saattrupdan
commited on
Commit
•
8be4fd9
1
Parent(s):
80b5399
feat: Update app
Browse files
app.py
CHANGED
@@ -1,190 +1,245 @@
|
|
1 |
"""Gradio app that showcases Scandinavian zero-shot text classification models."""
|
2 |
|
|
|
3 |
import gradio as gr
|
4 |
from transformers import pipeline
|
5 |
from luga import language as detect_language
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
Note that the models will most likely *not* work as well as a finetuned model on your
|
19 |
-
specific data, but they can be used as a starting point for your own classification
|
20 |
-
task ✨
|
21 |
-
|
22 |
-
|
23 |
-
Also, be patient, as this demo is running on a CPU!"""
|
24 |
-
|
25 |
-
|
26 |
-
def classification(task: str, doc: str) -> str:
|
27 |
"""Classify text into categories.
|
28 |
|
29 |
Args:
|
30 |
-
task (str):
|
31 |
-
Task to perform.
|
32 |
doc (str):
|
33 |
Text to classify.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
Returns:
|
36 |
-
str:
|
37 |
-
The predicted label.
|
38 |
"""
|
39 |
# Detect the language of the text
|
40 |
language = detect_language(doc.replace('\n', ' ')).name
|
41 |
|
42 |
-
#
|
43 |
-
if language == "sv"
|
44 |
-
|
|
|
|
|
|
|
|
|
45 |
else:
|
46 |
-
|
47 |
-
|
48 |
-
# If the task is sentiment, classify the text into positive, negative or neutral
|
49 |
-
if task == "Sentiment classification":
|
50 |
-
if language == "sv":
|
51 |
-
hypothesis_template = "Detta exempel är {}."
|
52 |
-
candidate_labels = ["positivt", "negativt", "neutralt"]
|
53 |
-
elif language == "no":
|
54 |
-
hypothesis_template = "Dette eksemplet er {}."
|
55 |
-
candidate_labels = ["positivt", "negativt", "nøytralt"]
|
56 |
-
else:
|
57 |
-
hypothesis_template = "Dette eksempel er {}."
|
58 |
-
candidate_labels = ["positivt", "negativt", "neutralt"]
|
59 |
-
|
60 |
-
# Else if the task is topic, classify the text into a topic
|
61 |
-
elif task == "News topic classification":
|
62 |
-
if language == "sv":
|
63 |
-
hypothesis_template = "Detta exempel handlar om {}."
|
64 |
-
candidate_labels = [
|
65 |
-
"krig",
|
66 |
-
"politik",
|
67 |
-
"utbildning",
|
68 |
-
"hälsa",
|
69 |
-
"ekonomi",
|
70 |
-
"mode",
|
71 |
-
"sport",
|
72 |
-
]
|
73 |
-
elif language == "no":
|
74 |
-
hypothesis_template = "Dette eksemplet handler om {}."
|
75 |
-
candidate_labels = [
|
76 |
-
"krig",
|
77 |
-
"politikk",
|
78 |
-
"utdanning",
|
79 |
-
"helse",
|
80 |
-
"økonomi",
|
81 |
-
"mote",
|
82 |
-
"sport",
|
83 |
-
]
|
84 |
-
else:
|
85 |
-
hypothesis_template = "Denne nyhedsartikel handler primært om {}."
|
86 |
-
candidate_labels = [
|
87 |
-
"krig",
|
88 |
-
"politik",
|
89 |
-
"uddannelse",
|
90 |
-
"sundhed",
|
91 |
-
"økonomi",
|
92 |
-
"mode",
|
93 |
-
"sport",
|
94 |
-
]
|
95 |
-
|
96 |
-
# Else if the task is spam detection, classify the text into spam or not spam
|
97 |
-
elif task == "Spam detection":
|
98 |
-
if language == "sv":
|
99 |
-
hypothesis_template = "Det här e-postmeddelandet ser {}."
|
100 |
-
candidate_labels = {
|
101 |
-
"ut som ett skräppostmeddelande": "Spam",
|
102 |
-
"inte ut som ett skräppostmeddelande": "Inte spam",
|
103 |
-
}
|
104 |
-
elif language == "no":
|
105 |
-
hypothesis_template = "Denne e-posten ser {}."
|
106 |
-
candidate_labels = {
|
107 |
-
"ut som en spam-e-post": "Spam",
|
108 |
-
"ikke ut som en spam-e-post": "Ikke spam",
|
109 |
-
}
|
110 |
-
else:
|
111 |
-
hypothesis_template = "Denne e-mail ligner {}."
|
112 |
-
candidate_labels = {
|
113 |
-
"en spam e-mail": "Spam",
|
114 |
-
"ikke en spam e-mail": "Ikke spam",
|
115 |
-
}
|
116 |
-
|
117 |
-
# Else if the task is product feedback detection, classify the text into product
|
118 |
-
# feedback or not product feedback
|
119 |
-
elif task == "Product feedback detection":
|
120 |
-
if language == "sv":
|
121 |
-
hypothesis_template = "Den här kommentaren är {}."
|
122 |
-
candidate_labels = {
|
123 |
-
"en recension av en produkt": "Produktfeedback",
|
124 |
-
"inte en recension av en produkt": "Inte produktfeedback",
|
125 |
-
}
|
126 |
-
elif language == "no":
|
127 |
-
hypothesis_template = "Denne kommentaren er {}."
|
128 |
-
candidate_labels = {
|
129 |
-
"en anmeldelse av et produkt": "Produkttilbakemelding",
|
130 |
-
"ikke en anmeldelse av et produkt": "Ikke produkttilbakemelding",
|
131 |
-
}
|
132 |
-
else:
|
133 |
-
hypothesis_template = "Denne kommentar er {}."
|
134 |
-
candidate_labels = {
|
135 |
-
"en anmeldelse af et produkt": "Produktfeedback",
|
136 |
-
"ikke en anmeldelse af et produkt": "Ikke produktfeedback",
|
137 |
-
}
|
138 |
-
|
139 |
-
# Else the task is not supported, so raise an error
|
140 |
-
else:
|
141 |
-
raise ValueError(f"Task {task} not supported.")
|
142 |
-
|
143 |
-
# If `candidate_labels` is a list then convert it to a dictionary, where the keys
|
144 |
-
# are the entries in the list and the values are the keys capitalized
|
145 |
-
if isinstance(candidate_labels, list):
|
146 |
-
candidate_labels = {label: label.capitalize() for label in candidate_labels}
|
147 |
|
148 |
# Run the classifier on the text
|
149 |
result = classifier(
|
150 |
doc,
|
151 |
-
candidate_labels=
|
152 |
hypothesis_template=hypothesis_template,
|
153 |
)
|
154 |
|
155 |
print(result)
|
156 |
|
157 |
# Return the predicted label
|
158 |
-
return (
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
)
|
162 |
|
163 |
-
# Create
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
)
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
"""Gradio app that showcases Scandinavian zero-shot text classification models."""
|
2 |
|
3 |
+
from typing import Dict, Tuple
|
4 |
import gradio as gr
|
5 |
from transformers import pipeline
|
6 |
from luga import language as detect_language
|
7 |
+
import re
|
8 |
+
|
9 |
+
|
10 |
+
def classification(
|
11 |
+
doc: str,
|
12 |
+
da_hypothesis_template: str,
|
13 |
+
da_candidate_labels: str,
|
14 |
+
sv_hypothesis_template: str,
|
15 |
+
sv_candidate_labels: str,
|
16 |
+
no_hypothesis_template: str,
|
17 |
+
no_candidate_labels: str,
|
18 |
+
) -> Dict[str, float]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
"""Classify text into categories.
|
20 |
|
21 |
Args:
|
|
|
|
|
22 |
doc (str):
|
23 |
Text to classify.
|
24 |
+
da_hypothesis_template (str):
|
25 |
+
Template for the hypothesis to be used for Danish classification.
|
26 |
+
da_candidate_labels (str):
|
27 |
+
Comma-separated list of candidate labels for Danish classification.
|
28 |
+
sv_hypothesis_template (str):
|
29 |
+
Template for the hypothesis to be used for Swedish classification.
|
30 |
+
sv_candidate_labels (str):
|
31 |
+
Comma-separated list of candidate labels for Swedish classification.
|
32 |
+
no_hypothesis_template (str):
|
33 |
+
Template for the hypothesis to be used for Norwegian classification.
|
34 |
+
no_candidate_labels (str):
|
35 |
+
Comma-separated list of candidate labels for Norwegian classification.
|
36 |
|
37 |
Returns:
|
38 |
+
dict of str to float:
|
39 |
+
The predicted label and the confidence score.
|
40 |
"""
|
41 |
# Detect the language of the text
|
42 |
language = detect_language(doc.replace('\n', ' ')).name
|
43 |
|
44 |
+
# Set the hypothesis template and candidate labels based on the detected language
|
45 |
+
if language == "sv":
|
46 |
+
hypothesis_template = sv_hypothesis_template
|
47 |
+
candidate_labels = re.split(r', *', sv_candidate_labels)
|
48 |
+
elif language == "no":
|
49 |
+
hypothesis_template = no_hypothesis_template
|
50 |
+
candidate_labels = re.split(r', *', no_candidate_labels)
|
51 |
else:
|
52 |
+
hypothesis_template = da_hypothesis_template
|
53 |
+
candidate_labels = re.split(r', *', da_candidate_labels)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
# Run the classifier on the text
|
56 |
result = classifier(
|
57 |
doc,
|
58 |
+
candidate_labels=candidate_labels,
|
59 |
hypothesis_template=hypothesis_template,
|
60 |
)
|
61 |
|
62 |
print(result)
|
63 |
|
64 |
# Return the predicted label
|
65 |
+
return {lbl: score for lbl, score in zip(result["labels"], result["scores"])}
|
66 |
+
|
67 |
+
|
68 |
+
def main():
|
69 |
+
|
70 |
+
# Load the zero-shot classification pipeline
|
71 |
+
global classifier
|
72 |
+
classifier = pipeline(
|
73 |
+
"zero-shot-classification", model="alexandrainst/scandi-nli-large"
|
74 |
)
|
75 |
|
76 |
+
# Create dictionary of descriptions for each task, containing the hypothesis template
|
77 |
+
# and candidate labels
|
78 |
+
task_configs: Dict[str, Tuple[str, str, str, str, str, str]] = {
|
79 |
+
"Sentiment classification": (
|
80 |
+
"Dette eksempel er {}.",
|
81 |
+
"positivt, negativt, neutralt",
|
82 |
+
"Detta exempel är {}.",
|
83 |
+
"positivt, negativt, neutralt",
|
84 |
+
"Dette eksemplet er {}.",
|
85 |
+
"positivt, negativt, nøytralt",
|
86 |
+
),
|
87 |
+
"News topic classification": (
|
88 |
+
"Denne nyhedsartikel handler primært om {}.",
|
89 |
+
"krig, politik, uddannelse, sundhed, økonomi, mode, sport",
|
90 |
+
"Den här nyhetsartikeln handlar främst om {}.",
|
91 |
+
"krig, politik, utbildning, hälsa, ekonomi, mode, sport",
|
92 |
+
"Denne nyhetsartikkelen handler først og fremst om {}.",
|
93 |
+
"krig, politikk, utdanning, helse, økonomi, mote, sport",
|
94 |
+
),
|
95 |
+
"Spam detection": (
|
96 |
+
"Denne e-mail ligner {}.",
|
97 |
+
"en spam e-mail, ikke en spam e-mail",
|
98 |
+
"Det här e-postmeddelandet ser {}.",
|
99 |
+
"ut som ett skräppostmeddelande, inte ut som ett skräppostmeddelande",
|
100 |
+
"Denne e-posten ser {}.",
|
101 |
+
"ut som en spam-e-post, ikke ut som en spam-e-post",
|
102 |
+
),
|
103 |
+
"Product feedback detection": (
|
104 |
+
"Denne kommentar er {}.",
|
105 |
+
"en anmeldelse af et produkt, ikke en anmeldelse af et produkt",
|
106 |
+
"Den här kommentaren är {}.",
|
107 |
+
"en recension av en produkt, inte en recension av en produkt",
|
108 |
+
"Denne kommentaren er {}.",
|
109 |
+
"en anmeldelse av et produkt, ikke en anmeldelse av et produkt",
|
110 |
+
),
|
111 |
+
"Define your own task!": (
|
112 |
+
"Dette eksempel er {}.",
|
113 |
+
"",
|
114 |
+
"Detta exempel är {}.",
|
115 |
+
"",
|
116 |
+
"Dette eksemplet er {}.",
|
117 |
+
"",
|
118 |
+
),
|
119 |
+
}
|
120 |
+
|
121 |
+
def set_task_setup(task: str) -> Tuple[str, str, str, str, str, str]:
|
122 |
+
return task_configs[task]
|
123 |
+
|
124 |
+
with gr.Blocks() as demo:
|
125 |
+
|
126 |
+
# Create title and description
|
127 |
+
gr.Markdown("# Scandinavian Zero-shot Text Classification")
|
128 |
+
gr.Markdown("""
|
129 |
+
Classify text in Danish, Swedish or Norwegian into categories, without
|
130 |
+
finetuning on any training data!
|
131 |
+
|
132 |
+
Note that the models will most likely not work as well as a finetuned model
|
133 |
+
on your specific data, but they can be used as a starting point for your
|
134 |
+
own classification task ✨
|
135 |
+
|
136 |
+
Also, be patient, as this demo is running on a CPU!
|
137 |
+
""")
|
138 |
+
|
139 |
+
with gr.Row():
|
140 |
+
|
141 |
+
# Input column
|
142 |
+
with gr.Column():
|
143 |
+
|
144 |
+
# Create a dropdown menu for the task
|
145 |
+
dropdown = gr.inputs.Dropdown(
|
146 |
+
label="Task",
|
147 |
+
choices=[
|
148 |
+
"Sentiment classification",
|
149 |
+
"News topic classification",
|
150 |
+
"Spam detection",
|
151 |
+
"Product feedback detection",
|
152 |
+
"Define your own task!",
|
153 |
+
],
|
154 |
+
default="Sentiment classification",
|
155 |
+
)
|
156 |
+
|
157 |
+
with gr.Row(variant="compact"):
|
158 |
+
da_hypothesis_template = gr.inputs.Textbox(
|
159 |
+
label="Danish hypothesis template",
|
160 |
+
default="Dette eksempel er {}.",
|
161 |
+
)
|
162 |
+
da_candidate_labels = gr.inputs.Textbox(
|
163 |
+
label="Danish candidate labels (comma separated)",
|
164 |
+
default="positivt, negativt, neutralt",
|
165 |
+
)
|
166 |
+
|
167 |
+
with gr.Row(variant="compact"):
|
168 |
+
sv_hypothesis_template = gr.inputs.Textbox(
|
169 |
+
label="Swedish hypothesis template",
|
170 |
+
default="Detta exempel är {}.",
|
171 |
+
)
|
172 |
+
sv_candidate_labels = gr.inputs.Textbox(
|
173 |
+
label="Swedish candidate labels (comma separated)",
|
174 |
+
default="positivt, negativt, neutralt",
|
175 |
+
)
|
176 |
+
|
177 |
+
with gr.Row(variant="compact"):
|
178 |
+
no_hypothesis_template = gr.inputs.Textbox(
|
179 |
+
label="Norwegian hypothesis template",
|
180 |
+
default="Dette eksemplet er {}.",
|
181 |
+
)
|
182 |
+
no_candidate_labels = gr.inputs.Textbox(
|
183 |
+
label="Norwegian candidate labels (comma separated)",
|
184 |
+
default="positivt, negativt, nøytralt",
|
185 |
+
)
|
186 |
+
|
187 |
+
# When a new task is chosen, update the description
|
188 |
+
dropdown.change(
|
189 |
+
fn=set_task_setup,
|
190 |
+
inputs=dropdown,
|
191 |
+
outputs=[
|
192 |
+
da_hypothesis_template,
|
193 |
+
da_candidate_labels,
|
194 |
+
sv_hypothesis_template,
|
195 |
+
sv_candidate_labels,
|
196 |
+
no_hypothesis_template,
|
197 |
+
no_candidate_labels,
|
198 |
+
],
|
199 |
+
)
|
200 |
+
|
201 |
+
# Output column
|
202 |
+
with gr.Column():
|
203 |
+
|
204 |
+
# Create a text box for the input text
|
205 |
+
input_textbox = gr.inputs.Textbox(
|
206 |
+
label="Input text", default="Jeg er helt vild med fodbolden 😊"
|
207 |
+
)
|
208 |
+
|
209 |
+
with gr.Row():
|
210 |
+
clear_btn = gr.Button(value="Clear", width=0.5)
|
211 |
+
submit_btn = gr.Button(value="Submit", width=0.5, variant="primary")
|
212 |
+
|
213 |
+
# When the clear button is clicked, clear the input text box
|
214 |
+
clear_btn.click(
|
215 |
+
fn=lambda _: "", inputs=input_textbox, outputs=input_textbox
|
216 |
+
)
|
217 |
+
|
218 |
+
|
219 |
+
with gr.Column():
|
220 |
+
|
221 |
+
# Create output text box
|
222 |
+
output_textbox = gr.Label(label="Result")
|
223 |
+
|
224 |
+
# When the submit button is clicked, run the classifier on the input text
|
225 |
+
# and display the result in the output text box
|
226 |
+
submit_btn.click(
|
227 |
+
fn=classification,
|
228 |
+
inputs=[
|
229 |
+
input_textbox,
|
230 |
+
da_hypothesis_template,
|
231 |
+
da_candidate_labels,
|
232 |
+
sv_hypothesis_template,
|
233 |
+
sv_candidate_labels,
|
234 |
+
no_hypothesis_template,
|
235 |
+
no_candidate_labels,
|
236 |
+
],
|
237 |
+
outputs=output_textbox,
|
238 |
+
)
|
239 |
+
|
240 |
+
# Run the app
|
241 |
+
demo.launch()
|
242 |
+
|
243 |
+
|
244 |
+
if __name__ == "__main__":
|
245 |
+
main()
|