Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import time
|
3 |
+
import os
|
4 |
+
|
5 |
+
# Set page title and description
|
6 |
+
st.set_page_config(
|
7 |
+
page_title="IPFS-LLaMA Demo",
|
8 |
+
page_icon="🦙",
|
9 |
+
layout="wide"
|
10 |
+
)
|
11 |
+
|
12 |
+
st.title("LLaMA-IPFS Demo")
|
13 |
+
st.markdown("This app demonstrates using llama-cpp-python with IPFS-hosted models.")
|
14 |
+
|
15 |
+
# Install required packages if not already installed
|
16 |
+
@st.cache_resource
|
17 |
+
def install_dependencies():
|
18 |
+
import subprocess
|
19 |
+
packages = ["llama-cpp-python", "huggingface-hub", "llama-ipfs"]
|
20 |
+
for package in packages:
|
21 |
+
try:
|
22 |
+
__import__(package)
|
23 |
+
except ImportError:
|
24 |
+
st.write(f"Installing {package}...")
|
25 |
+
subprocess.check_call(["pip", "install", package, "--quiet"])
|
26 |
+
|
27 |
+
# Activate IPFS integration
|
28 |
+
import llama_ipfs
|
29 |
+
llama_ipfs.activate()
|
30 |
+
st.success("✅ Dependencies installed and IPFS integration activated!")
|
31 |
+
|
32 |
+
# Display a loading spinner while installing dependencies
|
33 |
+
with st.spinner("Setting up environment..."):
|
34 |
+
install_dependencies()
|
35 |
+
|
36 |
+
# Load the LLaMA model
|
37 |
+
@st.cache_resource
|
38 |
+
def load_model(repo_id, filename):
|
39 |
+
from llama_cpp import Llama
|
40 |
+
with st.spinner(f"Loading model from {repo_id}/{filename}..."):
|
41 |
+
st.info("This may take a few minutes for the first run as the model is downloaded from IPFS.")
|
42 |
+
try:
|
43 |
+
model = Llama.from_pretrained(
|
44 |
+
repo_id=repo_id,
|
45 |
+
filename=filename,
|
46 |
+
verbose=False
|
47 |
+
)
|
48 |
+
return model
|
49 |
+
except Exception as e:
|
50 |
+
st.error(f"Error loading model: {str(e)}")
|
51 |
+
return None
|
52 |
+
|
53 |
+
# Model selection
|
54 |
+
model_options = {
|
55 |
+
"GPT-2 (117M)": {
|
56 |
+
"repo_id": "ipfs://bafybeie7quk74kmqg34nl2ewdwmsrlvvt6heayien364gtu2x6g2qpznhq",
|
57 |
+
"filename": "ggml-model-Q4_K_M.gguf"
|
58 |
+
}
|
59 |
+
}
|
60 |
+
|
61 |
+
# Sidebar for model selection and parameters
|
62 |
+
st.sidebar.title("Model Settings")
|
63 |
+
|
64 |
+
selected_model = st.sidebar.selectbox(
|
65 |
+
"Select Model",
|
66 |
+
list(model_options.keys()),
|
67 |
+
index=0
|
68 |
+
)
|
69 |
+
|
70 |
+
# Load the selected model
|
71 |
+
model_info = model_options[selected_model]
|
72 |
+
llm = load_model(model_info["repo_id"], model_info["filename"])
|
73 |
+
|
74 |
+
# Generation parameters
|
75 |
+
st.sidebar.title("Generation Settings")
|
76 |
+
temperature = st.sidebar.slider("Temperature", 0.0, 1.0, 0.0, 0.1)
|
77 |
+
max_tokens = st.sidebar.slider("Max Output Tokens", 10, 100, 30)
|
78 |
+
top_p = st.sidebar.slider("Top P", 0.1, 1.0, 0.95, 0.05)
|
79 |
+
repeat_penalty = st.sidebar.slider("Repeat Penalty", 1.0, 2.0, 1.0, 0.1)
|
80 |
+
|
81 |
+
# Main content area
|
82 |
+
st.header("Question & Answer")
|
83 |
+
|
84 |
+
# Input fields
|
85 |
+
context = st.text_area(
|
86 |
+
"Context",
|
87 |
+
value="France is a country in Western Europe known for its rich history and culture. "
|
88 |
+
"It is home to many famous landmarks including the Eiffel Tower. Its capital is Paris.",
|
89 |
+
height=150
|
90 |
+
)
|
91 |
+
|
92 |
+
question = st.text_input("Question", value="What is the capital of France?")
|
93 |
+
|
94 |
+
# Generate button
|
95 |
+
if st.button("Generate Answer"):
|
96 |
+
if llm is not None:
|
97 |
+
prompt = f"Context: {context}\nQuestion: {question}\nBased solely on the above context, answer the question in one word:"
|
98 |
+
|
99 |
+
# Show the prompt
|
100 |
+
with st.expander("Prompt"):
|
101 |
+
st.text(prompt)
|
102 |
+
|
103 |
+
# Generate the answer with progress
|
104 |
+
with st.spinner("Generating answer..."):
|
105 |
+
start_time = time.time()
|
106 |
+
output = llm(
|
107 |
+
prompt,
|
108 |
+
max_tokens=max_tokens,
|
109 |
+
temperature=temperature,
|
110 |
+
top_p=top_p,
|
111 |
+
repeat_penalty=repeat_penalty,
|
112 |
+
stop=["\n"]
|
113 |
+
)
|
114 |
+
end_time = time.time()
|
115 |
+
|
116 |
+
# Extract and display the answer
|
117 |
+
answer = output['choices'][0]['text'].strip()
|
118 |
+
|
119 |
+
st.success(f"Generated in {end_time - start_time:.2f} seconds")
|
120 |
+
|
121 |
+
# Display the answer
|
122 |
+
st.header("Answer")
|
123 |
+
st.write(answer)
|
124 |
+
else:
|
125 |
+
st.error("Model not loaded. Please check the error message above.")
|
126 |
+
|
127 |
+
# Information about the app
|
128 |
+
st.markdown("---")
|
129 |
+
st.markdown("""
|
130 |
+
### How It Works
|
131 |
+
|
132 |
+
The `llama-ipfs` package patches the llama-cpp-python library to:
|
133 |
+
|
134 |
+
1. Recognize `ipfs://` URIs as valid model identifiers
|
135 |
+
2. Download model files from IPFS nodes or gateways
|
136 |
+
3. Cache models locally for faster loading in subsequent runs
|
137 |
+
|
138 |
+
This allows you to load models from a decentralized network without changing any of your existing code!
|
139 |
+
""")
|