alexanderkroner commited on
Commit
62cf953
1 Parent(s): a8cc2eb

initial commit

Browse files
README.md CHANGED
@@ -1,10 +1,10 @@
1
  ---
2
- title: Saliency
3
  emoji: ⚡
4
- colorFrom: indigo
5
  colorTo: blue
6
  sdk: gradio
7
- sdk_version: 4.20.1
8
  app_file: app.py
9
  pinned: false
10
  license: mit
 
1
  ---
2
+ title: Visual Saliency Prediction
3
  emoji: ⚡
4
+ colorFrom: pink
5
  colorTo: blue
6
  sdk: gradio
7
+ sdk_version: 4.26.0
8
  app_file: app.py
9
  pinned: false
10
  license: mit
app.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import matplotlib.pyplot as plt
3
+ import tensorflow as tf
4
+
5
+ loaded_model = tf.saved_model.load("model/")
6
+ loaded_model = loaded_model.signatures["serving_default"]
7
+
8
+
9
+ def get_target_shape(original_shape):
10
+ original_aspect_ratio = original_shape[0] / original_shape[1]
11
+
12
+ square_mode = abs(original_aspect_ratio - 1.0)
13
+ landscape_mode = abs(original_aspect_ratio - 240 / 320)
14
+ portrait_mode = abs(original_aspect_ratio - 320 / 240)
15
+
16
+ best_mode = min(square_mode, landscape_mode, portrait_mode)
17
+
18
+ if best_mode == square_mode:
19
+ target_shape = (320, 320)
20
+ elif best_mode == landscape_mode:
21
+ target_shape = (240, 320)
22
+ else:
23
+ target_shape = (320, 240)
24
+
25
+ return target_shape
26
+
27
+
28
+ def preprocess_input(input_image, target_shape):
29
+ input_tensor = tf.expand_dims(input_image, axis=0)
30
+
31
+ input_tensor = tf.image.resize(
32
+ input_tensor, target_shape, preserve_aspect_ratio=True
33
+ )
34
+
35
+ vertical_padding = target_shape[0] - input_tensor.shape[1]
36
+ horizontal_padding = target_shape[1] - input_tensor.shape[2]
37
+
38
+ vertical_padding_1 = vertical_padding // 2
39
+ vertical_padding_2 = vertical_padding - vertical_padding_1
40
+
41
+ horizontal_padding_1 = horizontal_padding // 2
42
+ horizontal_padding_2 = horizontal_padding - horizontal_padding_1
43
+
44
+ input_tensor = tf.pad(
45
+ input_tensor,
46
+ [
47
+ [0, 0],
48
+ [vertical_padding_1, vertical_padding_2],
49
+ [horizontal_padding_1, horizontal_padding_2],
50
+ [0, 0],
51
+ ],
52
+ )
53
+
54
+ return (
55
+ input_tensor,
56
+ [vertical_padding_1, vertical_padding_2],
57
+ [horizontal_padding_1, horizontal_padding_2],
58
+ )
59
+
60
+
61
+ def postprocess_output(
62
+ output_tensor, vertical_padding, horizontal_padding, original_shape
63
+ ):
64
+ output_tensor = output_tensor[
65
+ :,
66
+ vertical_padding[0] : output_tensor.shape[1] - vertical_padding[1],
67
+ horizontal_padding[0] : output_tensor.shape[2] - horizontal_padding[1],
68
+ :,
69
+ ]
70
+
71
+ output_tensor = tf.image.resize(output_tensor, original_shape)
72
+
73
+ output_array = output_tensor.numpy().squeeze()
74
+ output_array = plt.cm.inferno(output_array)[..., :3]
75
+
76
+ return output_array
77
+
78
+
79
+ def compute_saliency(input_image, alpha=0.65):
80
+ if input_image is not None:
81
+ original_shape = input_image.shape[:2]
82
+ target_shape = get_target_shape(original_shape)
83
+
84
+ input_tensor, vertical_padding, horizontal_padding = preprocess_input(
85
+ input_image, target_shape
86
+ )
87
+
88
+ saliency_map = loaded_model(input_tensor)["output"]
89
+
90
+ saliency_map = postprocess_output(
91
+ saliency_map, vertical_padding, horizontal_padding, original_shape
92
+ )
93
+
94
+ blended_image = alpha * saliency_map + (1 - alpha) * input_image / 255
95
+
96
+ return blended_image
97
+
98
+
99
+ examples = [
100
+ "examples/kirsten-frank-o1sXiz_LU1A-unsplash.jpg",
101
+ "examples/oscar-fickel-F5ze5FkEu1g-unsplash.jpg",
102
+ "examples/ting-tian-_79ZJS8pV70-unsplash.jpg",
103
+ "examples/gina-domenique-LmrAUrHinqk-unsplash.jpg",
104
+ "examples/robby-mccullough-r05GkQBcaPM-unsplash.jpg",
105
+ ]
106
+
107
+ demo = gr.Interface(
108
+ fn=compute_saliency,
109
+ inputs=gr.Image(label="Input Image"),
110
+ outputs=gr.Image(label="Saliency Map"),
111
+ examples=examples,
112
+ title="Visual Saliency Prediction",
113
+ description="A demo to predict where humans fixate an image using a deep learning model trained on eye movement data. Upload an image file, take a snapshot from your webcam, or paste an image from the clipboard to compute the saliency map.",
114
+ article="For more information on the model, check out [GitHub](https://github.com/alexanderkroner/saliency) and the corresponding [paper](https://www.sciencedirect.com/science/article/pii/S0893608020301660).",
115
+ allow_flagging="never",
116
+ )
117
+
118
+ if __name__ == "__main__":
119
+ demo.queue().launch()
examples/gina-domenique-LmrAUrHinqk-unsplash.jpg ADDED
examples/kirsten-frank-o1sXiz_LU1A-unsplash.jpg ADDED
examples/oscar-fickel-F5ze5FkEu1g-unsplash.jpg ADDED
examples/robby-mccullough-r05GkQBcaPM-unsplash.jpg ADDED
examples/ting-tian-_79ZJS8pV70-unsplash.jpg ADDED
model/saved_model.pb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:803688d92e101794f6ced50ca08b747706e385e7b815f309344632def6e1609b
3
+ size 99864092
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ gradio==4.26.0
2
+ matplotlib==3.8.4
3
+ tensorflow==2.16.1