alexanz's picture
add more examples
1cf6856 verified
import gradio as gr
import numpy as np
import random
from PIL import Image
from rembg import remove
# import spaces #[uncomment to use ZeroGPU]
from peft import PeftModel
from diffusers import DiffusionPipeline, StableDiffusionPipeline, ControlNetModel, StableDiffusionControlNetPipeline, AutoencoderTiny, DDIMScheduler
from diffusers.utils import load_image
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "CompVis/stable-diffusion-v1-4" # Replace to the model you would like to use
torch_dtype = torch.float16
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
pipe = pipe.to(device)
# pipe.unet = PeftModel.from_pretrained(pipe.unet, "alexanz/SD14_lora_pusheen")
pipe.safety_checker = None
pipe.requires_safety_checker = False
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 512
# @spaces.GPU #[uncomment to use ZeroGPU]
def load_model(model_id, lora_strength, use_controlnet=False, control_mode="edge_detection", use_ip_adapter=False, control_strength_ip=0.0,
acceleration_mode=None):
global pipe
if pipe is not None:
del pipe
torch.cuda.empty_cache()
try:
if control_mode == "edge_detection" and (model_id == "CompVis/stable-diffusion-v1-4" or model_id == "alexanz/SD14_lora_pusheen"):
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch_dtype)
elif control_mode == "pose_estimation"and (model_id == "CompVis/stable-diffusion-v1-4" or model_id == "alexanz/SD14_lora_pusheen"):
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose", torch_dtype=torch_dtype)
if control_mode == "edge_detection" and (model_id == "alexanz/SD15_lora_pusheen"):
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny", torch_dtype=torch_dtype)
elif control_mode == "pose_estimation"and (model_id == "alexanz/SD15_lora_pusheen"):
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_openpose", torch_dtype=torch_dtype)
if model_id == "CompVis/stable-diffusion-v1-4":
if use_controlnet:
pipe = StableDiffusionControlNetPipeline.from_pretrained(
model_id,
safety_checker=None,
controlnet=controlnet,
torch_dtype=torch_dtype
)
else:
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
elif model_id == "alexanz/SD14_lora_pusheen":
if use_controlnet:
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
safety_checker=None,
controlnet=controlnet,
torch_dtype=torch_dtype
)
pipe.unet = PeftModel.from_pretrained(pipe.unet, model_id, torch_dtype=torch_dtype)
else:
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch_dtype)
pipe.unet = PeftModel.from_pretrained(pipe.unet, model_id)
elif model_id == "alexanz/SD15_lora_pusheen":
if use_controlnet:
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
safety_checker=None,
controlnet=controlnet,
torch_dtype=torch_dtype
)
pipe.unet = PeftModel.from_pretrained(pipe.unet, model_id, torch_dtype=torch_dtype)
else:
if acceleration_mode is None:
pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch_dtype)
pipe.unet = PeftModel.from_pretrained(pipe.unet, model_id)
elif acceleration_mode == "distilled":
pipe = StableDiffusionPipeline.from_pretrained(
"nota-ai/bk-sdm-small", torch_dtype=torch.float16, use_safetensors=True,
)
elif acceleration_mode == "distilled + tiny":
pipe = StableDiffusionPipeline.from_pretrained(
"nota-ai/bk-sdm-small", torch_dtype=torch.float16, use_safetensors=True,
)
pipe.vae = AutoencoderTiny.from_pretrained(
"sayakpaul/taesd-diffusers", torch_dtype=torch.float16, use_safetensors=True,
)
elif acceleration_mode == "DDIM":
scheduler = DDIMScheduler.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="scheduler")
pipe = StableDiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5", scheduler=scheduler, torch_dtype=torch.float16
)
if use_ip_adapter:
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
pipe.set_ip_adapter_scale(control_strength_ip)
pipe = pipe.to(device)
pipe.safety_checker = None
pipe.requires_safety_checker = False
pipe.enable_model_cpu_offload()
return f"Model {model_id} loaded with ControlNet: {use_controlnet}, mode: {control_mode}"
except Exception as e:
return f"Error: {str(e)}"
def infer(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
lora_strength,
guidance_scale,
num_inference_steps,
use_controlnet,
control_image_cont,
control_strength_cont,
model_dropdown,
control_mode,
use_ip_adapter,
control_strength_ip,
control_image_ip,
use_rmbg,
acceleration_mode,
progress=gr.Progress(track_tqdm=True),
):
load_status = load_model(
model_dropdown,
lora_strength,
use_controlnet,
control_mode,
use_ip_adapter,
control_strength_ip,
acceleration_mode
)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
if use_controlnet and control_image_cont is None:
return None, seed, "⚠️ ControlNet need control_image!"
if use_ip_adapter and control_image_ip is None:
return None, seed, "⚠️ IP-adapter need control_image!"
if use_controlnet:
control_image_cont= Image.fromarray(control_image_cont)
control_strength_cont = float(control_strength_cont)
if use_ip_adapter:
control_image_ip = Image.fromarray(control_image_ip)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
image=control_image_cont if use_controlnet else None,
controlnet_conditioning_scale=control_strength_cont if use_controlnet else None,
ip_adapter_image=control_image_ip if use_ip_adapter else None,
cross_attention_kwargs={"scale": lora_strength}
).images[0]
if use_rmbg:
image = remove(image)
return image, seed, "Model ready"
examples = [
"Sticker of Pusheen. Gray cat holding a heart-shaped balloon, standing next to a Valentine’s card with 'You’re Pawesome' written in glitter.",
"Gray cat holding a heart-shaped balloon, standing next to a Valentine’s card with 'You’re Pawesome' written in glitter.",
"Sticker of Pusheen. Pusheen riding a shopping cart full of cupcakes.",
"Sticker of Pusheen. A cat with droopy ears and a patched scarf, sitting on a park bench at dusk, holding a photo of another cat, with autumn leaves falling around it.",
"Sticker of Pusheen. A cartoon grey cat asks for a fish in a word cloud.",
"Sticker of Pusheen. Pusheen tangled in yarn, playful annoyed face."
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Text-to-Image Gradio Template")
model_dropdown = gr.Dropdown(label="Model ID",
choices=["alexanz/SD14_lora_pusheen", "CompVis/stable-diffusion-v1-4", "alexanz/SD15_lora_pusheen"],
value="CompVis/stable-diffusion-v1-4")
model_status = gr.Textbox(label="Model Status", interactive=False)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
lora_strength = gr.Slider(
label="Lora strength",
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512, # Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512, # Replace with defaults that work for your model
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.5, # Replace with defaults that work for your model
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=20, # Replace with defaults that work for your model
)
use_controlnet = gr.Checkbox(label="Use ControlNet", value=False)
with gr.Accordion("ControlNet Settings", open=True, visible=False) as controlnet_settings:
control_mode = gr.Dropdown(
label="ControlNet Mode",
choices=["edge_detection", "pose_estimation"],
value="edge_detection"
)
control_strength_cont = gr.Slider(
label="Control Strength",
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.0
)
control_image_cont = gr.Image(label="Control Image", type="numpy")
use_ip_adapter = gr.Checkbox(label="Use IP-adapter", value=False)
with gr.Accordion("IP-adapter Settings", open=True, visible=False) as ip_adapter_settings:
control_strength_ip = gr.Slider(
label="Control Strength",
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.0
)
control_image_ip = gr.Image(label="Control Image (IP-adapter)", type="numpy")
use_rmbg = gr.Checkbox(label="Delete background?", value=False)
use_acceleration = gr.Checkbox(label="Use accelerate model? (only for 1.5 SD!)", value=False)
with gr.Accordion("Acceleration Settings", open=True, visible=False) as acceleration_settings:
acceleration_mode = gr.Dropdown(label="Acceleration mode",
choices=["distilled", "distilled + tiny", "DDIM"],
value=None)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
lora_strength,
guidance_scale,
num_inference_steps,
use_controlnet,
control_image_cont,
control_strength_cont,
model_dropdown,
control_mode,
use_ip_adapter,
control_strength_ip,
control_image_ip,
use_rmbg,
acceleration_mode
],
outputs=[result, seed, model_status],
)
use_controlnet.change(
fn=lambda x: gr.update(visible=x, value=None),
inputs=[use_controlnet],
outputs=[controlnet_settings]
)
use_ip_adapter.change(
fn=lambda x: gr.update(visible=x, value=None),
inputs=[use_ip_adapter],
outputs=[ip_adapter_settings]
)
use_rmbg.change(
fn=lambda x: gr.update(visible=x, value=None),
inputs=[use_rmbg]
)
use_acceleration.change(
fn=lambda x: gr.update(visible=x, value=None),
inputs=[use_acceleration],
outputs=[acceleration_settings]
)
if __name__ == "__main__":
demo.launch()