Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import spaces #[uncomment to use ZeroGPU] | |
| from diffusers import StableDiffusionXLPipeline #,AutoencoderTiny | |
| import torch | |
| #from diffusers import AutoencoderTiny, StableDiffusionPipeline , DPMSolverMultistepScheduler ,EulerDiscreteScheduler | |
| from huggingface_hub import login | |
| import os | |
| a=os.getenv('hf_key') | |
| login(token=a ) | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use | |
| #model_repo_id = "stable-diffusion-v1-5/stable-diffusion-v1-5" | |
| #model_repo_id = "ByteDance/SDXL-Lightning" #"stabilityai/stable-diffusion-xl-base-0.9" | |
| if torch.cuda.is_available(): | |
| torch_dtype = torch.float16 | |
| else: | |
| torch_dtype = torch.float32 | |
| """ | |
| pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) | |
| pipe = pipe.to(device) ###### это потом если что удалить "nota-ai/bk-sdm-small", | |
| """ | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| negative_prompt1= """normal quality, low quality, low res, blurry, distortion, text, watermark, | |
| logo, banner, extra digits, cropped, jpeg artifacts, signature, username, error, sketch, duplicate, ugly, | |
| monochrome, horror, geometry, mutation, disgusting, bad anatomy, bad proportions, bad quality, deformed, | |
| disconnected limbs, out of frame, out of focus, dehydrated, disfigured, extra arms, extra limbs, extra hands, | |
| fused fingers, gross proportions, long neck, jpeg, malformed limbs, mutated, mutated hands, mutated limbs, | |
| missing arms, missing fingers, picture frame, poorly drawn hands, poorly drawn face, collage, pixel, pixelated, | |
| grainy, color aberration, amputee, autograph, bad illustration, beyond the borders, blank background, | |
| body out of frame, boring background, branding, cut off, dismembered, disproportioned, distorted, draft, | |
| duplicated features, extra fingers, extra legs, fault, flaw, grains, hazy, identifying mark, | |
| improper scale, incorrect physiology, incorrect ratio, indistinct, kitsch, low resolution, macabre, | |
| malformed, mark, misshapen, missing hands, missing legs, mistake, morbid, mutilated, off-screen, | |
| outside the picture, poorly drawn feet, printed words, render, repellent, replicate, reproduce, | |
| revolting dimensions, script, shortened, sign, split image, squint, storyboard, | |
| tiling, trimmed, unfocused, unattractive, unnatural pose, unreal engine, unsightly, written language""" | |
| var_1="nota-ai/bk-sdm-base-2m" | |
| var_2="nota-ai/bk-sdm-small" | |
| pipe = StableDiffusionXLPipeline.from_pretrained( | |
| model_repo_id, torch_dtype=torch_dtype, use_safetensors=True) | |
| #pipe.vae = AutoencoderTiny.from_pretrained( | |
| # "sayakpaul/taesd-diffusers", torch_dtype=torch_dtype, use_safetensors=True) | |
| #pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) | |
| print(pipe.scheduler.compatibles) | |
| #pipe.load_lora_weights("Natural_Flaccid_Penis.safetensors") | |
| pipe = pipe.to(device) | |
| pipe.enable_vae_tiling() | |
| #[uncomment to use ZeroGPU] | |
| def infer( | |
| prompt, | |
| negative_prompt, | |
| seed, | |
| randomize_seed, | |
| width, | |
| height, | |
| guidance_scale, | |
| num_inference_steps, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator().manual_seed(seed) | |
| image = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| width=width, | |
| height=height, | |
| generator=generator, | |
| ).images[0] | |
| return image, seed | |
| examples = ["""cinematic ,Two burly, middle-aged Turkish daddies—thick-mustached, | |
| salt-and-pepper-haired, with barrel chests and round, | |
| hairy bellies spilling from snug white briefs—lounge on a couch, | |
| flexing meaty biceps and thick thighs. The camera, propped on a tripod, | |
| captures their playful vlog as they smirk, | |
| teasing the lens with deep chuckles and exaggerated poses. Sunlight glints off sweat-sheened skin, | |
| their robust physiques shifting with every boastful stretch—biceps bulging, | |
| bellies jiggling—while thick fingers adjust the phone, framing their confident, flirtatious display.8k""", | |
| "An astronaut riding a green horse", | |
| "A delicious ceviche cheesecake slice", | |
| "huge muscle man , big penis , dick " | |
| ] | |
| css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 640px; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(" # Text-to-Image Gradio Template") | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0, variant="primary") | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| max_lines=1, | |
| placeholder="Enter a negative prompt", | |
| visible=False, | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=4, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=512, # Replace with defaults that work for your model | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=24, | |
| value=512, # Replace with defaults that work for your model | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.0, | |
| maximum=10.0, | |
| step=0.1, | |
| value=4.0, # Replace with defaults that work for your model | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=25, # Replace with defaults that work for your model | |
| ) | |
| gr.Examples(examples=examples, inputs=[prompt]) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=infer, | |
| inputs=[ | |
| prompt, | |
| negative_prompt, | |
| seed, | |
| randomize_seed, | |
| width, | |
| height, | |
| guidance_scale, | |
| num_inference_steps, | |
| ], | |
| outputs=[result, seed], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |