: takes in a pose, performs operations, and returns a pose
|
11 |
+
ii) save: saves any internal data generated by the processor (such as timestamps for commands to external hardware)
|
12 |
+
"""
|
13 |
+
|
14 |
+
|
15 |
+
class Processor(object):
|
16 |
+
def __init__(self, **kwargs):
|
17 |
+
pass
|
18 |
+
|
19 |
+
def process(self, pose, **kwargs):
|
20 |
+
return pose
|
21 |
+
|
22 |
+
def save(self, file=""):
|
23 |
+
return 0
|
Repositories/DeepLabCut-live/dlclive/utils.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
DeepLabCut Toolbox (deeplabcut.org)
|
3 |
+
© A. & M. Mathis Labs
|
4 |
+
|
5 |
+
Licensed under GNU Lesser General Public License v3.0
|
6 |
+
"""
|
7 |
+
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import warnings
|
11 |
+
from dlclive.exceptions import DLCLiveWarning
|
12 |
+
|
13 |
+
try:
|
14 |
+
import skimage
|
15 |
+
|
16 |
+
SK_IM = True
|
17 |
+
except Exception:
|
18 |
+
SK_IM = False
|
19 |
+
|
20 |
+
try:
|
21 |
+
import cv2
|
22 |
+
|
23 |
+
OPEN_CV = True
|
24 |
+
except Exception:
|
25 |
+
from PIL import Image
|
26 |
+
|
27 |
+
OPEN_CV = False
|
28 |
+
warnings.warn(
|
29 |
+
"OpenCV is not installed. Using pillow for image processing, which is slower.",
|
30 |
+
DLCLiveWarning,
|
31 |
+
)
|
32 |
+
|
33 |
+
|
34 |
+
def convert_to_ubyte(frame):
|
35 |
+
""" Converts an image to unsigned 8-bit integer numpy array.
|
36 |
+
If scikit-image is installed, uses skimage.img_as_ubyte, otherwise, uses a similar custom function.
|
37 |
+
|
38 |
+
Parameters
|
39 |
+
----------
|
40 |
+
image : :class:`numpy.ndarray`
|
41 |
+
an image as a numpy array
|
42 |
+
|
43 |
+
Returns
|
44 |
+
-------
|
45 |
+
:class:`numpy.ndarray`
|
46 |
+
image converted to uint8
|
47 |
+
"""
|
48 |
+
|
49 |
+
if SK_IM:
|
50 |
+
return skimage.img_as_ubyte(frame)
|
51 |
+
else:
|
52 |
+
return _img_as_ubyte_np(frame)
|
53 |
+
|
54 |
+
|
55 |
+
def resize_frame(frame, resize=None):
|
56 |
+
""" Resizes an image. Uses OpenCV if installed, otherwise, uses pillow
|
57 |
+
|
58 |
+
Parameters
|
59 |
+
----------
|
60 |
+
image : :class:`numpy.ndarray`
|
61 |
+
an image as a numpy array
|
62 |
+
"""
|
63 |
+
|
64 |
+
if (resize is not None) and (resize != 1):
|
65 |
+
|
66 |
+
if OPEN_CV:
|
67 |
+
|
68 |
+
new_x = int(frame.shape[0] * resize)
|
69 |
+
new_y = int(frame.shape[1] * resize)
|
70 |
+
return cv2.resize(frame, (new_y, new_x))
|
71 |
+
|
72 |
+
else:
|
73 |
+
|
74 |
+
img = Image.fromarray(frame)
|
75 |
+
img = img.resize((new_y, new_x))
|
76 |
+
return np.asarray(img)
|
77 |
+
|
78 |
+
else:
|
79 |
+
|
80 |
+
return frame
|
81 |
+
|
82 |
+
|
83 |
+
def img_to_rgb(frame):
|
84 |
+
""" Convert an image to RGB. Uses OpenCV is installed, otherwise uses pillow.
|
85 |
+
|
86 |
+
Parameters
|
87 |
+
----------
|
88 |
+
frame : :class:`numpy.ndarray
|
89 |
+
an image as a numpy array
|
90 |
+
"""
|
91 |
+
|
92 |
+
if frame.ndim == 2:
|
93 |
+
|
94 |
+
return gray_to_rgb(frame)
|
95 |
+
|
96 |
+
elif frame.ndim == 3:
|
97 |
+
|
98 |
+
return bgr_to_rgb(frame)
|
99 |
+
|
100 |
+
else:
|
101 |
+
|
102 |
+
warnings.warn(
|
103 |
+
f"Image has {frame.ndim} dimensions. Must be 2 or 3 dimensions to convert to RGB",
|
104 |
+
DLCLiveWarning,
|
105 |
+
)
|
106 |
+
return frame
|
107 |
+
|
108 |
+
|
109 |
+
def gray_to_rgb(frame):
|
110 |
+
""" Convert an image from grayscale to RGB. Uses OpenCV is installed, otherwise uses pillow.
|
111 |
+
|
112 |
+
Parameters
|
113 |
+
----------
|
114 |
+
frame : :class:`numpy.ndarray
|
115 |
+
an image as a numpy array
|
116 |
+
"""
|
117 |
+
|
118 |
+
if OPEN_CV:
|
119 |
+
|
120 |
+
return cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
|
121 |
+
|
122 |
+
else:
|
123 |
+
|
124 |
+
img = Image.fromarray(frame)
|
125 |
+
img = img.convert("RGB")
|
126 |
+
return np.asarray(img)
|
127 |
+
|
128 |
+
|
129 |
+
def bgr_to_rgb(frame):
|
130 |
+
""" Convert an image from BGR to RGB. Uses OpenCV is installed, otherwise uses pillow.
|
131 |
+
|
132 |
+
Parameters
|
133 |
+
----------
|
134 |
+
frame : :class:`numpy.ndarray
|
135 |
+
an image as a numpy array
|
136 |
+
"""
|
137 |
+
|
138 |
+
if OPEN_CV:
|
139 |
+
|
140 |
+
return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
141 |
+
|
142 |
+
else:
|
143 |
+
|
144 |
+
img = Image.fromarray(frame)
|
145 |
+
img = img.convert("RGB")
|
146 |
+
return np.asarray(img)
|
147 |
+
|
148 |
+
|
149 |
+
def _img_as_ubyte_np(frame):
|
150 |
+
""" Converts an image as a numpy array to unsinged 8-bit integer.
|
151 |
+
As in scikit-image img_as_ubyte, converts negative pixels to 0 and converts range to [0, 255]
|
152 |
+
|
153 |
+
Parameters
|
154 |
+
----------
|
155 |
+
image : :class:`numpy.ndarray`
|
156 |
+
an image as a numpy array
|
157 |
+
|
158 |
+
Returns
|
159 |
+
-------
|
160 |
+
:class:`numpy.ndarray`
|
161 |
+
image converted to uint8
|
162 |
+
"""
|
163 |
+
|
164 |
+
frame = np.array(frame)
|
165 |
+
im_type = frame.dtype.type
|
166 |
+
|
167 |
+
# check if already ubyte
|
168 |
+
if np.issubdtype(im_type, np.uint8):
|
169 |
+
|
170 |
+
return frame
|
171 |
+
|
172 |
+
# if floating
|
173 |
+
elif np.issubdtype(im_type, np.floating):
|
174 |
+
|
175 |
+
if (np.min(frame) < -1) or (np.max(frame) > 1):
|
176 |
+
raise ValueError("Images of type float must be between -1 and 1.")
|
177 |
+
|
178 |
+
frame *= 255
|
179 |
+
frame = np.rint(frame)
|
180 |
+
frame = np.clip(frame, 0, 255)
|
181 |
+
return frame.astype(np.uint8)
|
182 |
+
|
183 |
+
# if integer
|
184 |
+
elif np.issubdtype(im_type, np.integer):
|
185 |
+
|
186 |
+
im_type_info = np.iinfo(im_type)
|
187 |
+
frame *= 255 / im_type_info.max
|
188 |
+
frame[frame < 0] = 0
|
189 |
+
return frame.astype(np.uint8)
|
190 |
+
|
191 |
+
else:
|
192 |
+
|
193 |
+
raise TypeError(
|
194 |
+
"image of type {} could not be converted to ubyte".format(im_type)
|
195 |
+
)
|
196 |
+
|
197 |
+
|
198 |
+
def decode_fourcc(cc):
|
199 |
+
"""
|
200 |
+
Convert float fourcc code from opencv to characters.
|
201 |
+
If decode fails, returns empty string.
|
202 |
+
https://stackoverflow.com/a/49138893
|
203 |
+
Arguments:
|
204 |
+
cc (float, int): fourcc code from opencv
|
205 |
+
Returns:
|
206 |
+
str: Character format of fourcc code
|
207 |
+
|
208 |
+
Examples:
|
209 |
+
>>> vid = cv2.VideoCapture('/some/video/path.avi')
|
210 |
+
>>> decode_fourcc(vid.get(cv2.CAP_PROP_FOURCC))
|
211 |
+
'DIVX'
|
212 |
+
"""
|
213 |
+
try:
|
214 |
+
decoded = "".join([chr((int(cc) >> 8 * i) & 0xFF) for i in range(4)])
|
215 |
+
except:
|
216 |
+
decoded = ""
|
217 |
+
|
218 |
+
return decoded
|
Repositories/DeepLabCut-live/dlclive/version.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
DeepLabCut Live Toolbox (deeplabcut.org)
|
3 |
+
© A. & M. Mathis Labs
|
4 |
+
admin@deeplabcut.org
|
5 |
+
|
6 |
+
Licensed under GNU Lesser General Public License v3.0
|
7 |
+
"""
|
8 |
+
|
9 |
+
|
10 |
+
__version__ = "1.0.3"
|
11 |
+
VERSION = __version__
|
Repositories/DeepLabCut-live/docs/install_desktop.md
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### Install DeepLabCut-live on a desktop (Windows/Ubuntu)
|
2 |
+
|
3 |
+
We recommend that you install DeepLabCut-live in a conda environment (It is a standard python package though, and other distributions will also likely work). In this case, please install Anaconda:
|
4 |
+
|
5 |
+
- [Windows](https://docs.anaconda.com/anaconda/install/windows/)
|
6 |
+
- [Linux](https://docs.anaconda.com/anaconda/install/linux/)
|
7 |
+
|
8 |
+
Create a conda environment with python 3.7 and tensorflow:
|
9 |
+
|
10 |
+
```
|
11 |
+
conda create -n dlc-live python=3.7 tensorflow-gpu==1.13.1 # if using GPU
|
12 |
+
conda create -n dlc-live python=3.7 tensorflow==1.13.1 # if not using GPU
|
13 |
+
```
|
14 |
+
|
15 |
+
Activate the conda environment, install the DeepLabCut-live package, then test the installation:
|
16 |
+
|
17 |
+
```
|
18 |
+
conda activate dlc-live
|
19 |
+
pip install deeplabcut-live
|
20 |
+
dlc-live-test
|
21 |
+
```
|
22 |
+
|
23 |
+
Note, you can also just run the test:
|
24 |
+
|
25 |
+
`dlc-live-test`
|
26 |
+
|
27 |
+
If installed properly, this script will i) create a temporary folder ii) download the full_dog model from the [DeepLabCut Model Zoo](http://www.mousemotorlab.org/dlc-modelzoo), iii) download a short video clip of a dog, and iv) run inference while displaying keypoints. v) remove the temporary folder.
|
28 |
+
|
29 |
+
Please note, you also should have curl installed on your computer (typically this is already installed on your system), but just in case, just run `sudo apt install curl`
|
Repositories/DeepLabCut-live/docs/install_jetson.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### Install DeepLabCut-live on a NVIDIA Jetson Development Kit
|
2 |
+
|
3 |
+
First, please follow NVIDIA's specific instructions to setup your Jetson Development Kit (see [Jetson Development Kit User Guides](https://developer.nvidia.com/embedded/learn/getting-started-jetson)). Once you have installed the NVIDIA Jetpack on your Jetson Development Kit, make sure all system libraries are up-to-date. In a terminal, run:
|
4 |
+
|
5 |
+
```
|
6 |
+
sudo apt-get update
|
7 |
+
sudo apt-get upgrade
|
8 |
+
```
|
9 |
+
|
10 |
+
Lastly, please test that CUDA is installed properly by running: `nvcc --version`. The output should say the version of CUDA installed on your Jetson.
|
11 |
+
|
12 |
+
#### Install python, virtualenv, and tensorflow
|
13 |
+
|
14 |
+
We highly recommend installing DeepLabCut-live in a virtual environment. Please run the following command to install system dependencies needed to run python, to create virtual environments, and to run tensorflow:
|
15 |
+
|
16 |
+
```
|
17 |
+
sudo apt-get update
|
18 |
+
sudo apt-get install libhdf5-serial-dev \
|
19 |
+
hdf5-tools \
|
20 |
+
libhdf5-dev \
|
21 |
+
zlib1g-dev \
|
22 |
+
zip \
|
23 |
+
libjpeg8-dev \
|
24 |
+
liblapack-dev \
|
25 |
+
libblas-dev \
|
26 |
+
gfortran \
|
27 |
+
python3-pip \
|
28 |
+
python3-venv \
|
29 |
+
python3-tk \
|
30 |
+
curl
|
31 |
+
```
|
32 |
+
|
33 |
+
#### Create a virtual environment
|
34 |
+
|
35 |
+
Next, create a virtual environment called `dlc-live`, activate the `dlc-live` environment, and update it's package manger:
|
36 |
+
|
37 |
+
```
|
38 |
+
python3 -m venv dlc-live
|
39 |
+
source dlc-live/bin/activate
|
40 |
+
pip install -U pip testresources setuptools
|
41 |
+
```
|
42 |
+
|
43 |
+
#### Install DeepLabCut-live dependencies
|
44 |
+
|
45 |
+
First, install python dependencies to run tensorflow (from [NVIDIA instructions to install tensorflow on Jetson platforms](https://docs.nvidia.com/deeplearning/frameworks/install-tf-jetson-platform/index.html)). _This may take ~15-30 minutes._
|
46 |
+
|
47 |
+
```
|
48 |
+
pip3 install numpy==1.16.1 \
|
49 |
+
future==0.17.1 \
|
50 |
+
mock==3.0.5 \
|
51 |
+
h5py==2.9.0 \
|
52 |
+
keras_preprocessing==1.0.5 \
|
53 |
+
keras_applications==1.0.8 \
|
54 |
+
gast==0.2.2 \
|
55 |
+
futures \
|
56 |
+
protobuf \
|
57 |
+
pybind11
|
58 |
+
```
|
59 |
+
|
60 |
+
Next, install tensorflow 1.x. This command will depend on the version of Jetpack you are using. If you are uncertain, please refer to [NVIDIA's instructions](https://docs.nvidia.com/deeplearning/frameworks/install-tf-jetson-platform/index.html#install). To install tensorflow 1.x on the latest version of NVIDIA Jetpack (version 4.4 as of 8/2/2020), please the command below. _This step will also take 15-30 mins_.
|
61 |
+
|
62 |
+
```
|
63 |
+
pip3 install --pre --extra-index-url https://developer.download.nvidia.com/compute/redist/jp/v44 'tensorflow<2'
|
64 |
+
```
|
65 |
+
|
66 |
+
Lastly, copy the opencv-python bindings into your virtual environment:
|
67 |
+
|
68 |
+
```
|
69 |
+
cp -r /usr/lib/python3.6/dist-packages ~/dlc-live/lib/python3.6/dist-packages
|
70 |
+
```
|
71 |
+
|
72 |
+
#### Install the DeepLabCut-live package
|
73 |
+
|
74 |
+
Finally, please install DeepLabCut-live from PyPi (_this will take 3-5 mins_), then test the installation:
|
75 |
+
|
76 |
+
```
|
77 |
+
pip install deeplabcut-live
|
78 |
+
dlc-live-test
|
79 |
+
```
|
80 |
+
|
81 |
+
If installed properly, this script will i) download the full_dog model from the DeepLabCut Model Zoo, ii) download a short video clip of a dog, and iii) run inference while displaying keypoints.
|
Repositories/DeepLabCut-live/example_processors/DogJumpLED/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
DeepLabCut Toolbox (deeplabcut.org)
|
3 |
+
© A. & M. Mathis Labs
|
4 |
+
|
5 |
+
Licensed under GNU Lesser General Public License v3.0
|
6 |
+
"""
|
7 |
+
|
8 |
+
from .izzy_jump import IzzyJump, IzzyJumpKF
|
9 |
+
from .izzy_jump import IzzyJumpOffline, IzzyJumpKFOffline
|
Repositories/DeepLabCut-live/example_processors/DogJumpLED/izzy_jump.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
DeepLabCut Toolbox (deeplabcut.org)
|
3 |
+
© A. & M. Mathis Labs
|
4 |
+
|
5 |
+
Licensed under GNU Lesser General Public License v3.0
|
6 |
+
"""
|
7 |
+
|
8 |
+
|
9 |
+
import serial
|
10 |
+
import struct
|
11 |
+
import time
|
12 |
+
import numpy as np
|
13 |
+
|
14 |
+
from dlclive.processor import Processor, KalmanFilterPredictor
|
15 |
+
|
16 |
+
|
17 |
+
class IzzyJump(Processor):
|
18 |
+
def __init__(self, com="", lik_thresh=0.5, baudrate=int(9600), **kwargs):
|
19 |
+
|
20 |
+
super().__init__()
|
21 |
+
self.ser = serial.Serial(com, baudrate, timeout=0)
|
22 |
+
self.lik_thresh = lik_thresh
|
23 |
+
self.led_times = []
|
24 |
+
self.last_light = 0
|
25 |
+
|
26 |
+
def close_serial(self):
|
27 |
+
|
28 |
+
self.ser.close()
|
29 |
+
|
30 |
+
def switch_led(self, val, frame_time):
|
31 |
+
|
32 |
+
### check status of led ###
|
33 |
+
|
34 |
+
self.ser.write(b"R")
|
35 |
+
|
36 |
+
led_byte = b""
|
37 |
+
led_status = None
|
38 |
+
while (len(led_byte) != 0) or (led_status is None):
|
39 |
+
led_byte = self.ser.read()
|
40 |
+
if len(led_byte) > 0:
|
41 |
+
led_status = ord(led_byte)
|
42 |
+
|
43 |
+
if led_status != val:
|
44 |
+
ctime = time.time()
|
45 |
+
if ctime - self.last_light > 0.25:
|
46 |
+
self.ser.write(b"L")
|
47 |
+
self.last_light = ctime
|
48 |
+
self.led_times.append((val, frame_time, ctime))
|
49 |
+
|
50 |
+
def process(self, pose, **kwargs):
|
51 |
+
|
52 |
+
### bodyparts
|
53 |
+
# 0. nose
|
54 |
+
# 1. L-eye
|
55 |
+
# 2. R-eye
|
56 |
+
# 3. L-ear
|
57 |
+
# 4. R-ear
|
58 |
+
# 5. Throat
|
59 |
+
# 6. Withers
|
60 |
+
# 7. Tailset
|
61 |
+
# 8. L-front-paw
|
62 |
+
# 9. R-front-paw
|
63 |
+
# 10. L-front-wrist
|
64 |
+
# 11. R-front-wrist
|
65 |
+
# 12. L-front-elbow
|
66 |
+
# 13. R-front-elbow
|
67 |
+
# ...
|
68 |
+
|
69 |
+
l_elbow = pose[12, 1] if pose[12, 2] > self.lik_thresh else None
|
70 |
+
r_elbow = pose[13, 1] if pose[13, 2] > self.lik_thresh else None
|
71 |
+
elbows = [l_elbow, r_elbow]
|
72 |
+
this_elbow = (
|
73 |
+
min([e for e in elbows if e is not None])
|
74 |
+
if any([e is not None for e in elbows])
|
75 |
+
else None
|
76 |
+
)
|
77 |
+
|
78 |
+
withers = pose[6, 1] if pose[6, 2] > self.lik_thresh else None
|
79 |
+
|
80 |
+
if kwargs["record"]:
|
81 |
+
if withers is not None and this_elbow is not None:
|
82 |
+
if this_elbow < withers:
|
83 |
+
self.switch_led(True, kwargs["frame_time"])
|
84 |
+
else:
|
85 |
+
self.switch_led(False, kwargs["frame_time"])
|
86 |
+
|
87 |
+
return pose
|
88 |
+
|
89 |
+
def save(self, filename):
|
90 |
+
|
91 |
+
### save stim on and stim off times
|
92 |
+
|
93 |
+
if filename[-4:] != ".npy":
|
94 |
+
filename += ".npy"
|
95 |
+
arr = np.array(self.led_times, dtype=float)
|
96 |
+
try:
|
97 |
+
np.save(filename, arr)
|
98 |
+
save_code = True
|
99 |
+
except Exception:
|
100 |
+
save_code = False
|
101 |
+
|
102 |
+
return save_code
|
103 |
+
|
104 |
+
|
105 |
+
class IzzyJumpKF(KalmanFilterPredictor, IzzyJump):
|
106 |
+
def __init__(
|
107 |
+
self,
|
108 |
+
com="",
|
109 |
+
lik_thresh=0.5,
|
110 |
+
baudrate=int(9600),
|
111 |
+
adapt=True,
|
112 |
+
forward=0.003,
|
113 |
+
fps=30,
|
114 |
+
nderiv=2,
|
115 |
+
priors=[1, 1],
|
116 |
+
initial_var=1,
|
117 |
+
process_var=1,
|
118 |
+
dlc_var=4,
|
119 |
+
):
|
120 |
+
|
121 |
+
super().__init__(
|
122 |
+
adapt=adapt,
|
123 |
+
forward=forward,
|
124 |
+
fps=fps,
|
125 |
+
nderiv=nderiv,
|
126 |
+
priors=priors,
|
127 |
+
initial_var=initial_var,
|
128 |
+
process_var=process_var,
|
129 |
+
dlc_var=dlc_var,
|
130 |
+
com=com,
|
131 |
+
lik_thresh=lik_thresh,
|
132 |
+
baudrate=baudrate,
|
133 |
+
)
|
134 |
+
|
135 |
+
def process(self, pose, **kwargs):
|
136 |
+
|
137 |
+
future_pose = KalmanFilterPredictor.process(self, pose, **kwargs)
|
138 |
+
final_pose = IzzyJump.process(self, future_pose, **kwargs)
|
139 |
+
return final_pose
|
140 |
+
|
141 |
+
def save(self, filename):
|
142 |
+
|
143 |
+
return IzzyJump.save(self, filename)
|
Repositories/DeepLabCut-live/example_processors/DogJumpLED/izzy_jump_offline.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
DeepLabCut Toolbox (deeplabcut.org)
|
3 |
+
© A. & M. Mathis Labs
|
4 |
+
|
5 |
+
Licensed under GNU Lesser General Public License v3.0
|
6 |
+
"""
|
7 |
+
|
8 |
+
|
9 |
+
import struct
|
10 |
+
import time
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
from dlclive.processor import Processor, KalmanFilterPredictor
|
14 |
+
|
15 |
+
|
16 |
+
class IzzyJumpOffline(Processor):
|
17 |
+
def __init__(self, lik_thresh=0.5, **kwargs):
|
18 |
+
|
19 |
+
super().__init__()
|
20 |
+
self.lik_thresh = lik_thresh
|
21 |
+
self.led_times = []
|
22 |
+
self.last_light = 0
|
23 |
+
self.led_status = False
|
24 |
+
|
25 |
+
def switch_led(self, val, frame_time):
|
26 |
+
|
27 |
+
if self.led_status != val:
|
28 |
+
ctime = frame_time
|
29 |
+
if ctime - self.last_light > 0.25:
|
30 |
+
self.led_status = val
|
31 |
+
self.last_light = ctime
|
32 |
+
self.led_times.append((val, frame_time, ctime))
|
33 |
+
|
34 |
+
def process(self, pose, **kwargs):
|
35 |
+
|
36 |
+
### bodyparts
|
37 |
+
# 0. nose
|
38 |
+
# 1. L-eye
|
39 |
+
# 2. R-eye
|
40 |
+
# 3. L-ear
|
41 |
+
# 4. R-ear
|
42 |
+
# 5. Throat
|
43 |
+
# 6. Withers
|
44 |
+
# 7. Tailset
|
45 |
+
# 8. L-front-paw
|
46 |
+
# 9. R-front-paw
|
47 |
+
# 10. L-front-wrist
|
48 |
+
# 11. R-front-wrist
|
49 |
+
# 12. L-front-elbow
|
50 |
+
# 13. R-front-elbow
|
51 |
+
# ...
|
52 |
+
|
53 |
+
l_elbow = pose[12, 1] if pose[12, 2] > self.lik_thresh else None
|
54 |
+
r_elbow = pose[13, 1] if pose[13, 2] > self.lik_thresh else None
|
55 |
+
elbows = [l_elbow, r_elbow]
|
56 |
+
this_elbow = (
|
57 |
+
min([e for e in elbows if e is not None])
|
58 |
+
if any([e is not None for e in elbows])
|
59 |
+
else None
|
60 |
+
)
|
61 |
+
|
62 |
+
withers = pose[6, 1] if pose[6, 2] > self.lik_thresh else None
|
63 |
+
|
64 |
+
if kwargs["record"]:
|
65 |
+
if withers is not None and this_elbow is not None:
|
66 |
+
if this_elbow < withers:
|
67 |
+
self.switch_led(True, kwargs["frame_time"])
|
68 |
+
else:
|
69 |
+
self.switch_led(False, kwargs["frame_time"])
|
70 |
+
|
71 |
+
return pose
|
72 |
+
|
73 |
+
def save(self, filename):
|
74 |
+
|
75 |
+
### save stim on and stim off times
|
76 |
+
|
77 |
+
if filename[-4:] != ".npy":
|
78 |
+
filename += ".npy"
|
79 |
+
arr = np.array(self.led_times, dtype=float)
|
80 |
+
try:
|
81 |
+
np.save(filename, arr)
|
82 |
+
save_code = True
|
83 |
+
except Exception:
|
84 |
+
save_code = False
|
85 |
+
|
86 |
+
return save_code
|
87 |
+
|
88 |
+
|
89 |
+
class IzzyJumpKFOffline(KalmanFilterPredictor, IzzyJumpOffline):
|
90 |
+
def __init__(
|
91 |
+
self,
|
92 |
+
lik_thresh=0.5,
|
93 |
+
adapt=True,
|
94 |
+
forward=0.003,
|
95 |
+
fps=30,
|
96 |
+
nderiv=2,
|
97 |
+
priors=[1, 1],
|
98 |
+
initial_var=1,
|
99 |
+
process_var=1,
|
100 |
+
dlc_var=4,
|
101 |
+
):
|
102 |
+
|
103 |
+
super().__init__(
|
104 |
+
adapt=adapt,
|
105 |
+
forward=forward,
|
106 |
+
fps=fps,
|
107 |
+
nderiv=nderiv,
|
108 |
+
priors=priors,
|
109 |
+
initial_var=initial_var,
|
110 |
+
process_var=process_var,
|
111 |
+
dlc_var=dlc_var,
|
112 |
+
lik_thresh=lik_thresh,
|
113 |
+
)
|
114 |
+
|
115 |
+
def process(self, pose, **kwargs):
|
116 |
+
|
117 |
+
future_pose = KalmanFilterPredictor.process(self, pose, **kwargs)
|
118 |
+
final_pose = IzzyJumpOffline.process(self, future_pose, **kwargs)
|
119 |
+
return final_pose
|
120 |
+
|
121 |
+
def save(self, filename):
|
122 |
+
|
123 |
+
return IzzyJumpOffline.save(self, filename)
|
Repositories/DeepLabCut-live/example_processors/DogJumpLED/teensy_leds/teensy_leds.ino
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
const int LED = 0;
|
2 |
+
const int IR = 1;
|
3 |
+
const int REC = 2;
|
4 |
+
|
5 |
+
void blink() {
|
6 |
+
|
7 |
+
Serial.write(!digitalRead(REC));
|
8 |
+
Serial.flush();
|
9 |
+
noTone(IR);
|
10 |
+
while (digitalRead(REC) == 0) {}
|
11 |
+
|
12 |
+
}
|
13 |
+
|
14 |
+
void setup() {
|
15 |
+
|
16 |
+
pinMode(LED, OUTPUT);
|
17 |
+
pinMode(IR, OUTPUT);
|
18 |
+
pinMode(REC, INPUT);
|
19 |
+
attachInterrupt(digitalPinToInterrupt(REC), blink, FALLING);
|
20 |
+
|
21 |
+
Serial.begin(9600);
|
22 |
+
}
|
23 |
+
|
24 |
+
void loop() {
|
25 |
+
|
26 |
+
unsigned int ser_avail = Serial.available();
|
27 |
+
|
28 |
+
while (ser_avail > 0) {
|
29 |
+
|
30 |
+
unsigned int cmd = Serial.read();
|
31 |
+
|
32 |
+
if (cmd == 'L') {
|
33 |
+
|
34 |
+
digitalWrite(LED, !digitalRead(LED));
|
35 |
+
|
36 |
+
} else if (cmd == 'R') {
|
37 |
+
|
38 |
+
Serial.write(digitalRead(LED));
|
39 |
+
Serial.flush();
|
40 |
+
|
41 |
+
} else if (cmd == 'I') {
|
42 |
+
|
43 |
+
tone(IR, 38000);
|
44 |
+
|
45 |
+
}
|
46 |
+
|
47 |
+
}
|
48 |
+
|
49 |
+
}
|
Repositories/DeepLabCut-live/example_processors/MouseLickLED/__init__.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
DeepLabCut Toolbox (deeplabcut.org)
|
3 |
+
© A. & M. Mathis Labs
|
4 |
+
|
5 |
+
Licensed under GNU Lesser General Public License v3.0
|
6 |
+
"""
|
7 |
+
|
8 |
+
from .lick_led import MouseLickLED
|
Repositories/DeepLabCut-live/example_processors/MouseLickLED/lick_led.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
DeepLabCut Toolbox (deeplabcut.org)
|
3 |
+
© A. & M. Mathis Labs
|
4 |
+
|
5 |
+
Licensed under GNU Lesser General Public License v3.0
|
6 |
+
"""
|
7 |
+
|
8 |
+
|
9 |
+
import serial
|
10 |
+
import struct
|
11 |
+
import time
|
12 |
+
import numpy as np
|
13 |
+
|
14 |
+
from dlclive import Processor
|
15 |
+
|
16 |
+
|
17 |
+
class MouseLickLED(Processor):
|
18 |
+
def __init__(self, com, lik_thresh=0.5, baudrate=int(9600)):
|
19 |
+
|
20 |
+
super().__init__()
|
21 |
+
self.ser = serial.Serial(com, baudrate, timeout=0)
|
22 |
+
self.lik_thresh = lik_thresh
|
23 |
+
self.lick_frame_time = []
|
24 |
+
self.out_time = []
|
25 |
+
self.in_time = []
|
26 |
+
|
27 |
+
def close_serial(self):
|
28 |
+
|
29 |
+
self.ser.close()
|
30 |
+
|
31 |
+
def switch_led(self):
|
32 |
+
|
33 |
+
### flush input buffer ###
|
34 |
+
|
35 |
+
self.ser.reset_input_buffer()
|
36 |
+
|
37 |
+
### turn on IR LED ###
|
38 |
+
|
39 |
+
self.out_time.append(time.time())
|
40 |
+
self.ser.write(b"I")
|
41 |
+
|
42 |
+
### wait for receiver ###
|
43 |
+
|
44 |
+
while True:
|
45 |
+
led_byte = self.ser.read()
|
46 |
+
if len(led_byte) > 0:
|
47 |
+
break
|
48 |
+
self.in_time.append(time.time())
|
49 |
+
|
50 |
+
def process(self, pose, **kwargs):
|
51 |
+
|
52 |
+
### bodyparts
|
53 |
+
# 0. pupil-top
|
54 |
+
# 1. pupil-left
|
55 |
+
# 2. pupil-bottom
|
56 |
+
# 3. pupil-right
|
57 |
+
# 4. lip-upper
|
58 |
+
# 5. lip-lower
|
59 |
+
# 6. tongue
|
60 |
+
# 7. tube
|
61 |
+
|
62 |
+
if kwargs["record"]:
|
63 |
+
if pose[6, 2] > self.lik_thresh:
|
64 |
+
self.lick_frame_time.append(kwargs["frame_time"])
|
65 |
+
self.switch_led()
|
66 |
+
|
67 |
+
return pose
|
68 |
+
|
69 |
+
def save(self, filename):
|
70 |
+
|
71 |
+
### save stim on and stim off times
|
72 |
+
|
73 |
+
filename += ".npy"
|
74 |
+
out_time = np.array(self.out_time)
|
75 |
+
in_time = np.array(self.in_time)
|
76 |
+
frame_time = np.array(self.lick_frame_time)
|
77 |
+
try:
|
78 |
+
np.savez(
|
79 |
+
filename, out_time=out_time, in_time=in_time, frame_time=frame_time
|
80 |
+
)
|
81 |
+
save_code = True
|
82 |
+
except Exception:
|
83 |
+
save_code = False
|
84 |
+
|
85 |
+
return save_code
|
Repositories/DeepLabCut-live/example_processors/MouseLickLED/teensy_leds/teensy_leds.ino
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
const int LED = 0;
|
2 |
+
const int IR = 1;
|
3 |
+
const int REC = 2;
|
4 |
+
|
5 |
+
void blink() {
|
6 |
+
|
7 |
+
Serial.write(!digitalRead(REC));
|
8 |
+
Serial.flush();
|
9 |
+
noTone(IR);
|
10 |
+
while (digitalRead(REC) == 0) {}
|
11 |
+
|
12 |
+
}
|
13 |
+
|
14 |
+
void setup() {
|
15 |
+
|
16 |
+
pinMode(LED, OUTPUT);
|
17 |
+
pinMode(IR, OUTPUT);
|
18 |
+
pinMode(REC, INPUT);
|
19 |
+
attachInterrupt(digitalPinToInterrupt(REC), blink, FALLING);
|
20 |
+
|
21 |
+
Serial.begin(9600);
|
22 |
+
}
|
23 |
+
|
24 |
+
void loop() {
|
25 |
+
|
26 |
+
unsigned int ser_avail = Serial.available();
|
27 |
+
|
28 |
+
while (ser_avail > 0) {
|
29 |
+
|
30 |
+
unsigned int cmd = Serial.read();
|
31 |
+
|
32 |
+
if (cmd == 'L') {
|
33 |
+
|
34 |
+
digitalWrite(LED, !digitalRead(LED));
|
35 |
+
|
36 |
+
} else if (cmd == 'R') {
|
37 |
+
|
38 |
+
Serial.write(digitalRead(LED));
|
39 |
+
Serial.flush();
|
40 |
+
|
41 |
+
} else if (cmd == 'I') {
|
42 |
+
|
43 |
+
tone(IR, 38000);
|
44 |
+
|
45 |
+
}
|
46 |
+
|
47 |
+
}
|
48 |
+
|
49 |
+
}
|
Repositories/DeepLabCut-live/example_processors/TeensyLaser/__init__.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
DeepLabCut Toolbox (deeplabcut.org)
|
3 |
+
© A. & M. Mathis Labs
|
4 |
+
|
5 |
+
Licensed under GNU Lesser General Public License v3.0
|
6 |
+
"""
|
7 |
+
|
8 |
+
from .teensy_laser import *
|
Repositories/DeepLabCut-live/example_processors/TeensyLaser/teensy_laser.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
DeepLabCut Toolbox (deeplabcut.org)
|
3 |
+
© A. & M. Mathis Labs
|
4 |
+
|
5 |
+
Licensed under GNU Lesser General Public License v3.0
|
6 |
+
"""
|
7 |
+
|
8 |
+
|
9 |
+
from dlclive.processor.processor import Processor
|
10 |
+
import serial
|
11 |
+
import struct
|
12 |
+
import pickle
|
13 |
+
import time
|
14 |
+
|
15 |
+
|
16 |
+
class TeensyLaser(Processor):
|
17 |
+
def __init__(
|
18 |
+
self, com, baudrate=115200, pulse_freq=50, pulse_width=5, max_stim_dur=0
|
19 |
+
):
|
20 |
+
|
21 |
+
super().__init__()
|
22 |
+
self.ser = serial.Serial(com, baudrate)
|
23 |
+
self.pulse_freq = pulse_freq
|
24 |
+
self.pulse_width = pulse_width
|
25 |
+
self.max_stim_dur = (
|
26 |
+
max_stim_dur if (max_stim_dur >= 0) and (max_stim_dur < 65356) else 0
|
27 |
+
)
|
28 |
+
self.stim_on = False
|
29 |
+
self.stim_on_time = []
|
30 |
+
self.stim_off_time = []
|
31 |
+
|
32 |
+
def close_serial(self):
|
33 |
+
|
34 |
+
self.ser.close()
|
35 |
+
|
36 |
+
def turn_stim_on(self):
|
37 |
+
|
38 |
+
# command to activate PWM signal to laser is the letter 'O' followed by three 16 bit integers -- pulse frequency, pulse width, and max stim duration
|
39 |
+
if not self.stim_on:
|
40 |
+
self.ser.write(
|
41 |
+
b"O"
|
42 |
+
+ struct.pack(
|
43 |
+
"HHH", self.pulse_freq, self.pulse_width, self.max_stim_dur
|
44 |
+
)
|
45 |
+
)
|
46 |
+
self.stim_on = True
|
47 |
+
self.stim_on_time.append(time.time())
|
48 |
+
|
49 |
+
def turn_stim_off(self):
|
50 |
+
|
51 |
+
# command to turn off PWM signal to laser is the letter 'X'
|
52 |
+
if self.stim_on:
|
53 |
+
self.ser.write(b"X")
|
54 |
+
self.stim_on = False
|
55 |
+
self.stim_off_time.append(time.time())
|
56 |
+
|
57 |
+
def process(self, pose, **kwargs):
|
58 |
+
|
59 |
+
# define criteria to stimulate (e.g. if first point is in a corner of the video)
|
60 |
+
box = [[0, 100], [0, 100]]
|
61 |
+
if (
|
62 |
+
(pose[0][0] > box[0][0])
|
63 |
+
and (pose[0][0] < box[0][1])
|
64 |
+
and (pose[0][1] > box[1][0])
|
65 |
+
and (pose[0][1] < box[1][1])
|
66 |
+
):
|
67 |
+
self.turn_stim_on()
|
68 |
+
else:
|
69 |
+
self.turn_stim_off()
|
70 |
+
|
71 |
+
return pose
|
72 |
+
|
73 |
+
def save(self, file=None):
|
74 |
+
|
75 |
+
### save stim on and stim off times
|
76 |
+
save_code = 0
|
77 |
+
if file:
|
78 |
+
try:
|
79 |
+
pickle.dump(
|
80 |
+
{"stim_on": self.stim_on_time, "stim_off": self.stim_off_time},
|
81 |
+
open(file, "wb"),
|
82 |
+
)
|
83 |
+
save_code = 1
|
84 |
+
except Exception:
|
85 |
+
save_code = -1
|
86 |
+
return save_code
|
Repositories/DeepLabCut-live/example_processors/TeensyLaser/teensy_laser/teensy_laser.ino
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*
|
2 |
+
* Commands:
|
3 |
+
* O = opto on; command = O, frequency, width, duration
|
4 |
+
* X = opto off
|
5 |
+
* R = reboot
|
6 |
+
*/
|
7 |
+
|
8 |
+
|
9 |
+
const int opto_pin = 0;
|
10 |
+
unsigned int opto_start = 0,
|
11 |
+
opto_duty_cycle = 0,
|
12 |
+
opto_freq = 0,
|
13 |
+
opto_width = 0,
|
14 |
+
opto_dur = 0;
|
15 |
+
|
16 |
+
unsigned int read_int16() {
|
17 |
+
union u_tag {
|
18 |
+
byte b[2];
|
19 |
+
unsigned int val;
|
20 |
+
} par;
|
21 |
+
for (int i=0; i<2; i++){
|
22 |
+
if ((Serial.available() > 0))
|
23 |
+
par.b[i] = Serial.read();
|
24 |
+
else
|
25 |
+
par.b[i] = 0;
|
26 |
+
}
|
27 |
+
return par.val;
|
28 |
+
}
|
29 |
+
|
30 |
+
void setup() {
|
31 |
+
Serial.begin(115200);
|
32 |
+
pinMode(opto_pin, OUTPUT);
|
33 |
+
}
|
34 |
+
|
35 |
+
void loop() {
|
36 |
+
|
37 |
+
unsigned int curr_time = millis();
|
38 |
+
|
39 |
+
while (Serial.available() > 0) {
|
40 |
+
|
41 |
+
unsigned int cmd = Serial.read();
|
42 |
+
|
43 |
+
if(cmd == 'O') {
|
44 |
+
|
45 |
+
opto_start = curr_time;
|
46 |
+
opto_freq = read_int16();
|
47 |
+
opto_width = read_int16();
|
48 |
+
opto_dur = read_int16();
|
49 |
+
if (opto_dur == 0)
|
50 |
+
opto_dur = 65355;
|
51 |
+
opto_duty_cycle = opto_width * opto_freq * 4096 / 1000;
|
52 |
+
analogWriteFrequency(opto_pin, opto_freq);
|
53 |
+
analogWrite(opto_pin, opto_duty_cycle);
|
54 |
+
|
55 |
+
Serial.print(opto_freq);
|
56 |
+
Serial.print(',');
|
57 |
+
Serial.print(opto_width);
|
58 |
+
Serial.print(',');
|
59 |
+
Serial.print(opto_dur);
|
60 |
+
Serial.print('\n');
|
61 |
+
Serial.flush();
|
62 |
+
|
63 |
+
} else if(cmd == 'X') {
|
64 |
+
|
65 |
+
analogWrite(opto_pin, 0);
|
66 |
+
|
67 |
+
} else if(cmd == 'R') {
|
68 |
+
|
69 |
+
_reboot_Teensyduino_();
|
70 |
+
|
71 |
+
}
|
72 |
+
}
|
73 |
+
|
74 |
+
if (curr_time > opto_start + opto_dur)
|
75 |
+
analogWrite(opto_pin, 0);
|
76 |
+
|
77 |
+
}
|
Repositories/DeepLabCut-live/poetry.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Repositories/DeepLabCut-live/pyproject.toml
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[tool.poetry]
|
2 |
+
name = "deeplabcut-live"
|
3 |
+
version = "1.0.3"
|
4 |
+
description = "Class to load exported DeepLabCut networks and perform pose estimation on single frames (from a camera feed)"
|
5 |
+
authors = ["A. & M. Mathis Labs <admin@deeplabcut.org>"]
|
6 |
+
license = "AGPL-3.0-or-later"
|
7 |
+
readme = "README.md"
|
8 |
+
homepage = "https://github.com/DeepLabCut/DeepLabCut-live"
|
9 |
+
repository = "https://github.com/DeepLabCut/DeepLabCut-live"
|
10 |
+
classifiers = [
|
11 |
+
"Programming Language :: Python :: 3",
|
12 |
+
"Programming Language :: Python :: 3.7",
|
13 |
+
"Programming Language :: Python :: 3.8",
|
14 |
+
"Programming Language :: Python :: 3.9",
|
15 |
+
"Programming Language :: Python :: 3.10",
|
16 |
+
"License :: OSI Approved :: GNU Affero General Public License v3 or later (AGPLv3+)",
|
17 |
+
"Operating System :: OS Independent"
|
18 |
+
]
|
19 |
+
packages = [
|
20 |
+
{ include = "dlclive" }
|
21 |
+
]
|
22 |
+
include = ["dlclive/check_install/*"]
|
23 |
+
|
24 |
+
[tool.poetry.scripts]
|
25 |
+
dlc-live-test = "dlclive.check_install.check_install:main"
|
26 |
+
dlc-live-benchmark = "dlclive.benchmark:main"
|
27 |
+
|
28 |
+
[tool.poetry.dependencies]
|
29 |
+
python = ">=3.7.1,<3.11"
|
30 |
+
numpy = "^1.20"
|
31 |
+
"ruamel.yaml" = "^0.17.20"
|
32 |
+
colorcet = "^3.0.0"
|
33 |
+
Pillow = ">=8.0.0"
|
34 |
+
py-cpuinfo = ">=5.0.0"
|
35 |
+
tqdm = "^4.62.3"
|
36 |
+
tensorflow = "^2.7.0,<=2.10"
|
37 |
+
pandas = "^1.3"
|
38 |
+
tables = "^3.6"
|
39 |
+
opencv-python-headless = "^4.5"
|
40 |
+
dlclibrary = ">=0.0.2"
|
41 |
+
|
42 |
+
[tool.poetry.dev-dependencies]
|
43 |
+
|
44 |
+
[build-system]
|
45 |
+
requires = ["poetry-core>=1.0.0"]
|
46 |
+
build-backend = "poetry.core.masonry.api"
|
Repositories/DeepLabCut-live/reinstall.sh
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
poetry shell # activating current environment
|
2 |
+
poetry install # creating and installing current project
|
3 |
+
poetry build # creating the tarball
|
4 |
+
poetry publish # uploading to pypi
|
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import subprocess
|
3 |
+
# subprocess.check_call([sys.executable, '-m', 'pip', 'install','git+https://github.com/facebookresearch/detectron2.git'])
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import gradio as gr
|
7 |
+
from Code import Inference
|
8 |
+
import detectron2
|
9 |
+
|
10 |
+
|
11 |
+
# import some common detectron2 utilities
|
12 |
+
from detectron2 import model_zoo
|
13 |
+
from detectron2.engine import DefaultPredictor
|
14 |
+
from detectron2.config import get_cfg
|
15 |
+
from detectron2.utils.visualizer import Visualizer
|
16 |
+
from detectron2.data import MetadataCatalog, DatasetCatalog
|
17 |
+
|
18 |
+
import os
|
19 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
20 |
+
|
21 |
+
|
22 |
+
sys.path.append("Repositories/")
|
23 |
+
from dlclive import DLCLive, Processor
|
24 |
+
|
25 |
+
def run_Inference(input_img):
|
26 |
+
|
27 |
+
###Detectron:
|
28 |
+
cfg = get_cfg()
|
29 |
+
# add project-specific config (e.g., TensorMask) here if you're not running a model in detectron2's core library
|
30 |
+
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml"))
|
31 |
+
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7 # set threshold for this model
|
32 |
+
# Find a model from detectron2's model zoo. You can use the https://dl.fbaipublicfiles... url as well
|
33 |
+
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml")
|
34 |
+
cfg.MODEL.DEVICE='cpu'
|
35 |
+
predictor = DefaultPredictor(cfg)
|
36 |
+
|
37 |
+
##DLC:
|
38 |
+
dlc_proc = Processor()
|
39 |
+
dlc_liveObj = DLCLive("./Weights/DLC_DLC_Segmented_resnet_50_iteration-0_shuffle-1/", processor=dlc_proc)
|
40 |
+
|
41 |
+
OutImg = Inference.Inference(input_img,predictor,dlc_liveObj,ScaleBBox=1,Dilate=5,DLCThreshold=0.3)
|
42 |
+
|
43 |
+
return OutImg
|
44 |
+
|
45 |
+
demo = gr.Interface(run_Inference, gr.Image(), "image")
|
46 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
deeplabcut
|
2 |
+
tensorflow
|
3 |
+
opencv-python
|
4 |
+
deeplabcut-live
|
5 |
+
typing-extensions==4.8.0
|
6 |
+
colorcet
|
7 |
+
torch
|
8 |
+
torchvision
|