alex-abb commited on
Commit
66d24b3
1 Parent(s): cb4c967

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -69
app.py CHANGED
@@ -1,73 +1,13 @@
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
- import spaces
4
- import transformers
5
- from transformers import pipeline
6
- from transformers import AutoTokenizer, AutoModelForCausalLM
7
 
 
 
8
 
 
 
 
 
9
 
10
- @spaces.GPU
11
-
12
-
13
- # Load model directly
14
-
15
- tokenizer = AutoTokenizer.from_pretrained("MTSAIR/MultiVerse_70B")
16
- model = AutoModelForCausalLM.from_pretrained("MTSAIR/MultiVerse_70B")
17
-
18
-
19
-
20
- def respond(
21
- message,
22
- history: list[tuple[str, str]],
23
- system_message,
24
- max_tokens,
25
- temperature,
26
- top_p,
27
- ):
28
- messages = [{"role": "system", "content": system_message}]
29
-
30
- for val in history:
31
- if val[0]:
32
- messages.append({"role": "user", "content": val[0]})
33
- if val[1]:
34
- messages.append({"role": "assistant", "content": val[1]})
35
-
36
- messages.append({"role": "user", "content": message})
37
-
38
- response = ""
39
-
40
- for message in client.chat_completion(
41
- messages,
42
- max_tokens=max_tokens,
43
- stream=True,
44
- temperature=temperature,
45
- top_p=top_p,
46
- ):
47
- token = message.choices[0].delta.content
48
-
49
- response += token
50
- yield response
51
-
52
- """
53
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
54
- """
55
- demo = gr.ChatInterface(
56
- respond,
57
- additional_inputs=[
58
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
59
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
60
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
61
- gr.Slider(
62
- minimum=0.1,
63
- maximum=1.0,
64
- value=0.95,
65
- step=0.05,
66
- label="Top-p (nucleus sampling)",
67
- ),
68
- ],
69
- )
70
-
71
-
72
- if __name__ == "__main__":
73
- demo.launch()
 
1
+ from transformers import pipeline
2
  import gradio as gr
 
 
 
 
 
3
 
4
+ # Charger le modèle pour la génération de texte
5
+ pipe = pipeline("text-generation", model="MTSAIR/MultiVerse_70B")
6
 
7
+ # Fonction pour générer une réponse à partir du message de l'utilisateur
8
+ def generate_response(message):
9
+ response = pipe(message)
10
+ return response[0]['generated_text']
11
 
12
+ # Configurer et lancer l'interface de chat avec Gradio
13
+ gr.ChatInterface(fn=generate_response).launch()