PigeonEverywhere / Code /Inference.py
Alex Chan
lowered confidence interval for mask
af39e20
raw
history blame
7.54 kB
"""
inference on single image for MaskRCNN (FROM DETECTRON) + DLC
two step, pretrained MaskRCNN, then DLC
"""
import cv2
import torch
import sys
sys.path.append("Repositories/DeepLabCut-live")
import deeplabcut as dlc
from dlclive import DLCLive, Processor
import matplotlib.pyplot as plt
import numpy as np
from tqdm import tqdm
import os
import shutil
import torchvision
from torchvision.transforms import transforms as transforms
import pickle
import detectron2
# import some common detectron2 utilities
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog, DatasetCatalog
import cv2
COCO_INSTANCE_CATEGORY_NAMES = [
'__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A',
'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table',
'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
]
def Process_Crop(Crop, CropSize):
"""Crop image and pad, if too big, will scale down """
# import ipdb;ipdb.set_trace()
if Crop.shape[0] > CropSize[0] or Crop.shape[1] > CropSize[1]: #Crop is bigger, scale down
ScaleProportion = min(CropSize[0]/Crop.shape[0],CropSize[1]/Crop.shape[1])
width_scaled = int(Crop.shape[1] * ScaleProportion)
height_scaled = int(Crop.shape[0] * ScaleProportion)
Crop = cv2.resize(Crop, (width_scaled,height_scaled), interpolation=cv2.INTER_LINEAR) # resize image
# Points2D = {k:[v[0]*ScaleProportion,v[1]*ScaleProportion] for k,v in Points2D.items()}
else:
ScaleProportion = 1
if Crop.shape[0] %2 ==0:
#Shape is even number
YPadTop = int((CropSize[1] - Crop.shape[0])/2)
YPadBot = int((CropSize[1] - Crop.shape[0])/2)
else:
YPadTop = int( ((CropSize[1] - Crop.shape[0])/2)-0.5)
YPadBot = int(((CropSize[1] - Crop.shape[0])/2)+0.5)
##Padding:
if Crop.shape[1] %2 ==0:
#Shape is even number
XPadLeft = int((CropSize[0] - Crop.shape[1])/2)
XPadRight= int((CropSize[0] - Crop.shape[1])/2)
else:
XPadLeft = int(((CropSize[0] - Crop.shape[1])/2)-0.5)
XPadRight= int(((CropSize[0] - Crop.shape[1])/2)+0.5)
OutImage = cv2.copyMakeBorder(Crop, YPadTop,YPadBot,XPadLeft,XPadRight,cv2.BORDER_CONSTANT,value=[0,0,0])
return OutImage,ScaleProportion, YPadTop,XPadLeft
def DLCInference(Crop,dlc_liveObj,CropSize):
"""Inference for DLC"""
###Scale crop if image bigger than cropsize
# import ipdb;ipdb.set_trace()
if Crop.shape[0] > CropSize[0] or Crop.shape[1] > CropSize[1]: #Image bigger than crop size, scale down
ScaleRatio = min([CropSize[0]/Crop.shape[0], CropSize[1]/Crop.shape[1]])
ScaleWidth = round(Crop.shape[1] * ScaleRatio)
ScaleHeight = round(Crop.shape[0]*ScaleRatio)
resizedCrop = cv2.resize(Crop, (ScaleWidth,ScaleHeight), interpolation=cv2.INTER_LINEAR) # resize image
ScaleUpRatio = 1/ScaleRatio #ratio to scale keypoints back up to original
# import ipdb;ipdb.set_trace()
else:
resizedCrop = Crop
ScaleUpRatio = 1
# cv2.imwrite(filename="tempresize.jpg", img=resizedCrop)
# cv2.imwrite(filename="temp.jpg", img=Crop)
if dlc_liveObj.sess == None: #if first time, init
DLCPredict2D = dlc_liveObj.init_inference(resizedCrop)
DLCPredict2D= dlc_liveObj.get_pose(resizedCrop)
DLCPredict2D[:,0] = DLCPredict2D[:,0]*ScaleUpRatio
DLCPredict2D[:,1] = DLCPredict2D[:,1]*ScaleUpRatio
return DLCPredict2D
def VisualizeAll(frame, box, DLCPredict2D,ScaleBBox, imsize):
"""Visualize all stuff"""
colourList = [(0,255,255),(255,0 ,255),(128,0,128),(255,192,203),(255, 255, 0),(0, 0 , 255 ),(205,133,63),(0,255,0),(255,0,0)]
##Order: Lshoulder, Rshoulder, topKeel,botKeel,Tail,Beak,Nose,Leye,Reye
##Points:
PlotPoints = []
for x,point in enumerate(DLCPredict2D):
roundPoint = [round(point[0]+box[0]),round(point[1]+box[1])]
cv2.circle(frame,roundPoint,1,colourList[x], 5)
PlotPoints.append(roundPoint)
cv2.rectangle(frame,(round(box[0]),round(box[1])),(round(box[2]),round(box[3])),[0,0,255],3)
return frame, PlotPoints
def Inference(frame,predictor,dlc_liveObj,ScaleBBox=1,Dilate=5,DLCThreshold=0.3):
"""Loop through video for SAM, save framewise info"""
InferFrame = frame.copy()
outputs = predictor(InferFrame)["instances"].to("cpu")
CropSize = (320,320)
# import ipdb;ipdb.set_trace()
imsize = [frame.shape[1],frame.shape[0]]
BirdIndex = np.where(outputs.pred_classes.numpy() == 14)[0] #14 is ID for bird
BirdBBox = outputs.pred_boxes[BirdIndex].tensor.numpy()
# import ipdb;ipdb.set_trace()
BirdMasks = (outputs.pred_masks>0.7).numpy()[BirdIndex]
for x in range(BirdBBox.shape[0]):
# import ipdb;ipdb.set_trace()
bbox = list(BirdBBox[x])
Mask = BirdMasks[x]>0
Mask = np.array(Mask,dtype=np.uint8)
# show_anns(frame, Mask)
if Dilate > 0:
DilateKernel = np.ones((Dilate,Dilate),np.uint8)
Mask = cv2.dilate(Mask,DilateKernel,iterations = 3)
# import ipdb;ipdb.set_trace()
Mask = np.array(Mask,dtype=np.uint8)
Mask = Mask.reshape(imsize[1],imsize[0],1)
Crop = cv2.bitwise_and(InferFrame, InferFrame, mask=Mask)
# cv2.imwrite(filename="temp.jpg", img = Crop)
##change box to XYWH to scale up
bbox = [bbox[0],bbox[1],bbox[2]-bbox[0],bbox[3]-bbox[1]]
ScaleWidth = ((ScaleBBox * bbox[2])/2)-(bbox[2]/2)
ScaleHeight = ((ScaleBBox * bbox[3])/2)-(bbox[3]/2)
# import ipdb;ipdb.set_trace()
# BirdCrop = frame[round(bbox[1]):round(bbox[3]),round(bbox[0]):round(bbox[2])] #bbox is XYWH
x1 = round(bbox[0]-ScaleWidth) if round(bbox[0]-ScaleWidth)>0 else 0
y1 = round(bbox[1]-ScaleHeight)if round(bbox[1]-ScaleHeight)>0 else 0
x2 = round(bbox[0]+bbox[2]+ScaleWidth) if round(bbox[0]+bbox[2]+ScaleWidth) < imsize[0] else imsize[0]
y2 = round(bbox[1]+bbox[3]+ScaleHeight)if round(bbox[1]+bbox[3]+ScaleHeight) < imsize[1] else imsize[1]
bbox = [x1,y1,x2,y2]
BirdCrop = Crop[y1:y2,x1:x2] #bbox is XYWH
DLCPredict2D= DLCInference(BirdCrop,dlc_liveObj,CropSize)
frame, PlotPoints = VisualizeAll(frame, bbox, DLCPredict2D,ScaleBBox,imsize)
if BirdBBox.shape[0] == 0:
DLCPredict2D= DLCInference(InferFrame,dlc_liveObj,CropSize)
bbox = [0,0,0,0]
frame, PlotPoints = VisualizeAll(frame, bbox, DLCPredict2D,ScaleBBox,imsize)
return frame