Spaces:
Paused
Paused
import argparse | |
import os | |
import re | |
import sys | |
import bleach | |
import cv2 | |
import gradio as gr | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from PIL import Image | |
from transformers import AutoTokenizer, BitsAndBytesConfig, CLIPImageProcessor | |
from model.LISA import LISAForCausalLM | |
from model.llava import conversation as conversation_lib | |
from model.llava.mm_utils import tokenizer_image_token | |
from model.segment_anything.utils.transforms import ResizeLongestSide | |
from utils.utils import (DEFAULT_IM_END_TOKEN, DEFAULT_IM_START_TOKEN, | |
DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX) | |
def parse_args(args): | |
parser = argparse.ArgumentParser(description="LISA chat") | |
parser.add_argument("--version", default="xinlai/LISA-13B-llama2-v1") | |
parser.add_argument("--vis_save_path", default="./vis_output", type=str) | |
parser.add_argument( | |
"--precision", | |
default="fp16", | |
type=str, | |
choices=["fp32", "bf16", "fp16"], | |
help="precision for inference", | |
) | |
parser.add_argument("--image_size", default=1024, type=int, help="image size") | |
parser.add_argument("--model_max_length", default=512, type=int) | |
parser.add_argument("--lora_r", default=8, type=int) | |
parser.add_argument( | |
"--vision-tower", default="openai/clip-vit-large-patch14", type=str | |
) | |
parser.add_argument("--local-rank", default=0, type=int, help="node rank") | |
parser.add_argument("--load_in_8bit", action="store_true", default=False) | |
parser.add_argument("--load_in_4bit", action="store_true", default=False) | |
parser.add_argument("--use_mm_start_end", action="store_true", default=True) | |
parser.add_argument( | |
"--conv_type", | |
default="llava_v1", | |
type=str, | |
choices=["llava_v1", "llava_llama_2"], | |
) | |
return parser.parse_args(args) | |
def preprocess( | |
x, | |
pixel_mean=torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1), | |
pixel_std=torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1), | |
img_size=1024, | |
) -> torch.Tensor: | |
"""Normalize pixel values and pad to a square input.""" | |
# Normalize colors | |
x = (x - pixel_mean) / pixel_std | |
# Pad | |
h, w = x.shape[-2:] | |
padh = img_size - h | |
padw = img_size - w | |
x = F.pad(x, (0, padw, 0, padh)) | |
return x | |
args = parse_args(sys.argv[1:]) | |
os.makedirs(args.vis_save_path, exist_ok=True) | |
# Create model | |
tokenizer = AutoTokenizer.from_pretrained( | |
args.version, | |
cache_dir=None, | |
model_max_length=args.model_max_length, | |
padding_side="right", | |
use_fast=False, | |
) | |
tokenizer.pad_token = tokenizer.unk_token | |
args.seg_token_idx = tokenizer("[SEG]", add_special_tokens=False).input_ids[0] | |
torch_dtype = torch.float32 | |
if args.precision == "bf16": | |
torch_dtype = torch.bfloat16 | |
elif args.precision == "fp16": | |
torch_dtype = torch.half | |
kwargs = {"torch_dtype": torch_dtype} | |
if args.load_in_4bit: | |
kwargs.update( | |
{ | |
"torch_dtype": torch.half, | |
"device_map": "auto", | |
"load_in_4bit": True, | |
"quantization_config": BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch.float16, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_quant_type="nf4", | |
llm_int8_skip_modules=["visual_model"], | |
), | |
} | |
) | |
elif args.load_in_8bit: | |
kwargs.update( | |
{ | |
"torch_dtype": torch.half, | |
"device_map": "auto", | |
"quantization_config": BitsAndBytesConfig( | |
llm_int8_skip_modules=["visual_model"], | |
load_in_8bit=True, | |
), | |
} | |
) | |
model = LISAForCausalLM.from_pretrained( | |
args.version, low_cpu_mem_usage=True, seg_token_idx=args.seg_token_idx, **kwargs | |
) | |
model.config.eos_token_id = tokenizer.eos_token_id | |
model.config.bos_token_id = tokenizer.bos_token_id | |
model.config.pad_token_id = tokenizer.pad_token_id | |
model.get_model().initialize_vision_modules(model.get_model().config) | |
vision_tower = model.get_model().get_vision_tower() | |
vision_tower.to(dtype=torch_dtype) | |
if args.precision == "bf16": | |
model = model.bfloat16().cuda() | |
elif ( | |
args.precision == "fp16" and (not args.load_in_4bit) and (not args.load_in_8bit) | |
): | |
vision_tower = model.get_model().get_vision_tower() | |
model.model.vision_tower = None | |
import deepspeed | |
model_engine = deepspeed.init_inference( | |
model=model, | |
dtype=torch.half, | |
replace_with_kernel_inject=True, | |
replace_method="auto", | |
) | |
model = model_engine.module | |
model.model.vision_tower = vision_tower.half().cuda() | |
elif args.precision == "fp32": | |
model = model.float().cuda() | |
vision_tower = model.get_model().get_vision_tower() | |
vision_tower.to(device=args.local_rank) | |
clip_image_processor = CLIPImageProcessor.from_pretrained(model.config.vision_tower) | |
transform = ResizeLongestSide(args.image_size) | |
model.eval() | |
# Gradio | |
examples = [ | |
[ | |
"Where can the driver see the car speed in this image? Please output segmentation mask.", | |
"./resources/imgs/example1.jpg", | |
], | |
[ | |
"Can you segment the food that tastes spicy and hot?", | |
"./resources/imgs/example2.jpg", | |
], | |
[ | |
"Assuming you are an autonomous driving robot, what part of the diagram would you manipulate to control the direction of travel? Please output segmentation mask and explain why.", | |
"./resources/imgs/example1.jpg", | |
], | |
[ | |
"What can make the woman stand higher? Please output segmentation mask and explain why.", | |
"./resources/imgs/example3.jpg", | |
], | |
] | |
output_labels = ["Segmentation Output"] | |
title = "LISA: Reasoning Segmentation via Large Language Model" | |
description = """ | |
<font size=4> | |
This is the online demo of LISA. \n | |
If multiple users are using it at the same time, they will enter a queue, which may delay some time. \n | |
**Note**: **Different prompts can lead to significantly varied results**. \n | |
**Note**: Please try to **standardize** your input text prompts to **avoid ambiguity**, and also pay attention to whether the **punctuations** of the input are correct. \n | |
**Note**: Current model is **LISA-13B-llama2-v0-explanatory**, and 4-bit quantization may impair text-generation quality. \n | |
**Usage**: <br> | |
 (1) To let LISA **segment something**, input prompt like: "Can you segment xxx in this image?", "What is xxx in this image? Please output segmentation mask."; <br> | |
 (2) To let LISA **output an explanation**, input prompt like: "What is xxx in this image? Please output segmentation mask and explain why."; <br> | |
 (3) To obtain **solely language output**, you can input like what you should do in current multi-modal LLM (e.g., LLaVA). <br> | |
Hope you can enjoy our work! | |
</font> | |
""" | |
article = """ | |
<p style='text-align: center'> | |
<a href='https://arxiv.org/abs/2308.00692' target='_blank'> | |
Preprint Paper | |
</a> | |
\n | |
<p style='text-align: center'> | |
<a href='https://github.com/dvlab-research/LISA' target='_blank'> Github Repo </a></p> | |
""" | |
## to be implemented | |
def inference(input_str, input_image): | |
## filter out special chars | |
input_str = bleach.clean(input_str) | |
print("input_str: ", input_str, "input_image: ", input_image) | |
## input valid check | |
if not re.match(r"^[A-Za-z ,.!?\'\"]+$", input_str) or len(input_str) < 1: | |
output_str = "[Error] Invalid input: ", input_str | |
# output_image = np.zeros((128, 128, 3)) | |
## error happened | |
output_image = cv2.imread("./resources/error_happened.png")[:, :, ::-1] | |
return output_image, output_str | |
# Model Inference | |
conv = conversation_lib.conv_templates[args.conv_type].copy() | |
conv.messages = [] | |
prompt = input_str | |
prompt = DEFAULT_IMAGE_TOKEN + "\n" + prompt | |
if args.use_mm_start_end: | |
replace_token = ( | |
DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN | |
) | |
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token) | |
conv.append_message(conv.roles[0], prompt) | |
conv.append_message(conv.roles[1], "") | |
prompt = conv.get_prompt() | |
image_np = cv2.imread(image_path) | |
image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB) | |
original_size_list = [image_np.shape[:2]] | |
image_clip = ( | |
clip_image_processor.preprocess(image_np, return_tensors="pt")[ | |
"pixel_values" | |
][0] | |
.unsqueeze(0) | |
.cuda() | |
) | |
if args.precision == "bf16": | |
image_clip = image_clip.bfloat16() | |
elif args.precision == "fp16": | |
image_clip = image_clip.half() | |
else: | |
image_clip = image_clip.float() | |
image = transform.apply_image(image_np) | |
resize_list = [images.shape[:2]] | |
image = ( | |
preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous()) | |
.unsqueeze(0) | |
.cuda() | |
) | |
if args.precision == "bf16": | |
image = image.bfloat16() | |
elif args.precision == "fp16": | |
image = image.half() | |
else: | |
image = image.float() | |
input_ids = tokenizer_image_token(prompt, tokenizer, return_tensors="pt") | |
input_ids = input_ids.unsqueeze(0).cuda() | |
output_ids, pred_masks = model.evaluate( | |
image_clip, | |
image, | |
input_ids, | |
resize_list, | |
original_size_list, | |
max_new_tokens=512, | |
tokenizer=tokenizer, | |
) | |
output_ids = output_ids[0][output_ids[0] != IMAGE_TOKEN_INDEX] | |
text_output = tokenizer.decode(output_ids, skip_special_tokens=False) | |
text_output = text_output.replace("\n", "").replace(" ", " ") | |
text_output = text_output.split("ASSISTANT: ")[-1] | |
print("text_output: ", text_output) | |
save_img = None | |
for i, pred_mask in enumerate(pred_masks): | |
if pred_mask.shape[0] == 0: | |
continue | |
pred_mask = pred_mask.detach().cpu().numpy()[0] | |
pred_mask = pred_mask > 0 | |
save_img = image_np.copy() | |
save_img[pred_mask] = ( | |
image_np * 0.5 | |
+ pred_mask[:, :, None].astype(np.uint8) * np.array([255, 0, 0]) * 0.5 | |
)[pred_mask] | |
output_str = "ASSITANT: " + text_output # input_str | |
if save_img is not None: | |
output_image = save_img # input_image | |
else: | |
## no seg output | |
output_image = cv2.imread("./resources/no_seg_out.png")[:, :, ::-1] | |
return output_image, output_str | |
demo = gr.Interface( | |
inference, | |
inputs=[ | |
gr.Textbox(lines=1, placeholder=None, label="Text Instruction"), | |
gr.Image(type="filepath", label="Input Image"), | |
], | |
outputs=[ | |
gr.Image(type="pil", label="Segmentation Output"), | |
gr.Textbox(lines=1, placeholder=None, label="Text Output"), | |
], | |
title=title, | |
description=description, | |
article=article, | |
examples=examples, | |
allow_flagging="auto", | |
) | |
demo.queue() | |
demo.launch() | |